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Using game-theoretic probability for probability judgment

Glenn Shafer

• For 170 years, people have asked whether probabilities are
objective or subjective.

• Game-theoretic probability asks a simpler question: Is there
a repetitive structure?

• For probability judgement outside repetitive structures we
need judgements of independence.
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• Probability and Finance: It’s Only a Game! Glenn

Shafer and Vladimir Vovk, Wiley, 2001.

• Sample chapters and working papers at

www.probabilityandfinance.com.
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Abstract

The success of defensive forecasting shows that the crucial

question is not whether there is a valid objective model but

simply whether there is an agreed-on repetitive structure for

the questions to be answered and the data for answering them.

Once we place the current example in a sequence of other

examples, defensive forecasting can produce valid probability

forecasts-valid insofar as they resist statistical tests—without

any assumptions.

But if no single sequence of previous examples imposes itself,

then we must go outside probability theory to weigh evidence.
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• Theory To prove a probabilistic prediction, construct a

betting strategy that makes you rich if the prediction fails.

• Testing To test a probabilistic theory, bet against its

predictions.

• Forecasting To make probability forecasts in a repetitive

structure, construct a forecasting strategy that defeats all

reasonable betting strategies.

• Probability judgement Judgements of evidential

independence are needed to extend reasoning to

non-repetitive situations (Dempster-Shafer, etc.).
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Part I. Game-theoretic probability

Blaise Pascal

(1623–1662)

Probability is about
betting.

Antoine Cournot

(1801–1877)

Events of small
probability do not

happen.

Jean Ville

(1910–1988)

Pascal + Cournot:

If the probabilities are
right, you don’t get

rich.
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Antoine Cournot

(1801–1877)

“A physically impossible event is

one whose probability is infinitely

small. This remark alone gives

substance—an objective and

phenomenological value—to the

mathematical theory of probability.”

(1843)

This is more basic than frequentism.
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Émile Borel

1871–1956

Inventor of measure
theory.

Minister of the French
navy in 1925.

Borel: the principle that an event

with very small probability will not

happen is the only law of chance.

• Impossibility on the human

scale: p < 10−6.

• Impossibility on the terrestrial

scale: p < 10−15.

• Impossibility on the cosmic

scale: p < 10−50.
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Andrei Kolmogorov

1903–1987

Hailed as the Soviet Euler,
Kolmogorov was credited
with establishing measure
theory as the mathematical
foundation for probability.

In his celebrated 1933 book, Kol-

mogorov wrote:

When P(A) very small, we

can be practically certain

that the event A will not hap-

pen on a single trial of the

conditions that define it.
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Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

In 1939, Ville showed that the laws of

probability can be derived from this

principle:

You will not multiply the cap-

ital you risk by a large factor.

Ville showed that this principle is

equivalent to the principle that

events of small probability will not

happen.

We call both principles Cournot’s

principle.
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Suppose you gamble without risking more than your initial
capital.

Your resulting wealth is a nonnegative random variable X with
expected value E(X) equal to your initial capital.

Markov’s inequality says

P

(
X ≥ E(X)

ε

)
≤ ε.

You have probability ε or less of multiplying your initial capital
by 1/ε or more.

Game-theoretic probability generalizes classical probability to
the case of limited betting offers (less than a probability
distribution) by taking the inability to multiply initial capital as
basic.
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Perfect-information protocol for predicting and testing even

without a probability model

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices for various payoffs.

Skeptic decides which payoffs to buy.

Reality determines the payoffs.

Kn := Kn−1+ Skeptic’s net gain or loss.
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In Ville’s theory, Forecaster gives prices based on a probability

distribution. He uses conditional probabilities for Reality’s next

move given her past moves.

In Vovk’s generalization, (1) Forecaster does not necessarily

use a known probability distribution, and (2) he may give less

than a probability distribution for Reality’s next move.
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Ville’s strong law of large numbers.

(Special case where probability is always 1/2.)

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 1

2 or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Ville’s strategy

K0 = 1.
FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2
).

Ville suggested the strategy

sn(y1, . . . , yn−1 =
4

n + 1
Kn−1

(
rn−1 − n− 1

2

)
, where rn−1 :=

n−1∑

i=1

yi.

It produces the capital

Kn = 2nrn!(n− rn)!

(n + 1)!
.

From the assumption that this remains bounded by some constant C, you
can easily derive the strong law of large numbers using Stirling’s formula.
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Ville’s more general game.
Ville started with a probability distribution for P for y1, y2, . . . .
The conditional probability for yn = 1 given y1, . . . , yn−1 is not
necessarily 1/2.

K0 := 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn

(
yn − P(yn = 1|y1, . . . , yn−1)

)
.

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1

(
yi − P(yi = 1|y1, . . . , yi−1)

)
= 0

or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Vovk’s generalization: Replace P with a forecaster.
K0 := 1.

FOR n = 1,2, . . . :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − pn).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 (yi − pi) = 0

or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Defensive forecasting

Under repetition, good probability forecasting is possible.

• We call it defensive because it defends against a

quasi-universal test.

• Your probability forecasts will pass this test even if reality

plays against you.

17



Why Phil Dawid thought good probability prediction is impossible. . .

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces continuous sn ∈ R.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Reality can make Forecaster uncalibrated by setting

yn :=

{
1 if pn < 0.5

0 if pn ≥ 0.5,

Skeptic can then make steady money with

sn :=

{
1 if p < 0.5

−1 if p ≥ 0.5,

But if Skeptic is forced to approximate sn by a continuous function of pn,
then the continuous function will be zero close to p = 0.5, and Forecaster
can set pn equal to this point.
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Skeptic adopts a continuous strategy S.
FOR n = 1,2, . . .

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic makes the move sn specified by S.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce
his entire strategy in advance, only make him reveal his strategy for each
round in advance of Forecaster’s move.

FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

• If Sn(p) > 0 for all p, take pn := 1.

• If Sn(p) < 0 for all p, take pn := 0.

• Otherwise, choose pn so that Sn(pn) = 0.
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TWO APPROACHES TO FORECASTING

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.

1. Start with strategies for Forecaster. Improve by averaging (Bayes,
prediction with expert advice).

2. Start with strategies for Skeptic. Improve by averaging (defensive
forecasting).
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We can always give probabilities with good calibration and

resolution.

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with good

calibration and resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.
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Fundamental idea: Average strategies for Skeptic for a grid of

values of p∗. (The p∗-strategy makes money if calibration fails

for pn close to p∗.) The derived strategy for Forecaster

guarantees good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.
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Objective vs. subjective

From a 1970s perspective:

• Aleatory probability is the irreducible uncertainty that remains when
knowledge is complete.

• Epistemic probability arises when knowledge is incomplete.

New game-theoretic perspective:

• Under a repetitive structure you can make make good probability
forecasts relative to whatever state of knowledge you have.

• If there is no repetitive structure, your task is to combine evidence
rather than to make probability forecasts.
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Part 2. Cournotian justification of Bayesian updating

We update probabilities using the rule

P (B|A) =
P (A&B)

P (A)
.

• In 1738, De Moivre justified this rule under the classical bet-

ting interpretation.

• In 1937, de Finetti recast the justification in terms of his

betting interpretation.

• I will recast it in Cournotian terms.
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Three betting interpretations:

• De Moivre: P (E) is the value of a ticket that pays 1 if E

happens. (No explanation of what “value” means.)

• De Finetti: P (E) is a price at which YOU would buy or sell

a ticket that pays 1 if E happens.

• Shafer: The price P (E) cannot be beat—i.e., a strategy for

buying and selling such tickets at such prices will not

multiply the capital it risks by a large factor.
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De Moivre’s argument for P (A&B) = P (A)P (B|A)

Abraham de Moivre

1667–1754

Gambles available:

• pay P (A) for 1 if A happens,

• pay P (A)x for x if A happens, and

• after A happens, pay P (B|A) for 1 if B
happens.

To get 1 if A&B if happens, pay

• P (A)P (B|A) for P (B|A) if A happens,

• then if A happens, pay the P (B|A) you
just got for 1 if B happens.
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De Finetti’s argument for

P (A&B) = P (A)P (B|A)

Suppose you are required to

announce. . .

• prices P (A) and P (A&B) at which

you will buy or sell $1 tickets on

these events.

• a price P (B|A) at which you will buy

or sell $1 tickets on B if A happens.

Opponent can make money for sure if

you announce P (A&B) different from

P (A)P (B|A).

Bruno de Finetti

(1906–1985)
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Cournotian argument for P (B|A) = P (A&B)/P (A)

Claim: Suppose P (A) and P (A&B) cannot be beat. Suppose

we learn A happens and nothing more. Then we can include

P (A&B)/P (A) as a new probability for B among the

probabilities that cannot be beat.

Structure of proof:

• Consider a bankruptcy-free strategy S against probabilities

P (A) and P (A&B) and P (A&B)/P (A). We want to show

that S does not get rich.

• Do this by constructing a strategy S ′ against P (A) and

P (A&B) alone that does the same thing as S.
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Given: Bankruptcy-free strategy S that deals in A-tickets and

A&B-tickets in the initial situation and B-tickets in the

situation where A has just happened.

Construct: Strategy S ′ that agrees with S except that it does

not buy the B-tickets but instead initially buys additional A-

and A&B-tickets.

B

A Anot A

not B

S

B

not A

not B

S¢
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B

A Anot A

not B

S

B

not A

not B

S¢

1. A’s happening is the only new information used by S. So S ′ uses only
the initial information.

2. Because the additional initial tickets have net cost zero, S ′ and S have
the same cash on hand in the initial situation.

3. In the situation where A happens, they again produce the same cash
position, because the additional A-tickets require S ′ to pay M P (A&B)

P (A)
,

which is the cost of the B tickets that S buys.
4. They have the same payoffs if not A happens (0), if A&(not B) happens

(0), or if A&B happens (M).
5. By hypothesis, S is bankruptcy-free. So S ′ is also bankruptcy-free.
6. Therefore S ′ does not get rich. So S does not get rich either.
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Crucial assumption for conditioning on A: You learn A and

nothing more that can help you beat the probabilities.

In practice, you always learn more than A.

• But you judge that the other things don’t matter.

• Probability judgement is always in a small world. We judge

knowledge outside the small world irrelevant.
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Part 3. Cournotian justification of Dempster-Shafer operations

Dempster-Shafer has three fundamental operations:

• Transferring belief

• Independence

• Conditioning (same as Bayesian updating)

All three are justified by a judgement that certain information

does not help us beat certain probabilities.

35



Fundamental idea: transferring belief

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) = P{x|Γ(x) ⊆ A}.

Cournotian judgement of independence: Learning the relationship between
X and ω does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

• Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7

• Did Glenn pay his dues for coffee? Ω = {paid,not paid}

• Joe says “Glenn paid.”

Γ(reliable) = {paid} Γ(not reliable) = {paid,not paid}

• New beliefs:

B(paid) = 0.3 B(not paid) = 0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Conditioning

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

•
Γ(x) = ∅ for some x ∈ X .

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) =
P{x|Γ(x) ⊆ A & Γ(x) 6= ∅}

P{x|Γ(x) 6= ∅} .

Cournotian judgement of independence: Aside from the impossibility of the
x for which Γ(x) = ∅, learning Γ does not affect our inability to beat the
probabilities for X.
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Example: The witness caught out

• Tom is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0,$1,$5}

• Tom says “Glenn paid $ 10.”

Γ(precise) = ∅ Γ(approximate) = {$5} Γ(not reliable) = {0,$1,$5}

• New beliefs:

B{0} = 0 B{$1} = 0 B{$5} = 2/3 B{$1,$5} = 2/3

Cournotian judgement of independence: Aside ruling out his being
absolutely precise, what Tom said does not help us beat the probabilities for
his precision.
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Independence

XBill = {Bill precise,Bill approximate,Bill not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

XTom = {Tom precise,Tom approximate,Tom not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

Product measure:

XBill & Tom = XBill ×XTom

P(Bill precise,Tom precise) = 0.7× 0.7 = 0.49

P(Bill precise,Tom approximate) = 0.7× 0.2 = 0.14

etc.

Cournotian judgements of independence: Learning about the precision of
one of the witnesses will not help us beat the probabilities for the other.

Nothing novel here. Dempsterian independence = Cournotian independence.
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EXTRA SLIDES
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Example: The more or less precise witness

• Bill is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0,$1,$5}

• Bill says “Glenn paid $ 5.”

Γ(precise) = {$5} Γ(approximate) = {$1,$5} Γ(not reliable) = {0,$1,$5}

• New beliefs:

B{0} = 0 B{$1} = 0 B{$5} = 0.7 B{$1,$5} = 0.9

Cournotian judgement of independence: Hearing what Bill said does not
affect our inability to beat the probabilities concerning his precision.
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Dempster’s rule (independence + conditioning)

• Variable ω with set of possible values Ω.

• Random variables X1 and X2 with sets of possible values X1 and X2.

• Form the product measure on X1 ×X2.

• We learn mappings Γ1 : X1 → 2Ω and Γ2 : X2 → 2Ω:

If X1 = x1, then ω ∈ Γ1(x1). If X2 = x2, then ω ∈ Γ2(x2).

• So if (X1,X2) = (x1, x2), then ω ∈ Γ1(x1) ∩ Γ2(x2).

• Conditioning on what is not ruled out,

B(A) =
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2) ⊆ A}
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2)}

Cournotian judgement of independence: Aside from ruling out some (x1, x2),
learning the Γi does not help us beat the probabilities for X1 and X2.
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Example: Independent contradictory witnesses

• Joe and Bill are both reliable with probability 70%.

• Did Glenn pay his dues? Ω = {paid,not paid}

• Joe says, “Glenn paid.” Bill says, “Glenn did not pay.”

Γ1(Joe reliable) = {paid} Γ1(Joe not reliable) = {paid,not paid}
Γ2(Bill reliable) = {not paid} Γ2(Bill not reliable) = {paid,not paid}

• The pair (Joe reliable,Bill reliable), which had probability 0.49, is ruled
out.

B(paid) =
0.21

0.51
= 0.41 B(not paid) =

0.21

0.51
= 0.41

Cournotian judgement of independence: Aside from learning that they are
not both reliable, what Joe and Bill said does not help us beat the
probabilities concerning their reliability.
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You can suppress the Γs and describe Dempster’s rule in terms

of the belief functions

Joe: B1{paid} = 0.7 B1{not paid} = 0

Bill: B2{not paid} = 0.7 B2{paid} = 0

0.7

not paid

0.3

??

0.3     ??

0.7  paid

Bill

Joe

Paid

Not paid

B(paid) =
0.21

0.51
= 0.41

B(not paid) =
0.21

0.51
= 0.41
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Dempster’s rule is unnecessary. It is merely a composition of

Cournot operations: formation of product measures,

conditioning, transferring belief.

But Dempster’s rule is a unifying idea. Each Cournot operation
is an example of Dempster combination.

• Forming product measure is Dempster combination.

• Conditioning on A is Demspter combination with a belief function that
gives belief one to A.

• Transferring belief is Dempster combination of (1) a belief function on
X ×Ω that gives probabilities to cylinder sets {x} ×Ω with (2) a belief
function that gives probability one to {(x, ω)|ω ∈ Γ(x)}.
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Parametric models are not the starting point!

• Mathematical statistics departs from probability by standing

outside the protocol.

• Classical example: the error model

• Parametric modeling

• Dempster-Shafer modeling
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The perfect-information protocol for probability

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices for various payoffs.

Skeptic decides which payoffs to buy.

Reality determines the payoffs.

Kn := Kn−1+ Skeptic’s net gain or loss.
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Mathematical statistics departs from probability by standing

outside the protocol in various ways.

Forecaster, Skeptic, and Reality see each others’ moves, but we do not.

• Usually Skeptic is not really there. We can take this player’s role if we
see the other players’ moves.

• Perhaps we do not see Forecaster’s moves. We infer what we can
about them from Reality’s moves. Or perhaps it is our job to make the
forecasts.

• Perhaps we see only a noisy or distorted version of Reality’s moves. We
infer what we can about them from Forecaster’s moves.
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Classical example: errors in measurement

A measuring instrument makes errors obeying some probability

distribution.

You do not see the errors e1, . . . , eN .

You only see measurements x1, . . . , xN , where

xn = θ + en.

How do you make inferences about θ?
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Parametric modeling. The parametric model Pθ is a class of

strategies for Forecaster.

K0 = 1.
FOR n = 1,2, . . . , N :

Forecaster gives prices pn following a strategy Pθ.
Skeptic makes purchases Mn following a strategy Sθ.
Reality announces yn.
K(θ)n := K(θ)n−1+ Skeptic’s net gain or loss.

Cournot’s principle: Not all the K(θ) get very large.

We see yn, and we know the strategies, but we do not know θ

and do not see pn and Mn.

If all the K(θ)N ≥ K for all θ, we reject the model. Otherwise,

those θ for which K(θ)N < K form a 1− 1
K confidence interval

for θ.
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Errors in measurement as a parametric model

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces (but not to us) the price θ.

Skeptic announces Mn ∈ R.

Reality announces yn ∈ R.

Kn := Kn−1 + Mn(yn − θ).

Winner: Skeptic wins if Kn is never negative and either KN ≥ K

or |y − θ| < ε, where y :=
∑N

n=1 yn.

According to Probability and Finance (p. 125), if N ≥ KC2/ε2

and Reality is constrained to obey yn ∈ [θ − C, θ + C], then

Skeptic has a winning strategy.
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Dempster-Shafer modeling. We see the moves by Forecaster
and Skeptic, but not those by Reality.

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices pn.

Skeptic makes purchases Mn.

Reality announces (but not to us) xn.

Kn := Kn−1+ Skeptic’s net gain or loss.

Cournot’s principle: With probability 1− 1
K , KN < K.

We see only yn = ω(xn) for some function ω. The mapping

Γ(x1, . . . , xN) = {ω|ω(xn) = yn, n = 1, . . . , N}
allows us to transfer the probabilities about x1, . . . , xN to beliefs
about ω.
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Errors in measurement as a Dempster-Shafer model.

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces the standard Gaussian distribution.

Skeptic chooses a function fn of the payoff xn.

Reality announces (but not to us) xn ∈ R.

Kn := Kn−1 + fn(xn)− E(fn(xn)).

We see only yn = ω + xn for some ω ∈ R. Conditioning on the

configuration x1 − x, . . . , xN − x, we get probabilities for ω.

Functions of configuration can be used to test the model.
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