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We determine the length of a great arc, on the surface of the Earth, by a chain [422]
of triangles which are supported on a base measured with exactitude. But whatever
precision that we bring into the measure of the angles, their inevitable errors can, by
accumulating, deviate sensibly from the truth, the value of the arc that we have con-
cluded from a great number of triangles. We know therefore only imperfectly this
value, if we are not able to assign the probability that its error is comprehended within
some given limits. The desire to extend the application of the Calculus of Probabilities
to natural Philosophy, has made me seek the formulas proper to this object.

This application consists in deducing from the observations, the most probable re-
sults and to determine the probability of the errors of which they are always suscep-
tible. When, these results being known very nearly, we wish to correct them with a
great number of observations, the problem is reduced to determining the probability of
one or many linear functions of the partial errors of the observations, the law of prob-
ability of these errors being supposed known. I have given, in my Théorie analytique
des Probabilités, a method and some general formulas for this object, and I have ap-
plied them, to some interesting points of the System of the world, in the Connaissance
des Temps of 1818, and in a supplement to the work that I just cited. In questions of
Astronomy, each observation furnishes, in order to correct the elements, an equation
of condition: when these equations are very manifold, my formulas give at the same
time the most advantageous corrections, and the probability that the errors after these
corrections, will be contained within some assigned limits, whatever be moreover the
law of probability of the errors of each observation. It is so much more necessary to
be rendered independent of this law, that the simplest laws are always infinitely less
probable, seeing the infinite number of those which are able to exist in nature. But the
unknown law which the observations follow of which we make use, introduces into
the formulas an indeterminate which would permit not at all to reduce them to num-
bers, if we did not succeed to eliminate it. This is that which I have done by means [423]
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of the sum of the squares of the remainders, when we have substituted into each equa-
tion of condition, the most probable corrections. The geodesic questions offering not
at all similar equations; it was necessary to seek another means to eliminate from the
formulas of probability, the indeterminate dependent on the law of probability of the
errors of each partial observation. The quantity by which the sum of the angles of each
observed triangle surpasses two right angles plus the spherical excess, has furnished
me this means; and I have replaced by the sum of the squares of these quantities, the
sum of the squares of the remainders of the equations of condition. Thence, we are
able to determine numerically the probability that the final result of a long sequence of
geodesic operations, does not exceed a given quantity. It will be easy to apply these
formulas, to the part of our meridian which extends from the base of Perpignan to the
isle of Formentera; that which is so much more useful, that any base of verification
having been measured toward the south part of this meridian, the exactitude of that
part reposes entirely on the precision with which the angles of the triangles have been
measured.

A perpendicular to the meridian of France, will soon be measured from Strasbourg
to Brest. These formulas will make an estimate of the errors, not only of the total arc,
but further the difference in longitude of its extreme points, concluded from a chain
of the triangles which unite them, and of the azimuths of the first and of the last side
of this chain. If we diminish, as much as it is possible, the number of triangles and if
we give a great precision to the measure of their angles, two advantages that the use
of the repetitive circle and of the reflectors procure, this way to have the difference in
longitude of the extreme points of the perpendicular, will be one of the better of which
we are able to make use.

In order to be assured of the exactitude of a great arc which is supported on a base
measured toward one of its extremities, we measure a second base toward the other
extremity, and we conclude from one of these bases the length of the other. If the length
thus calculated deviates very little from observation, there is everywhere to believe that
the chain of triangles is quite nearly exact, likewise the value of the great arc which
results from it. We correct next this value, by modifying the angles of the triangles,
in a manner that the bases calculated accord themselves with the measured bases, that
which is able to be made in an infinity of ways. Those that we have until the present
employed are based on some vague and uncertain considerations. The methods exposed [424]
in my Théorie analytique des Probabilités lead to some very simple formulas in order
to have directly the correction of the total arc, which results from the measures of
many bases. These measures have not only the advantage to correct the arc, but further
to increase that which I have named the weight of the errors, that is to say to render
the probability of the errors, more rapidly decreasing; so that the same errors become
less probable with the multiplicity of the bases. I expose here the laws of probability
of the errors of the total arc, that the addition of new bases gives birth to. After we
brought in the observations and in the calculations, the exactitude that we require now;
we considered the sides of the geodesic triangles, as rectilinear, and we supposed the
sum of their angles, equal to two right angles. Next we corrected the observed angles,
by subtracting from each of them, the third of the quantity of which the sum of the
three observed angles, surpassed two right angles. Legendre has noted first, that the
two errors that we commit thus, compensate themselves mutually, that is to say that by
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subtracting from each angle of a triangle, the third of the spherical excess, we are able
to neglect the curvature of its sides, and to regard them as rectilinear. But the excess
of the three observed angles over two right angles, is composed of the spherical excess
and the sum of the errors of the measure of each of the angles. The analysis of the
probabilities shows that we must yet subtract from each angle, the third of this sum, in
order to have the law of probability of the errors of the results, most rapidly decreasing.
Thus, by the equal apportionment of the error of the sum observed of the three angles of
the triangle considered as rectilinear, we correct at the same time the spherical excess,
and the errors of the observations. The weight of the angles thus corrected, increases;
so that the same errors become by this correction, less probable. There is therefore
advantage to observe the three angles of each triangle, and to correct them as we have
just said it. Simple good sense makes us recognize this advantage; but the Calculus of
probabilities is able alone to estimate, and to show that by this correction it becomes
the greatest possible.

In order to apply with success the formulas of probability, to the observations, it
is necessary to return faithfully all those that we would admit if they were isolated,
and to reject none of them by the sole consideration that it is extended a little from the
others. Each angle must be uniquely determined by its measures, without regard to the [425]
two other angles of the triangle in which it belongs; otherwise, the error of the sum of
the three angles would not be the simple result of the observations, as the formulas of
probability suppose it. This remark seems to me important in order to disentangle the
truth in the middle from the slight uncertainties that the observations present.

I dare to hope that these researches interest the Geometers at a time where we are
occupied to measure the diverse countries of Europe, and where the King just ordered
the execution of a new map of France, by competing for details, the operations of the
cadastre which thence will become better and more useful yet. Thus the magnitude and
the curve of the surface of Europe will be known in all the senses; and our meridian ex-
tends to the north to the parallel of the Shetland isles, by its junction with the geodesic
operations made in England, and it being terminated to the south at the isle Formentera
in the Mediterranean, will embrace near a quarter of the distance from the pole to the
equator.

§ 1. Let us conceive, on a sphere, an arc of great circle A, A′, A′′, etc. and
suppose that we have formed about the chain of triangles CAC ′, CC ′C ′′, C ′′C ′C ′′′,
C ′′C ′′′Civ , etc.; of which the sidesCC ′,C ′C ′′,C ′′C ′′′, etc. cut this arc atA′,A′′,A′′′,
etc. I do not give at all the figure, because it is easy to trace it after these indications.
Let A be the angle CAA′, A(1) the angle CA′A, A(2) the angle C ′A′′A′′′, etc. Let
further C, be the angle ACC ′, C(1) the angle CC ′C ′′, C(2) the angle C ′C ′′C ′′′, etc.;
we will have

A+A(1) + C − α = π + t,

α being the error of the observed angle C, t being the excess of the angles of the spher-
ical triangle ACA′ over π which expresses two right angles. We will have similarly

A(1) +A(2) + C(1) − α(1) = π + t(1),

α(1) being the error of the observed angle CC ′C ′′, and t(1) being the excess of the
angles of the spherical triangle A′C ′A′′ over two right angles. We will form similarly
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the equations
A(2) +A(3) + C(2) − α(2) = π + t(2),

A(3) +A(4) + C(3) − α(3) = π + t(3),

etc.;

whence we deduce easily

A(2n) = A+C −C(1) +C(2)−C(3) · · ·+C(2n−2)−C(2n−1)

−α +α(1) −α(2) · · ·+α(2n−1)

−t +t(1) −t(2) · · ·+t(2n−1),

and [426]
A(2n−1) = π−A−C +C(1)−C(2) +C(3) · · · −C(2n−2)

+α −α(1) +α(2) · · ·+α(2n−2)

+t −t(1) +t(2) · · ·+t(2n−2);

by supposing therefore A well known, the error of the angle A(2n) is

−α −α(2) . . .− α(2n−2),
+α(1) +α(3) . . .+ α(2n−1);

because the values of t, t(1), etc., are quite small, and able to be determined with
precision. The concern now is to have the probability that this error will be contained
within some given limits.

For this, I will suppose that the probability of any error α is proportional to c−hα
2

,
c being the number of which the hyperbolic logarithm is unity. This supposition the
most natural and the most simple of all, results from the use of the repeating circle in
the measure of the angles of the triangles. In fact, let us name φ(q) the probability of an
error q in the measure of a simple angle, and let s be the number of the simple angles
observed in all the series that we have made, in order to determine the same angle. The
probability that the error of the mean result, or of the angle concluded from this series,
is ± r√

s
, will be by § 18 of the second book of my Théorie analytique des Probabilités,

proportional to

c−
kr2

2k′′

±a being the limits of the errors, k is, by the same section, equal to 2
∫
dq
a φ

(
q
a

)
, and

k′′ is equal to
∫
q2

a2
dq
da φ

(
q
a

)
, the integrals being taken from q null to q = a; and the

negative errors being supposed as probable as the positive errors. By making therefore

r =
α
√
s

a
, h =

ks

4k′′a2
;

c−hα
2

will be the probability of the error α. But we will see, at the end of this Memoir,
that the following results always hold, whatever be the probability of α.

Let β and γ be the errors of the two angles AC ′C and CAC ′ of the first tri-
angle ACC ′; the probability of the three errors α, β and γ will be proportional to
c−hα

2−hβ2−hγ2

; but the observation of these angles give the sum α + β + γ of the
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three errors; because the sum of the three angles having to be equal to two right angles [427]
plus the surface of the triangle ACC ′, if we name T the excess of the three angles
observed on this quantity, we will have

α+ β + γ = T ;

the preceding exponential becomes thus

c−α
2−hβ2−hγ2−h(T−α−γ)2

,

or
c−2h(β+ 1

2α−
1
2T )2− 3h

2 (α− 1
3T )2−h3 T

2

,

β being susceptible to all the values from −∞ to ∞; it is necessary to multiply this
exponential by dβ and take the integral within these limits, that which gives an integral
which has for factor

c−
3h
2 (α− 1

3T )2−h3 T
2

;

the probability of α is therefore proportional to this factor. The most probable value
of α is evidently that which renders null the quantity α− 1

3T ; it is necessary therefore
to correct the three angles of each triangle by the third of the excess T of their sum
observed, over two right angles plus the spherical excess. This is that which we do
commonly.

Let us name ᾱ and β̄, the quantities α− 1
3T and β − 1

3T ; the probability of ᾱ will
be proportional therefore to

c−
3
2hα

2

.

If we diminish in the preceding expression of A(2n), the angle C by 1
3T , that is to

say if we employ the corrected angles of each triangle; this moment C̄, C̄(1), etc. that
which the angles C, C(1), etc. become by these corrections; we will have

A(2n) =A+ C̄ − C̄(1) + C̄(2) − etc.

− ᾱ+ ᾱ(1) − ᾱ(2) + etc.

− t+ t(1) − t(2) + etc.

The probability that the quantity −ᾱ + ᾱ(1) − etc., where the error of the angle A(2n)

will be comprehended within the limits ±r
√

2n, will be, by § 18 cited,

2
√

3
2h√
π

∫
dr c−

3
2hr

2

.

§ 2. The concern is no longer but to have the value of h. For this, I will take as [428]
given from the observations, the sums T , T (1), etc. of the errors of the angles of each
triangle, and I will determine the value of h, which renders most probable, the observed
value of the sum of their squares. By that which precedes, the probability of the values
of ᾱ and of T , is proportional to

c−
3h
2 ᾱ

2−h3 T
2

;
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by multiplying this exponential by dᾱ, and taking the integral from ᾱ = −∞ to ᾱ =

∞, the integral will have for factor c−
h
3 T

2

, and this factor will be proportional to the
probability of T . This probability will be therefore

dTc−
h
3 T

2∫
dT c−

h
3 T

2
,

the integral being taken from T = −∞ to T =∞; it will be thus√
1
3h√
π
.dT.c−

h
3 T

2

.

If we multiply by T 2, this function; the integral taken from T = −∞, to T = ∞, and
multiplied by 2n, will be the most probable value of the sum T 2 + T (1)2

+ etc. By
naming θ2 the observed sum, and by equating it to this product, we will have

h =
3

2

2n

θ2
;

the probability that the error of A(2n) is comprehended within the limits ± 2
3r
′θ is thus

2
∫
dr.c−r

′2

√
π

,

the integral being taken from r′ null.
Let us suppose the line AA′ is perpendicular to the meridian of the point A, and

that we have observed with exactitude, the angle that the last side C(2n−1)A(2n)C(2n)

forms at the point A(2n) with the meridian of this point. By naming E this angle,
π − E − A(2n) will be the angle that this meridian forms with that perpendicular. Let
φ be the angle formed by the meridans of the points A and A(2n), or the difference in [429]
longitude of these points, and l the latitude of the point A; we will have

sinφ =
cos(π − E −A(2n))

sin l
,

designating therefore by δφ and δA(2n) the errors of the angles φ and A(2n), we will
have

δφ = −δA
(2n). sin(E +A(2n))

sin l. cosφ
;

the preceding integral will give therefore the probability that the error respecting the
longitude concluded from the observed azimuths observed atA andA(2n) will be com-
prehended within the limits

±2

3
θr′

sin(E +A(2n))

sin l. cosφ
.

§ 3. Let us determine presently the probability that the error of the measure of
the line AA′A′′ . . . will be comprehended within some given limits. For this, let us
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suppose that in the triangles CAC ′, C ′CC ′′, etc., we had corrected the angles as we
do ordinarily, that is to say by subtracting from each, the third of the sum of which the
three observed angles surpass two right angles plus the spherical excess; that we lower
the vertices C, C ′, C ′′ etc. of the perpendiculars CI, C ′I ′, C ′′I ′′, etc., onto the line
AA′; we will have, very nearly,

AI = AC cos IAC;

we will have next quite nearly,

II ′ = CC ′ sinA(1)

and, generally,
I(i)I(i+1) = C(i)C(i+1) sinA(i+1).

by supposing therefore that δ is the characteristic of the errors, we will have

δ.I(i)I(i+1)

I(i)I(i+1)
=
δ.C(i)C(i+1)

C(i)C(i+1)
− δA(i+1) cotA(i+1).

We have, by that which precedes,

δA(i+1) = ±{ᾱ− ᾱ(1) + ᾱ(2) · · · ± ᾱ(i)};

the + sign having place if i is even, and the − sign if it is odd; next we have, in the [430]
(i+ 1)st triangle,

C(i+1)C(i) =
C(i)C(i−1) sinC(i+1)C(i−1)C(i)

sinC(i−1)C(i+1)C(i)
,

that which gives

δ.C(i)C(i+1)

C(i)C(i+1)
=
δ.C(i)C(i−1)

C(i)C(i−1)
+ δC(i+1)C(i−1)C(i) cotC(i+1)C(i−1)C(i)

− δC(i−1)C(i+1)C(i) cotC(i−1)C(i+1)C(i);

but ᾱ(i) is the error of the angleC(i) orC(i−1)C(i)C(i+1); let β̄(i) be the error of the an-
gleC(i−1)C(i+1)C(i);−(ᾱ(i)+β̄(i)) will be the error of the angle . . .C(i+1)C(i−1)C(i);
we will have therefore

δ.C(i)C(i+1)

C(i)C(i+1)
=
δ.C(i)C(i−1)

C(i)C(i−1)
+ (ᾱ(i) + β̄(i)) cotC(i+1)C(i−1)C(i)

−β̄(i) cotC(i−1)C(i+1)C(i);

that which gives, by observing that, in the first triangle, the side C(i−1)C is AC;

δ.C(i)C(i+1)

C(i)C(i+1)
= −S

{
(ᾱ(i) + β̄(i)) cotC(i+1)C(i−1)C(i)

+ β̄(i) cotC(i−1)C(i+1)C(i)]

}
,
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the finite integral S expressing the sum of all the quantities that this sign contains, from
i = 0 inclusively to i inclusively. We will have therefore the value of δ.I(i)I(i+1).

By reuniting all these values, we will have for the entire error of the measured line,
an expression of this form

pᾱ+ qβ̄ + p(1)ᾱ(1) + q(1)β̄(1) + etc. (o)

The probability of the simultaneous values of ᾱ and of β̄ is, by that which precedes,
proportional to

c−2h(β̄+ 1
2 ᾱ)

2− 3
2hᾱ

2

;

By making

β̄ + 1
2 ᾱ = 1

2α
√

3,

the preceding exponential becomes

c−
3
2hα

2− 3
2hᾱ

2

,

and the function (o) takes then this form [431]

rα+ r(1)ᾱ+ r(2)α(1) + r(3)ᾱ(1) + etc.

The probability that the error of the function (o) is comprehended within the limits±s,
is, by § 20 of the second book of my Théorie analytique des Probabilités,

2
∫
dt c−t

2

√
π

,

the integral being taken from t null, to t being

s

√
3
2h

r2 + r(1)2
+ r(2)2

+ etc.
;

now we have evidently

r =
1

2
q
√

3, r(1) = p− 1

2
q;

the value of t will be therefore

s

√
3
2h

p2 − pq + q2 + p(1)2 − p(1)q(1) + q(1)2
+ etc.

§ 4. Let us suppose that in order to verify the operations, we have measured the last
part I(2n)I(2n+1) of the line AA′A′′, etc.; the expression of the error of this part, will
be by that which precedes, of the form

lᾱ+mβ̄ + l(1)ᾱ(1) +m(1)β̄(1) + etc. (p)
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Let λ be this error, or the quantity of which the line I(2n)I(2n+1), concluded from the
value of the side AC measured with care, surpasses the direct measure of this line; we
will equate the function (p) to λ. If in this function we make β + 1

2 ᾱ = 1
2α
√

3; it will
take the form

fα+ f (1)ᾱ+ f (2)α(1) + f (3)ᾱ(1) + etc.

and the probability of that function, will be by that which precedes, proportional to

c−
3
2h(α2+ ᾱ2+α(1)2

+α(1)2
+etc.).

by substituting for α, its value

λ− f (1)ᾱ− f (2)α(1) − etc.
f

,

the preceding exponential becomes [432]

c
− 3

2h(ᾱ2+α(1)2
+α(1)2

+etc.)− 3h
2

(λ−f(1)ᾱ−f(2)α(1)−etc.)2

f2 .

the values of ᾱ, α(1), etc. the most probable, are those which render the exponent of
c a minimum. We will differentiate therefore this exponent and we will equate to zero
the coefficients of dᾱ, dᾱ(1), dα(1), etc.; that which gives

f2ᾱ = f (1){λ− f (1)ᾱ− f (2)α(1) − etc.},
f2ᾱ(1) = f (2){λ− f (1)ᾱ− f (2)α(1) − etc.},

etc.

From these diverse equations, we deduce

α =
λf

f2 + f (1)2
+ f (2)2

+ etc.
,

ᾱ =
λf (1)

f2 + f (1)2
+ f (2)2

+ etc.
,

α(1) =
λf (2)

f2 + f (1)2
+ f (2)2

+ etc.
,

etc.,

that which gives, by observing that

fα+ f (1)ᾱ = lᾱ+mβ̄,

and that

α =
2β̄ + ᾱ√

3
,
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ᾱ =
λ(l − 1

2m)

l2 −ml +m2 + l(1)2 −m(1)l(1) +m(1)2
+ etc.

,

β̄ =
λ(m− 1

2 l)

l2 −ml +m2 + l(1)2
+ etc.

,

ᾱ(1) =
λ(l(1) − 1

2m
(1))

l2 −ml +m2 + l(1)2
+ etc.

,

etc.

By substituting therefore these values into the function (o), we will have the correction
resulting from the measure of the part I(2n)I(2n+1).

But we can arrive by the following method, to this result, and have at the same
time the new law of the errors of the measure of the entire arc, which results from the
measure of a second base.

c−
3
2h.α

2

and c−
3
2h.ᾱ

2

being proportionals to the probabilities of α and of ᾱ, it is [433]
easy to conclude from § 21 of the second book of my Théorie analytique des Prob-
abilités, that by supposing the function (o) equal to e, the probability of e will be
proportional to

c

− 3
2
h

(
e−λ Sr(i)f(i)

Sf(i)2

)2

Sr(i)2− (Sr(i)f(i))2

Sf(i)2 ,

the sign S extending to all the values of i, from i = 0, inclusively; by making therefore

e− λSr(i)f (i)

Sf (i)2 ± u,

the probability that the function (o) will be comprehended within the limits

λSr(i)f (i)

Sf (i)2 ± u,

will be proportional to

c

− 3
2
hu2

Sr(i)2− (Sr(i)f(i))2

Sf(i)2 .

thus we see that it is necessary to diminish the arc measured AI(2n+1), by the quantity

λSr(i)f (i)

Sf (i)2

we see next by this correction, the weight of the error to fear is increased. Because
before the measure of the second base, it was

− 3
2h

Sr(i)2
,

and by this measure it becomes
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− 3
2h

Sr(i)2 − (Sr(i)f(i))2

Sf(i)2

.

we are able to observe that

r2 + r(1) = p2 − pq + q2;

f2 + f (1)2
= l2 −ml +m2;

rf + r(1)f (1) = l(p− 1
2q) +m(q − 1

2p);

we will be able therefore to form easily Sr(i)2 and Sr(i)f (i) by means of the coefficients [434]
of ᾱ, β̄, ᾱ(1), . . . in the functions of (o) and (p).

If we had measured some other bases, we would have, by the method of the section
cited, the corrections which it would be necessary to make to the measured arc, and the
law of its errors.

We will have similarly the correction that we must make to the angle A(2n) which
gives the difference in longitude of the extreme points from a perpendicular to the
meridian; because the correction of A(2n), or that which it is necessary to remove from
it, being by that which precedes

−ᾱ+ ᾱ(1) − ᾱ(2) + etc.,

it will suffice to substitute, instead of the function (o), the function

−ᾱ+ ᾱ(1) − ᾱ(2) + etc.,

that which gives

p = −1, q = 0, p(1) = 1, q(1) = 0, p(2) = −1, etc.,

thence it is easy to conclude that we must in order to correct the value of A(2n), add
the quantity to it

+λ

{
l − l(1) + l(2) − etc.

− 1
2m+ 1

2m
(1) − etc.

}
l2 −ml +m2 + l(1)2 − etc.

.

the probability that the error of this value of A(2n), thus corrected, is within the limits
±u will be

2
∫
dt c−t

2

√
π

,

the integral being taken from t null to

t =
u
√

3
2h√

2n− (l−l(1)+l(2)−etc.− 1
2m+ 1

2m
(1)−etc.)2

l2−ml+m2+l(1)2−etc.
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§ 5. We are arrived to the preceding results, by supposing that the law of probability
of the error α in the measure of the angle is proportional to c−hα

2

, and we have proved
that this law of probability is able to be admitted in regard to the angles measured with
the repeating circle. We will show here that these results hold generally whatever be the
law of probability of error α. Let φ(α) be this law, the positive errors being supposed [435]
to have the same probability as the negative errors; let us make α− qT = ᾱ, and let us
seek the probability of the errors of the function

−ᾱ+ ᾱ(1) − ᾱ(2) + etc. + ᾱ(2u−1); (i)

If we name α, and β the errors of the two angles of a triangle, and T the excess of their
sum over two angles plus the spherical excess; T − α− β will be the error of the third
angle; and the probability of the simultaneous existence of these three errors, will be

φ(α).φ(β).φ(T − α− β).

The probability of ᾱ, will be therefore

φ(ᾱ+ qT ).φ(β).φ

(
(1− q).T − β

−ᾱ

)
,

by multiplying this product by dβ.dT , and by taking the integrals from β and T equal
to −∞, to β and T equal to +∞; we will have a function which will be proportional
to the probability of ᾱ. We will suppose here, that which we are able to make, that
the function φ(α) is able to be extended to these infinite limits. Let us designate by
ψ(ᾱ), the function resulting from these integrations. The probability that the error of
the function (i) is ±r

√
2n, will be by § 18 of my Théorie analytique des Probabilités,

proportional to
c
−H
4H′′ .r

r

,

by making

H = 2

∫
dᾱ.ψ(ᾱ); H ′′ = 2

∫
ᾱ2dᾱ2.ψ(ᾱ).ψ(ᾱ),

the integrals being taken within the positive and negative infinite limits. Now we have
by integrating within these limits,

H = 2

∫
dᾱ.dβ.dT.φ(ᾱ+ qT ).φ(β).φ

(
T − ᾱ− β
−qT

)
,

and by the theory of double integrals, this second member is equal to

2

∫
dα.dβ.dT ′.φ(α).φ(β).φ(T ′),

by making
T ′ = T − qT − ᾱ− β;

12



by designating therefore by K the integral
∫
dα.φ(α) taken between the infinite limits,

we will have evidently
H = 2K3.

We will have next [436]

H ′′ =

∫
ᾱ2.dᾱ.dβ.dT.φ(ᾱ+ qT ).φ(β).φ(T − qT − ᾱ− β),

now we have
ᾱ = α− qT = α.(1− q)− qβ − qT ′;

we will have therefore

H ′′ =

∫
[(1− q).α− qβ − qT ′]2.dα.dβ.dT ′.φ(α).φ(β).φ(T ′).

If we observe now that αdα.φ(α) is null, because φ(α) being supposed the same for
the two errors α and −α, the two elements −αdα.φ(−α), and αdαφ(α) is destroyed
in the preceding integral taken between the infinite limits; if we designate next by K ′′,
the integral

∫
α2.dα.φ(α); we will have evidently

H ′′ = K ′′.K2.(1− q2
+ 2q2);

thus the probability of r will be proportional to

c
−Kr2

2K′′.(1−q2+2q2) .

The value of q which renders this probability most rapidly decreasing is that which
renders (1−q)2 +2q2, a minimum, and that value is 1

3 ; it is necessary therefore to have
the probability of error most rapidly decreasing, to diminish by a third of T , each angle
of the triangle; and then the probability of r becomes

c
3K.r2

4K′′ .

It is necessary now to determine by the observations, the value of −3K
4K′′ . For this, we

will observe that the probability of T , will be proportional to the integral∫
dα.dβ.φ(α).φ(β).φ(T − α− β),

taken within the infinite limits. Let Π(T ) be this integral. The most probable sum of
the values of T 2 in the 2n observed triangles, will be by § 19 of the second book of the
work cited,

Q′′

Q
.2n,

by supposing

Q =

∫
dT.Π(T ); Q′′ =

∫
T 2dt.Π(T ),

13



the integrals being taken between the infinite limits. Now we have [437]∫
dT.Π(T ) =

∫
dα.dβ.dT.φ(α).φ(β).φ(T − α− β);

and by that which precedes, this second member is equal to K3; next we have∫
T 2dT.Π(T ) =

∫
(T ′ + α+ β)2.dω.dβ.dT ′.φ(α).φ(β).φ(T ′)

=

∫
(T ′2 + α2 + β2).dα.dβ.dT ′.φ(α).φ(β).φ(T ′).

This second member is evidently 3K2.K ′′; we will have therefore

K

K ′′
=

6n

θ2
.

and then the probability of r become proportional to

c
−9
4 .2n. r

2

θ2 ;

thus the probability of the error ± 2
3r
′θ of the function (i) will be as previously

2
∫
dr′ c−r

′2

√
π

.

It is easy to see that we are able to extend the same reasoning, to all the results to
which we are arrived, by departing from the law of probability of the error α, propor-
tional to c−hα2. Thence these results become independent of this law, and are extended
to all the laws that are able to exist in nature.

Let us consider in fact, the function

pᾱ+ qβ̄ + p(1)α(1) + q(1)β̄(1) + etc., (o)

and let us seek the probability that the value of this function will be s. In designating
by ψ(ᾱ, β̄) the probability of the coexistence of the values of ᾱ and of β̄; we will have

ψ(ᾱ, β̄) =

∫
dT.φ(ᾱ+ 1

3T ).φ(β̄ + 1
3T ).φ( 1

3T − ᾱ− β̄),

the integral being taken within the infinite limits, T = −∞, and T =∞. Next we see
by § 20 of the second book of my Théorie analytique des Probabilités, that the sought
probability will be

1

π

∫
dω.c−sω

√
−1



∫
dᾱ.dβ̄.ψ(ᾱ, β̄).(ω̄) cos(pᾱ+ qβ̄).ω

×
∫
dᾱ(1).dβ̄(1).ψ(ᾱ(1), β̄(1)) cos(p(1)ᾱ(1) + q(1)β̄(1)).ω

×etc.
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The integral relative to ω being taken from ω = −π to ω = π and the integrals relative [438]
to ᾱ, and β̄, being taken within their infinite limits. Let us develop into a series ordered
with respect to the powers of ω, the logarithm of the factor of dω.c−sω

√
−1, under the∫

sign. We have

log

∫
dᾱ.dβ̄.ψ(ᾱ, β̄) cos(pᾱ+ qβ̄).ω

= log

∫
dᾱ.dβ̄.ψ(ᾱ, β̄)

−ω
2

2
·
∫
dᾱ.dβ̄.ψ(ᾱ, β̄) cos(pᾱ+ qβ̄)∫

dᾱ.dβ̄.ψ(ᾱ, β̄)
− etc.,

the integral
∫
dᾱ.dβ̄.ψ(ᾱ, β̄) is equal to∫

dᾱ.dβ̄.dT.φ(ᾱ+ 1
3T ).φ(β̄ + 1

3T ).φ( 1
3T − ᾱ− β̄),

or to ∫
dα.dβ.dT ′.φ(α).φ(β).φ(T ′),

all these integrals being taken within the infinite limits. This last integral is, by that
which precedes, equal to K3. the integral∫

dᾱ.dβ̄.ψ(ᾱ, β̄)(pᾱ+ qβ̄)2,

is equal to ∫
dα.dβ.dT ′.φ(α).φ(β).φ(T ′).

[
p.( 9

3α−
1
3β + 1

3T
′)

+q.( 2
3β −

1
3α+ 1

3T
′)

]2

,

In the squared factor under the
∫

sign, we are able to neglect the products of α, β, and
T ′, because they produce nothing, as we have seen, in the integral; then, it is easy to see
that this integral is reduced to 2

3K
2K ′′.(p2 − pa+ q2). Thence, it is easy to conclude

that the sought probability of the value s, is proportional to∫
dω.c−sω

√
−1 − K ′′.ω2

3K
.S.(p2 − pq + q2)− etc.,

by designating by S(p2−pq+q2), the sum p2−pq+q2 +p(1)2−p(1)q(1) +q(1)2
+etc.

We are able by § 20 cited, to consider only the square of ω and to neglect its superior
powers; by setting next the preceding integral under this form∫

dω.c
−K′′
3K .S(p2−pq+q2)·

[
ω−s
√
−1. 3K

2K′′.
∫
(p2−pq+q2)

]2
− 3

4 ·
Ks2

K′′.S(p2−pq+q2) ,

the integral is able, by this same section, to be taken from ω = −∞, to ω = ∞; the
probability of the value of s, is thus proportional to

c
− 3

4 .
Ks2

K′′.S(p2−pq+q2) ,
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and consequently to [439]

c
− 9

4 ·
s2.2n

θ2.S(p2−pq+q2) ;

thus the probability that the value of s is comprehended within the limits

±3

2
tθ ·
√

S(p2 − pq + q2)

2n
,

will be
2
∫
dt.c−t2√
π

,

the integral being taken from t null; that which is conformed to that which precedes.
We have supposed in that which precedes,

ᾱ = α− 1
3T ; β̄ = β − 1

3T ; etc.;

that is, that we correct each of the three angles of each triangle, by one third of the
observed error of the sum of its three angles. But is this correction here the most
advantageous? This is that which we will examine. Let us suppose generally in the
function (o)

ᾱ = α+ iT ; β̄ = β + lT ; ᾱ(1) = α(1) + i(1)T ; etc.

Then ᾱ being α− 1
3T ; β̄ being β − 1

3T ; we will have

α = α+ (1 + 1
3 ).T ; β = β + (1 + 1

3 ).T ; etc.,

and the function (o) will become

pα+ pβ + p(1)α(1) + etc. + S.(pi+ ql).T ;

and the correction of the calculated arcAI(2n) will be−S.(pi+ql)T ; and its error will
become

pα+ pβ + p(1)α(1) + etc.

By applying to this function, the preceding analysis; we will find easily that the proba-
bility of the value s of this function, is proportional to

c
−

− 9
4
.2n. s

2

θ2

S.(p2−pq+q2+ 9
2

(pi+ql)2 ,

2n being the number of triangles employed.
It is clear that the values of i and of l which render the coefficient of s2 a maximum, [440]

are those which render pi + ql, null. Then the preceding correction of the arc AI(2n)

is null, and the law of probability of its errors is the same as in the case of i and of l
nulls. This case gives therefore the law of probability of the errors, the most rapidly
decreasing, a law which must be evidently adopted.

We will note here that in the calculation of the function (o), we are able to apply at
will, the errors α and β to two of the angles of the triangle. Similarly in the calculation
of the arc AI(2n), we are able at will, in the series of the triangles which serve to this
calculation, to name them first, second, etc., triangles; only we will observe that α and
β belong to the first triangle, α(1) and β(1) to the second and thus of the rest. But it
will be simpler to enumerate them according to the order in which we use them.
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