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PROBABILITÉ. We will limit ourselves to give here the general principles of the
calculus of probabilities, of which one finds some applications in diverse articles.

I.

1. The fundamental principle of this calculus can be expressed thus.
Let A be an event, & N another event contradictory to the first (that is to say, which,

under the hypothesis, cannot exist at the same time); let n express the total number of
the equally possible combinations, m the one of the combinations which give the event
A, m′ that of the combinations which give the event N, m

n will express the probability
of the event A, & m′

n that of the event N. n = m+m′.
2. If one has three events A, N, N’, if n is always the total number of combinations,

m the one of the combinations which give A, m′ the one of the combinations which
give N, m′′ the one of the combinations which give N’, the probability of A will be m

n ,
that of N will be m′

n , that of N’ m′′

n , & one will have n = m+m′ +m′′.
It is easy to see that this second definition is a sequel to the first; in effect, here

the probability of A is, by this first definition, m
n , & that of not having A m′

n , m′ =

m′ +m′′; but, if one has not A, the probability of N is m′

m′
, & that of N’ m′′

m′
: therefore

that of N will be, in general, m′
n × m′

m′
= m′

n , & that of N’ m′
n × m′′

m′
= m′′

n . Thus, in
the following of our reflections on this first principle, we will consider only two events.

3. If m′ = 0, n = m, & the probability of A is m
n = 1; but, if no possible

combination gives the event N, this event is therefore impossible, the event A will
arrive therefore necessarily; thus, 1 will express the probability of a necessary event, or
certitude; likewise one of the two events A or N arrive necessarily, & the sum of their
probabilities is m

n + m′

n = 1. This which leads still to the same conclusion.
4. It follows from the same definition that, if one takes any number t whatever of

successive combinations of the events A & N, the probability of each will be expressed
by the sequence of terms of the binomialm+m′

t

nt ; so that the probability to have t times,
the event A will be mt

nt , that to have t − 1 times the event A, & one time the event N
will be t.mt−1m′

nt , that to have the event A t− t′ times, & the event N, t′ times will be
t.t−1...t−t′+1

1.2...t′ mt−t′m′ t
′
.

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. December 10, 2009
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5. We have called probability of an event, the number of the equally possible
combinations which give it, divided by the total number of combinations which give
this event or the contradictory event. Until now this is a pure definition of name, but
one intends more:

1. ˚ That, if the number m of the combinations, which give A, surpasses the number
of the combinations m′ which give N, so that the probability m

n > 1
2 , there is place to

believe that the event A will arrive rather than to believe that it will not arrive.
2. ˚ That this motive to believe is so much greater as m

n is also greater, & ap-
proaches unity.

3. ˚ That it increases proportionally in this same ratio.
6. We are going to demonstrate first that these three propositions depend on the 1st,

and that it suffices even that it be true for the case where m is much greater than m′, &
we will expose what is, in this last case, the nature of the motive to believe that A will
arrive rather than N.

First the third proposition depends on the truth of the first two; we suppose in effect
that the events A or N can arrive a number t times; & that t = mp + m′p, it follows
from the definition of the 1st article, that the probabilities that the event A will arrive t
times, & the event 0 times, the event A, t− 1 times, & the event N one time, & thus in
sequence will be expressed by the terms of the binomial,(m

n

)t
, t

(m
n

)t−1
· m
′

n
,

t.t− 1

2

(m
n

)t−2(m′

n

)2

so that a term
t.t− 1 . . . t− q + 1

1.2 . . . q

(m
n

)t−q (m′

n

)q

will express the probability that the event A will arrive t − q times, & the event N q
times.

This put, it is clear, by considering the formula of the binomial, 1. ˚ that the greatest
term will be,

t.t− 1 . . . t−m′p+ 1

1.2 . . .m′p

(m
n

)t−m′p(m′

n

)m′p

= M.

The most probable combination will be therefore that where the ratio of the number
of events A to the one of the events N, will be the one of mp to m′p, that is to say, the
same as the ratio of the probability of the events.

2. ˚ That the greater will be p, the more it will be probable that the ratio of the
number of the events A to the one of the events N, will deviate little from m

m′ .
Indeed, let a fraction t

r of t, r being any whatsoever, one will prove, by considering
the formula of the binomial, that, if one takes the number t

r , so much above as below
from this mean term M , & if one divides successively the rest of the terms in the
number of r−t

r t into t
r parts of r − 1 terms each, one will be able to take t great

enough, in order that each of these t
r terms the nearest to the term M surpasses, in

such ratio as one will wish, the r − 1 which correspond to it (See the 4th part of the
Ars Conjectandi of Jacques Bernoulli. Besides this demonstration has no difficulty by
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employing the theorem of Stirling & of Mr. Euler on the indefinite products of a very
great number of terms.)

If therefore, having m > m′, I judge that the event m will arrive rather than m′,
I will have a probability as great as one will wish, from an indefinite number of judg-
ments, the ratio of the number of true judgments, a total number will deviate very little
from m

n ; therefore, if a greater probability gives me a motive to judge conformably to
this probability, the motive must be proportional to it.

The truth of the 2nd proposition that this motive must be stronger, if the probability
is greater, depends yet on the truth of the first. In effect, calling u the probability of
A & e that of N, the probability of being mistaken only p times out of t judgments, in
pronouncing that one will have A will be expressed by

ut + t.ut−1e+
t.t− 1

2
ut−2e2 · · ·+ t.t− 1 . . . t− p+ 1

1.2 . . . p
ut−pep = V.

Now, if one supposes to V & to t a constant value, it is easy to see that the greater
u will be, the smaller will be p; therefore, by pronouncing that the event A will take
place rather than N, one will have an equal probability to be mistaken so much less
often as u will be greater, & consequently, the greater u will be, the more the motive
to judge that the event A will take place, will have to be strong. It remains therefore to
prove only that a greater probability in favor of an event A, is a motive to believe that A
will take place rather than N, & for that it suffices to prove that this motive exists when
this probability is very great; in effect, preserving the preceding demonstrations, one
will have the probability that A will take place more often than N in 2t+ 1 judgments,
expressed by

u+ (u− e)(ue+ 3u2e2 +
5.4

2
u3e3 · · ·+ 2t− 1.2t− 2 . . . t+ 1

1.2 . . . t− 1
uttet);

which, when u > e, approaches continuously from unity in measure as t increases:
therefore one will have a probability as great a one will wish, at least to be mistaken in
believing that A must arrive more often than N, in a very great number of judgments;
therefore, if this very great probability is a motive to believe; however little that u
exceeds e, one will have still a motive to judge that A will take place rather than N.

7. There remains to us therefore now only to examine the nature of the motive
which carries us to judge conformably to a very great probability.

I suppose that I have in an urn a billion white tickets, & one black, &, 1. ˚ that one
has drawn no ticket; 2. ˚ that one has drawn a white ticket, & that it is not exposed; 3. ˚
that one has drawn a black ticket which is not exposed either.

It is clear that, in the three hypotheses, I have the same probability that the ticket is
white; however the fact is uncertain in the first case, it is certainly true in the second,
& certainly false in the third. Another who will have seen the tickets would be able to
be sure respecting the falsity of an event of which the truth is for me very probable;
there is therefore no real liaison between the probability of a future or unknown event,
& reality.

Suppose therefore now an urn which contains the black tickets & the white tickets in
an unknown ratio, that I have drawn a number t of white tickets without a single black,
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& that I seek the probability to bring forth in a following trial a white ticket rather than
a black. Let n be the number of tickets, & x that of the white tickets, the number of
combinations which give t+ 1 white tickets will be xt+1

nt+1 , the number of combinations
which give t white tickets & one black, will be xtn−x

nt+1 , & the number of all the possible
combinations under the hypothesis, will be consequently xt+1+xt·n−x

nt+1 = xt

nt ;1 but x

is susceptible of all the values from x = 0, to x = n; therefore
∑

xt+1

n
∑

xt , the integrals
being taken from x = n to x = 0, will express the probability to have a white ticket.∑

xt+1 =
nt+2

t+ 2
ant+1 + b.

t+ 1

2.3
nt − c.

t+ 1.t.t− 1

2.3.4.5
nt−2 · · ·∑

xt =
nt+1

t+ 1
ant + b

t

2.3
nt−1 − c.

t.t− 1.t− 2

2.3.4.5
nt−3

Whence ∑
xt+1

n
∑

xt
=

t+ 1− a. t+2.t+1
n + b t+2.t+1

2

2.3.n2 − c t+2.t+1
2
.t.t−1

2.3.4.5n4

t+ 2− a. t+2.t+1
n + b. t+2.t+1.t

2.3.n2 − c t+2.t+1.t.t−1.t−2
2.3.4.5.n4

=
t+ 1

t+ 2
·
1− a. t+2

n + b. t+2.t+1
2.3.n2 · · ·

1− a t+1
n + b. t+2.t

2.3n2 · · ·

Now it is easy to see that, if we suppose n incomparably greater than t,

t+ 1

t+ 2
&

t+ 1

t+ 2
·
(
1− a

n

)
=

t+ 1

t+ 2
·
(
1− 1

2n

)
,

will express the approximate values, the one greater, the other smaller of this proba-
bility. We suppose finally t very great, t+1

t+2 or t+1
t+2 ·

(
1− 1

2n

)
will give us a very great

probability. If we examine at present what motive we have to believe according to this
probability, we will find that it is the same which carries us to believe that a fact arrived
steadily will continue to arrive again.

But this motive is the one which makes us admit this general principle to us, that the
natural events are subject to some constant laws, since we can base this opinion only
respecting the observation of the order of the past events, & on the assumption that
it will continue to be the same for future events. This motive is still the same which
makes us believe in the persistence of objects which strike our sense, & consequently
in the existence of bodies. It is again by the same motive that we believe the truth of
the demonstrations of which we cannot embrace the chain by a single glimpse; indeed,
we cannot be sure that a proposition of which we ourselves remember to have followed
the demonstration is true, that by long experience that our memory does not deceive us
in this case; & that as often as we have wished to follow anew the same reasonings,
they have led us to the same results.

If therefore one excepts the intuitive knowledge of the propositions which our mind
can embrace immediately, all our knowledge respecting nature, all the propositions
according to which we guide our behavior & all our movements, & even as far as the

1Translator’s note: The right-hand side has been corrected from xn

tn
.
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best demonstrated mathematical truths, can not have for us veritable certitude, & we
have no other motive to believe them, than this tendency to regard as constant that
which has been constantly observed, that is to say, as a very great probability.

One sees only to be born here different orders of truths; indeed, in mathematical
demonstrations, for example, this motive acts only in order to make us suppose that
the truths which have been demonstrated to us once, will appear always to us, instead
that, in some other kinds of knowledge, we have need of the same motive in order to
suppose the reality of the same facts on which we reason, then on the observed order
in these facts, &c. &c.

This motive is for us a natural tendency, which is confounded even sometimes with
sensation. It is by virtue of this motive that two men, seen at some distances doubles
the one of the other, appear sensibly equal, although being seen under some different
angles, the more extended must appear one time smaller; it is in effect experience which
alone has been able to mix in our sensation a secret judgment which is confounded with
it.

It is by virtue of this motive that, if I roll a ball between two crossed fingers, I sense
really two balls, while my reflection, supported out of some more constant experiences,
forces me to believe that there is only one of them. One sees, in this last example,
how this tendency, which seems in itself purely natural, & proportional perhaps to the
force of the impression of the objects, can however cede to reason, but without being
destroyed, & even without having no loss of force.

We will not carry further the consequences of this observation, which we believe
very important, & which can serve to explicate many phenomena relative to the force
of prejudices, to the power of reason, to liberty, &c.

It suffices us here to have shown, 1. ˚ that the consequences which one draws from
the calculus of probabilities, relative to the reality of the objects, are some truths of
the same kind as those which are born of observations & of the reasonings which
one makes according to them. 2. ˚ That they differ from them only in this point, that
one knows then, by the calculus, the value of the motive which carries us to believe,
& which one has the veritable measure of it, instead to cede uniquely to a natural
tendency, which, in many circumstances, can deceive us.

II.

1. The second principle of the calculus of probabilities is this one.
Suppose that we have many events A, A′, A′′, . . . of which the probabilities are

p, p′, p′′, . . . & that e, e′, e′′, . . . represent the values or the effects of these events,
effects or values which one supposes of the same kind; the mean value of the event A
as probable will be expressed by pe

p+p′+p′′··· ; that of the event A′ it will be by p′e′

p+p′+p′′··· ,

& that of the event A′′ by p′′e′′

p+p′+p′′ · · · , & the mean value of the events or of any event

whatever which will necessarily arrive, will be pe+p′e′+p′′e′′···
p+p′+p′′··· , the values of e, e′, e′′

can be of different signs. Thus, for example, if I have the probability 1
2 to win an écu,

the probability 1
4 to win a half-écu, & the probability 1

4 to lose two écus; the value of the
expectation to win by the event A, will be consequently 1

2 écu, & my total expectation
to win will be 1

2 + 1
8 − 1

2 écu or 1
8 écu.
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In order to demonstrate this rule, it suffices to observe that one can consider the
event A having p possible combinations which produce it as p events of the same value
each having one combination; that it will be the same of the other events, & that thus
the rule is reduced to taking for the mean value of a certain number of equally possible
events, the sum of their values, & to divide it by the number of these events.

2. Thus it is not at all against this rule in itself, but against the usage which one can
make of it that there is raised some objections of which some have been insoluble until
now.

We suppose two men A & B play together, with the condition such that A has
a probability p to win a sum s, & B a probability p′ to win the same sum, & that
p+ p′ = 1; the mean value of the expectation of A will be, by the preceding rule, equal
to ps, & that of B equal to p′s. If now this sum has ought to be furnished by A & B
at the beginning of the game, & if one demands in what proportion they must furnish
it in order to play at an equal game, either with respect to the other player, or in an
arbitrary manner; one will respond that each must give a sum equal to the value of their
expectations, that A consequently must give ps & B, p′s′.

What does one intend now by an equal game? 1. ˚ this is not that the lot of the
players is the same as before the game, since, even by supposing p = p′ & the lot of
the players absolutely similar, each before the game, is 1

2s, & that according to the
game the one will certainly have s, & the other 0. 2. ˚ It is not that the state of the
two players is similar; because player A, after the game, will have a sum p′s of gain,
or a sum ps of loss, & player B a sum ps of gain, or p′s of loss, so that their state is
essentially different, except when one has p = p′.

3. One understands therefore that the players having agreed to change the state
by putting into the game, & before, after the game, to have a state different from the
first, & different also for each player, one has proportioned their stakes in a way that
it is either between their state before playing, & their state after the game, or between
the state of them after the game, the greatest equality that the nature of the things can
permit.

Now here this equality can be established only by supposing the game repeated
a great number of times; & then one can require, 1. ˚ that the most probable case is
precisely the one which changes nothing in the state of the two players; 2. ˚ that the
probabilities to win or to lose for A as for B approaches more and more to be equal to
1
2 , in measure as the number of trials is multiplied.

3. Finally, let one have, under the same hypothesis, a probability always increasing,
that the loss of A, or that of B, will not exceed, either a fixed sum, or a proportional part
of the total stake, if the preceding condition can not be executed.

4. Let therefore, 1. ˚ tp+ p′ be the number of trials, the most probable event or the

greatest term of the series p+ p′
tp+p′

will be

t.p+ p′.tp+ p′ − 1 . . . tp′ + 1

1.2 . . . tp
ptpp′tp

′
.

Now let x be the wager of A, & s − x that of B, tps − tx will express that A will
have won; therefore, making tps − tx = 0, one will have x = ps for the value of the
stake of A.
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2. ˚ In supposing the same law established, it is clear that, in p+ p′
tp+p′

all the
combinations where the exponent of p is greater than tp, will give a positive sum for
the gain of A, & that all the terms where this exponent is below, will give a positive
sum for the gain of B; now, the more t will be great, the more the sum of these terms
which are favorable to A, & that of the terms which are favorable to B, will approach the
one & the other to the quantity 1

2 ; in a manner that, supposing t always increasing, if
p > p′, the sum of the terms favorable to A will be first greater than 1

2 , & will diminish
in bringing them together, instead that, if p < p′, the sum of the same terms will be
first smaller than 1

2 , & will increase in bring them together.

3. ˚ If, in the sequence of terms of the formula p+ p′
tp+p′

, one takes all those
where the exponents of p are above t.p− a, whatever be a, in measure as t will become
great, the sum of these terms will approach to unity to which it will become equal, if t
is infinity. Now let this exponent be t.p− a, the loss of A will be tps− ts.p− a = ats;
therefore the more one will multiply the trials, the more A will have a continually
increasing probability of not losing beyond tas, that is to say, beyond a fraction a

p of
his total stake tps, a being a quantity as small as one will wish, provided that it is finite:
&, since the term where the power of p is ptp−a, is the limit to where it is necessary
to go in order that the total sum of the preceding terms can approach indefinitely to
unity, in measure as t increases (a being always a quantity as small as one will wish,
but finite), one sees that this same condition to have a probability always increasing to
not lose beyond a certain sum, can take place only for a sum proportional to ts.

One sees therefore here not only that the established law put between the state of
the players before or after the game, & between their respective states, the greatest
equality possible, or the sole one which can be compatible with the difference of these
states, but one sees at the same time that with any other, one cannot fulfill the same
conditions.

5. That which we have said on the money destined to form the sum s, that A & B
have an unequal expectation to win, will be applied equally to the case where it will be
necessary to partition the sum, the game being supposed stopped, & their expectations
being p & p′ if it had been continued; &, in general, to the case where one buys, for
a given sum, the expectation of another sum, or else, where one divides among many
persons a sum to which they have some more or less probable claims.

6. In the free agreements, as the game, one sees that this law must have been
established finally that there is no advantage to play or to not play, to choose rather the
lot of A than the one of B, & that one is not absolutely determined by some particular
social conventions.

This is very nearly that which arrives in commerce, where a common price of com-
modities is established in a manner as such day, for example, a septier de bled,2 an ell
of such material equivalent to four ounces of silver, & that consequently the preference
given by certain persons to one of these things over the other, will keep to their needs
or to their particular wishes, without that one can say, in general, that one is preferable
to the other.

If the convention is forced, then one must adopt the same law, since it is that in

2Translator’s note: This is a unit of poor land.
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which it is most probable that there will result a smaller sum of injustices from a great
number of distributions made by virtue of this law. See ABSENS.

But there results from this that we just said, a remarkable difference between these
two cases. In effect, in the second where the agreement is forced, the law must always
be followed; but in the first, if the kind of equality that this law established does not
appear sufficient, there must result from it that, as little as one acts with prudence, one
will not wish at all to form the agreement. In the first case, one decides according to the
law because one can only consider the total mass of similar agreements, & to seek to
do so that there results from it the least possible inequality. In the second, if one wishes
to act with prudence, if the object is important, one must lend oneself to the agreement
only as much as one can envisage the possibility to establish between the two parties a
sufficient equality.

7. This put, consider two players, of whom one A has an expectation e to win, & a
risk 1 − e to lose; & the other B an expectation 1 − e to win, & a risk e to lose, & let
the stake of A be to the stake of B as e is to 1− e; so that in winning A will win 1− e
times, & that in losing he will lose e times a certain sum regarded as unity.

If e < 1 − e in measure as the number of trials will be multiplied, the probability
that A will have to win will approach 1

2 , but it will always remain below, & e can
be small enough in order that, even for a great number of trials, this probability is still
quite inferior to 1

2 , while the probability to lose that the same player would have, would
always be quite above 1

2 .
In the same case, the probability to not lose above an nth part of the total stake,

will increase in favor of A whatever be n; but if n is very small, it will be necessary to
suppose the game continued a very great number of times in order that this probability
becomes great enough.

It is necessary to observe next that, for the same player A, the probability to not win
beyond a certain portion of his total stake, increases at the same time as that to not lose
beyond the same proportion.

It is likewise of it in all the cases which one could choose, so that in general the
one of the two players who have the least probability, wins in the combination of the
greatest number of trials on the side of the expectation of not losing, & loses as much to
the expectation to win much while to the contrary the one who has a great probability
loses from the expectation to win, & at the same time is exposed to a smaller risk to
lose much.

8. This manner to consider the law which we examine, & which consists in regard-
ing the value which results from it for the expectations & for the risks, as a proper mean
value to restore the greatest possibility equality between those who exchange between
them a certain value & an uncertain expectation, or two uncertain expectations, &c.
has seemed to us to be able to make vanish most of the difficulties which this rule has
appeared to present in its application. We are going to examine here some & we will
begin with those which the famous problem of Petersburg presents.

In this problem, one supposes that a player A must give to a player B a coin if he
brings forth tails on the first toss, two if he brings it forth on the second, four if he
brings it forth on the third, & thus in sequence; & one demands what is the value of the
expectation of B, or what sum he must give to A in order to play an equal game. The
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rule of the calculus gives this sum equal to

1

2
+

1

2
+

1

2
· · · = 1

2
(1 + 1 + 1 · · · ) = 1

2
× 1

0
.

A conclusion which appears so much more absurd, as this stake of B being supposed
greater than any given quantity; one can have a probability as great as one will wish,
that B will lose in this agreement.

But one can observe 1. ˚ that the case which becomes the most probable, by sup-
posing that one continues the game, the one where there is neither loss nor gain, can not
take place here, at least if one does not suppose the game repeated an infinite number
of times.

2. ˚ That the probability of B to win, will no longer approach to be equal to 1
2 , &

consequently to be equal to the probability of loss, but by supposing also the game
repeated an infinite number of times; it begins even to be finite only at this term.

3. ˚ That the probability to lose only a certain part of the total stake as we have seen
should increase with the number of trials, is finite for B only by supposing infinite the
number of times that the game is repeated, & that in this case this part of the stake is
necessarily still an infinite quantity.

One sees therefore that the principle on which we have said that the general rule
must be founded, the one to put the greatest possible equality between two essentially
different states, can have no place here, since this equality would require that one em-
braces the combination of an infinite number of games, so that the limit which, in the
ordinary problems is an infinite number of games is necessarily here an infinity of the
second order.

It is therefore not the rule which is in default, but the application of the rule to a
case which one presents as real, & which however can not be, since it supposes the
reality of an infinite sum, of an infinite number of trials in each game, & of an infinite
number of games. Thus, the problem must be considered not as a real case, but as the
limit of the real questions of the same kind as one can have in view.

This explication however is not yet satisfactory. Indeed, one has remarked, with
reason, that the rule would appear to be in default even when one would limit the
number of possible trials, because the sum that B must give to A under this hypothesis
in order to play at an equal game, is yet such, if the number of trials is in the least great,
that any reasonable man would risk to give it. Nonetheless in most of the solutions
given to this question, one is confined to say that it was necessary to limit the number of
trials, either because beyond a certain number, it was necessary to regard the probability
as too small, or because it was necessary that this number was such that the wealth of
A, or the sum that he reserves to this game, suffices to pay that which he must to B, if
tails does not arrive at the last trial.

Such is therefore now the case which remains to us to examine, the one where the
number of trials is fixed, & where the sum which B must give, & the probability which
he has to win being finite, the problem becomes a real problem.

We suppose that each game is limited to n trials, & that one pays 1 if tails arrives
the first trial, 2 if it arrives the second, 4 if it arrives the third, 8 if it arrives the fourth. . .
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2n−1 if it arrives the nth, & 2n if it does not arrive at all. The probabilities will be

1

2
,

1

4
,

1

8
, · · · 1

2n−1
,

1

2n
,

& the stake of B must be

1

2
+

1

2
+

1

2
· · ·+ 1

2
+ 1 =

n

2
+ 1,

& we will find first that B will begin to win when tails will arrive at a trial p, such that
2p−1 > n

2 + 1, or n < 2p − 2. If n = 2p − 2, then there is neither loss nor gain; but in
the same case 1

2 + 1
4 + · · ·+ 1

2p−1 , or 1− 1
2p−1 , expresses the probability that B has to

lose.
Suppose, for example, p = 4 & n = 2p − 2 = 14; the stake of B will be 8. We

will have 7
8 for the probability that A will win, 1

16 for the probability that he will have
neither loss nor gain, & 1

16 for this that B will win. At the same time because n = 14,
it will be possible that he wins 16376, in truth the probability of this gain will be only

1
16384 . On his side A will have a probability 15

16 of no loss, but he would win only 7 in
the most favorable case, & could lose up to 16376.

One sees therefore that there is a very great inequality between the positions of A
& of B, by considering only a single trial, & that not only there are some circumstances
where neither one nor the other must wish to consent to change the state where they are
before the game against the one which results from this agreement, but that this must
take place nearly generally. If one considers next a sequence of games, then one will
seek to determine, either the sum regarded as unity, or the number n of trials, in a way
1. ˚ that the probability to win for A & for B approaches to equality, 2. ˚ that one has a
great enough probability that neither A nor B in a number m of games will lose beyond
a value which is a given proportion with m.

The number of games must then be determined by the condition to be such that it
has a probability nearly equal to unity, or to certitude that the loss that A can have will
not exceed at all his wealth, or the sum that one believes that he will wish or is able
to place into the game. The same assumption of certitude is the only rigorous, it is the
sole way that B is not here at disadvantage. We take, for example, a simpler case, the
one where of 100 tickets, B chooses 1 of them, & gives 1 to A, on the condition that
if this ticket arrives, A will give to him 100, & we suppose that one plays 200 trials,
the probability that A will win will be expressed by 40464

100,000 , that he will neither lose,
nor gain by 27203

100,000 , and that B will win by 32333
100,000 , the probabilities to win for A & for

B will be therefore here very nearly as 5 to 4, & consequently already neighboring to
equality. In the same case, the probability for A to not lose beyond 500 will be 235

100,000 ,
a risk already very small.3

One sees therefore that provided that B has the expectation to be able to play 200
trials, there is established in the game a sort of equality. It is true that the established

3Translator’s note: Condorcet has made an error here. Let X have a binomial distribution with parame-
ters n = 200 and p = .01. Pr(B wins 100(k − 2)) = Pr(X = k) for k = 0, 1, 2 . . . 200. For A to lose
more than 500 requires B to win more than 500, namely, Pr(X ≥ 8) = .001013. Furthermore, each of the
remaining probabilities in this and the following paragraph are slightly in error.
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law can take place only by supposing that if A would lose 200 times, he would pay
200×100, or 20,000; but even though he would not have them, as the probability that
A will not lose above 10,000, for example, is then nearly equal to unity, & that in the
other very rare cases, B would win always 10,000; it is easy to see that even though
A would pay only this sum, B would still consent to play this game, where he can
expect to win 10,000 by risking only 200. B under this hypothesis would keep besides
a probability 32,333

100,000 to win against a probability 40,464
100,000 to lose, a probability 18,145

100,000

to win 100 against a probability 27,066
100,000 to lose 100, & a probability 14,188

100,000 to win 200
or more against a probability 13,398

100,000 to lose 200. Thus, even though B would not have
the absolute certitude that A would pay all the possible loss, his state in regard to A
would conserve still a sufficient equality.

9. It is necessary however here to consider two quite distinct cases, the one where,
for example, the two hundred trials above form a linked game, so that if A & B agree
one time to play it, they are engaged to continue the number of trials; & under this
hypothesis, the state of each player, & the kind of equality which subsists between
them, & which can be regarded as sufficient, is expressed as we just said it.

But if A & B conserve the liberty to make at each trial the same convention, there
is moreover an observation to make: since it is by considering at each time the system
of future trials that A & B are determined to play, there results from it that they must
regulate the stake regarded as unity, in a manner that at each trial they can envision as
possible the number of trials necessary in order to establish a sufficient equality, that
is to say that it is necessary that the wealth of each of the two, or the sum that one has
cause to believe that he would wish to risk, can suffice to this number of trials; thus in
order to conserve the necessary equality, the stake must change after a certain number
of trials. In some of the possible combinations, that is to say, in those where the wealth
of one of the two players is arrived to a value which obliges to this change, if one makes
to enter this diminution of the stake in the calculus, one will see that there must result
from it necessarily the possibility to play a much greater number of trials; whence there
must result also between the players a greater equality; because this kind of equality
consists in this that if one considers the sequence of future trials, one has a probability
nearly equal for each of the players, to lose or to win, & a very great probability that
the loss or the gain of any of the two, will not exceed a very small part of the total
stake: now in this case, the first condition holds as in the preceding, & the part of the
total stake can even be, under this last hypothesis, regarded as a given quantity.

10. The manner in which we have considered the established rule, can explicate
also two contradictory phenomena which are themselves presented in the applications
of this rule to some real cases.

It happens equally, & let a reasonable man A refuse to give a sum b for the proba-
bility n to win a sum a > b

n , & also let a reasonable man B consent to give a sum b′ for
the probability n′ to win a sum a′ < b′

n′ .
The first case takes place when b is a considerable sum with respect to the state of

the fortune of A, either in itself, & when n is very small.
The second takes place to the contrary particularly when b′ is a very small sum, &

when n′ is an extremely small quantity.
In the first case, although, if the game were supposed to be repeated a very great
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number of times, it was favorable to A, however he will refuse to play it; 1. ˚ because
he can not continue it a great enough number of times; 2. ˚ because for a single trial
he has a very great probability to lose his stake, & by hypothesis, to make a loss which
inconveniences him, or which deprives him of agreeable enjoyments.

In the second, B agrees to play, because the small sum b′ is a very moderate sum of
which he does not regret the loss, & of which the expectation to win the considerable
sum b′

n′ , engages him to expose himself, even with disadvantage, to this loss regarded
as light: this is here the case of the lotteries.

There are some games where the strength of the players is not equal, & where one
gives advantage to a banker; as the banker is obliged to play a very considerable game,
which requires some advances, & exposes to the possibility of enormous losses; which
besides he is subject for the stakes, to be submitted, with certain limits, at the will of
the punters; & that finally if he would have no advantage, he would have, especially
when the number of punters is great, & when they play very nearly the same game, a
very great probability to make only very little loss & gain: it has appeared necessary
to accord to him an advantage which gave to him an assurance to win at length; &
the punters have consented to buy at this price the pleasure to play, & to conduct their
game at their whim up to a certain point.

11. One has observed that among the games which depend altogether on chance
& on good play, the ones had only a very short duration, while others conserved their
vogue a very longtime: one of the causes of this difference, is the way to combine in
these games, the influence of chance & of good play, so that the difference in strength
of the players, when it is small, alters not at all sensibly in the two or three games
which one wishes to play in a day, the equality of the probability to win, as they could
have among them of some equal players. If one gives too much to chance, one takes
off to these games a great part of their pleasure; if the chance influences too little, the
difference of strength becomes too sensible, it humiliates the self-respect.

We will note finally, that in the enterprises where men expose themselves to a loss in
view of a profit, it is necessary that the profit be greater than the one which follows the
general rule, it establishes equality: indeed, as in general one is delivered not at all as in
the game, by the appeal of the pleasure to play, or as in the lotteries, by the expectation
to win much with a small stake, one can have motive to risk, only an advantage which,
by envisioning a series of similar risks, produces an assurance great enough to win, & a
probability nearly equal to certitude of no loss at all beyond a certain part of the stake.

These reflections have appeared to us proper to accommodate the rule established
in the calculus of probabilities, with the sentiment & with the behavior of reasonable
& prudent men, in most of the cases where this rule would appear at first glance to be
contrary to it.

III.

1. Until here we have regarded the number of combinations which give each event
as determined & known. We are going now to suppose this number unknown & vari-
able, so that it has no longer a determined probability of the events, but only a mean
probability according to which one can determine that of their production.
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2. Suppose, for example, that one has an urn containing some black balls & some
white balls, that one has drawn n white & m black balls, & that one demands what is
the probability to draw p white balls & q black balls.

Suppose moreover that the number of these balls is infinite, so that the ratio of the
white balls, to the total number, can have all the values from 1 to 0. Let x be this
unknown ratio, the probability to draw first n white balls, & m blacks, & next p whites
& q blacks, will be

m+ n . . . n+ 1

1.2 . . .m

p+ q . . . p+ 1

1.2 . . . q
xm+p 1− x

p+q
;

& that to draw first n white balls, & m blacks, & next p + q white or black balls, will
be

m+ n . . . n+ 1

1.2 . . .m
xn1− x

m · (x+ 1− x)p+q =
m+ n . . . n+ 1

1.2 . . .m
xn.1− x

m
,

where x can have all the values from 1 to 0; therefore

m+ n . . . n+ 1

1.2 . . .m

p+ q . . . p+ 1

1.2 . . . q

∫
xn+p 1− x

m+q
dx

will express the sum of the combinations which give the event demanded, &

m+ n . . . n+ 1

1.2 . . .m

∫
xn 1− x

m
dx

the sum of all the possible combinations; the integrals being taken from 1 to 0, the
probability will be therefore

p+ q . . . p+ 1

1.2 . . . q

∫
xn+p 1− x

m+q
dx∫

xn 1− x
m
dx

=
p+ q . . . p+ 1

1.2.3 . . . q

n+ 1 . . . n+ p.m+ 1 . . .m+ q

n+m+ 2 . . . n+m+ p+ q + 1
.

3. If n > m, & if one demands the probability that, in the sequence of events, the
number of white balls will surpass that of the blacks, by a determined quantity, one will
find, 1. ˚ that this probability can never approach indefinitely to 1; 2. ˚ that, following
the hypotheses of plurality, it can, after having been increasing, become decreasing;
3. ˚ that after a certain term, it will continue indefinitely to approach the function

∫
xn 1− x

m
dx

1
2∫

xn 1− x
m
dx

>
1

2

the formula
∫
xn 1− x

m
dx

1
2

indicating that the integral is taken only from x = 1
to x = 1

2 . This formula indicates the value of the probability, when the number of
drawings is supposed infinite.
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In the case of m < n, the same probability is expressed by the same formula; but
then one has ∫

xn 1− x
m
dx

1
2∫

xn 1− x
m
dx

<
1

2
.

Likewise ∫
xn 1− x

m
dx

p
p+q∫

xn 1− x
m
dx

.

The integral of the formula above being taken from x = 1, to x = p
p+q , will express

the probability that, in the sequence, supposed infinity of drawings, the number of the
white balls will be to that of the black balls in a ratio greater than that of p to q, a
probability that is greater or lesser than 1

2 , according as one will have n
n+m >< p

p+q .
Finally p′ being greater than p, the probability that the ratio of the number of A to that
of N, will be between the limits p′

p+q & p
p+q , will be expressed by

∫
xn 1− x

m
dx

p′
p+q −

∫
xn 1− x

m
dx

p
p+q∫

xn 1− x
m
dx

5. ˚ If one applies these formulas to the natural events of which the order has been
known by observation, one will find, 1. ˚ that, if the question is of a constant observed
order, one will never have a probability 1, or the certitude that it will continue to be in
perpetuity, whatever be the number of observations; 2. ˚ that, if one demands that there
is only a fraction 1

a of the total number which deviate from this order, the probability
will be expressed by 1 −

(
a−1
a

)m+1
, a probability so much greater, as a is smaller, &

m greater.
3. ˚ That, if there is a question only of absolute or proportional plurality, observed

between the events, the probability that this plurality will continue indefinitely, will be
expressed by ∫

xa+b 1− x
a
dx

1
2∫

xa+b 1− x
a
dx

in the first case, ∫
xca 1− x

a
dx

c
c+1∫

xca 1− x
a
dx

;

in the second; therefore the first is so much greater as a & b are great, & the second so
much greater as a is great; finally that which it will be between

c′

c+ 1
<

c

c+ 1
&

c′
c+ 1

>
c

c+ 1
,

is ∫
xca 1− x

a
dx

c′
c+1 −

∫
xca 1− x

a
dx

c′
c+1∫

xca 1− x
a
dx
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If one wishes only a proportional plurality which is not smaller than that of c to 1,
then the probability will be ∫

xca 1− x
a
dx

c′
c+1∫

xca 1− x
a
dx

.

4. Such are the very narrow limits of the kind of probability which we can have
respecting the order of the future events, & the constancy of the observed laws in nature,
at least under the two hypotheses; 1. ˚ that the probability of the successive events is
always the same; 2. ˚ in this where one considers a class of events as isolated, & the
order that one observes as independent of that which is observed in some other events.

Suppose, for example, that, in one same city, one has observed that there are born
more boys than girls; that this observation has been confirmed during a great enough
number of years without that there have been great variations in the proportion of these
numbers, & without that one suspected any considerable change in the constitution
of the climate, or of the inhabitants, then one could reasonably regard as constant the
probability that there will be born a boy rather than a girl; &, as one does not know a
priori if, in the laws of nature which determine this production, there is one of them by
virtue of which there must exist a constant superiority in favor of one of the sexes. The
two suppositions above can be regarded as legitimate. Thus, let a+ b be the number of
boys, & a the number of girls.

∫
xa+b 1− x

a
dx

1
2∫

xa+b 1− x
a
dx

will express the probability that, all remaining in the same state, there will be born in
an indefinite time more boys than girls, or that there is a physical & real cause of this
superiority of number. See below no. 10 & the following, & the article VÉRITÉ.

5. One has often applied the ordinary calculus of the probabilities to some questions
of the public economy where the question of payments of which the period or the
duration could depend on this calculus. One could suppose then that the observed
ratios in the past events would be rigorously the same in the future events; a hypothesis
more or less near to the truth, according as the number of these past events is great, &
as the one of the future events is small, but which is extended in a very sensible manner
in the case where the ratio of the number of the firsts to that of the seconds is not very
great.

It can therefore be useful to apply to these same questions the method which we
just exposed.

We are going to give some very simple examples, but sufficient to make sensible
the manner to resolve the questions of this kind.

6. Let be, 1. ˚ a man aged n years, & let, out of p men of the same age, one have
observed that there are p′ who have lived q years, n+ q is here the last term of the life
of the human kind p′′ who have lived q − 1 years. . . p′′q who have lived one year only,
& let one demand the life annuity which it is necessary to give to this man for a sum
1, the rate of interest being supposed given. Let c be the value which, placed at this
interest, is worth 1 at the end of one year, a the life annuity, it is clear that the value of
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this pension, for the one who lived one year, will be ca, a.c+ c2 for the one who lived
two, ac 1−c

q

1−c for the one who lived q.
Let finally x′ be the unknown probability of living q years, x′′ that of living q − 1

years. . . x′′q that of living one year only, the mean value of the pension will be ex-
pressed by

a.c
1− cq

1− c
x′p
′+1x′′p

′′
· · ·x′′q

p′′q

+ ac.
1− cq−1

1− c
x′p
′
x′′p

′′+1 · · ·x′′q
p′′q

+ a.c.xp′x′′p
′′
· · ·x′′q

p′′q+1

The whole divided by x′p
′
x′′p

′′ · · ·x′′qp
′′q

. Consequently, in order to have the mean
value of all the values of x, it will be necessary to integrate separately the numerator &
the denominator a number q − 1 times, after having made x′′q = 1 − x′ · · · − x′′q−1,
& having taken the integrals from x′′q−1 = 1 − x′ · · · − x′′q−2 to x′′q−1 = 0, from
x′′q−2 = 1− x′ · · · − x′′q−3, to x′′q−2 = 0 . . . from x′ = 1 to x′ = 0.

Now all these operations being executed, this formula becomes

a
(
c.p′′q + 1 + c+ c

2
.p′′q−1 + 1 · · ·+ c. 1−c

q−1

1−c p′′ + 1 + c. 1−c
q

1−c p
′ + 1

)
p+ q

By putting back p in place of p′+p′′ · · ·+p
′′q−1+p′′q , one will deduce from it therefore

a =
1.p+ q

c.p′′q + 1 + c+ c
2
.p′′q−1 + 1 · · · c. 1−cq−1

1−c p′′ + 1 + c. 1−c
q

1−c p
′ + 1

instead that, following the ordinary method, one would have had

a =
1.p

c.p′′q + c+ c
2
.p′′q−1 · · · c. 1−cq−1

1−c p′′ + c. 1−c
q

1−c p
′

that is to say, the same formula, if one suppose infinite the numbers p′, p′′, . . . whence
one sees that, as here n + q being the greatest number of years of human life, can not
be a very great number, if the one of the observations is to the contrary a very great
number, the error of the ordinary method will be slightly sensible.

7. In this method, as in the ordinary method, if one supposes r persons of the same
age, lending each a sum 1, & if one demands the pension a which it is necessary to
pay to each, in order that the borrower gives only the interest supposed here given, one
will have the same value of a as above; thus, however great that r be, there will be
nothing to change in the value of a, only the probability that the borrower has to not
pay in reality, according to the future events, an interest neither sensibly above, nor
sensibly below, will increase less under the actual hypothesis than under the ordinary
hypothesis.

8. If one considers the pensions on all heads, one can follow according to the
following method; one will take, as above, for each age n the value a of the life annuity,
since one will take in the tables of investments in life annuities of all heads, the number
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not of men of each age, but of the unities of a sum placed on the heads of each age, let
r′, r′′, . . . r′′q be these numbers, a′, a′′, . . . a′′q the corresponding pensions. The value
a of the common pension will be expressed by

c′.r′ + 1 + a′′.r′′ + 1 · · · a′′q.r′′q + 1

r′ + r′′ · · ·+ r′′q + q

This manner to calculate the rate respecting the pensions is not more complicated,
& it is more exact than the ordinary method. It will be applied equally to the pensions
on two heads, & even with more facility than the ordinary method.

We have here considered only entire years; but the way to make the fractions of
years enter into the calculation, as for the payment of pensions, or even as for the ages,
has another difficulty only to require some slightly longer calculations.

9. We will choose here for a second example the evaluation of an eventual claim;
suppose therefore a single claim, & let p′, p′′, . . . p′′n express the values of this claim,
such as they have been observed during a certain number of years, let the claim p′

have been paid in b’ years, the claim p′′ in b′′ years, the claim p′′n in b′′n years, & let
x′, x′′, . . . x′′q be the probabilities that the following year one must pay p′, p′′, . . . or
p′′n.

It is clear that, setting 1 − x′ − x′′ · · ·x′′n−1, instead of x′′n the total value of the
claim for an infinite number of years will be expressed by

c
1−c

∫
x′b′ · · · (1− x′ · · ·x′′r−1)b′′n(p′x′ + p′′x′′ · · ·+ p′′n.1− x′ · · ·x′′n−1) dx′ dx′′ · · · dx′′n−1∫

x′b′x′′b′′ · · · (1− x′ · · ·x′′n−1)b′′ndx′ dx′′ · · · dx′′n−1

=
c

1− c

b′ + 1.p′ + b′′ + 1.p′′ · · ·+ b′′n + 1.p′′n

b′ + b′′ · · · b′′n + n

Following the ordinary method to take some means, this value would be

c

1− c

b′p′ + b′′p′′ · · · b′′np′′n

b′ + b′′ · · · b′′n

whence one sees that these two values cannot be regarded as very different, at least
when the b are very nearly equal or very great, with respect to n, or that finally the p
are also very nearly equal.

In order to apply this method to the claim due on a single good, it would be neces-
sary to divide this total sum in the ratio of this good to the one of the total mass of the
goods which have produced the claims p′, p′′, . . . p′′n; &, if one has taken it in order
to form the mass of the goods of the same nature, & before nearly to be exposed to the
same events as the one for which one seeks the value of the claim, this method can be
regarded as sufficiently exact.

10. We have regarded until here the probability as being constantly the same in
the sequence of events of a like nature. There are some cases where this assumption
can appear gratuitous. Suppose now that these events can be independent from one
another, as to be subject to preserve the same probability, & we preserve always here
the denominations of the second kind, if the probability is constant, that to have the
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event A, after having obtained A, n times, & N, m times will be n+1
n+m+1 ; but, if the

events are independent, this same probability will be expressed by
∫
xdx, the integral

being taken from x = 1 to x = 0, that is to say, by 1
2 . But the probability to have A, n

times & N, m times under the first hypothesis, is

n+m. . . n+ 1

1.2 . . .m

∫
xn1− x

m
dx

& under the second it is

n+m. . . n+ 1

1.2 . . .m

∫
xdx

n ∫
1− xdx

m

These two probabilities will be therefore as m.m−1...1
n+1.n+2...n+m+1 to 1

2

n+m & consequently
the mean probability A will be

m+1.m...1
n+1.n+2...n+m+2 + 1

2n+m+1

m.m−1...1
n+1.n+2...n+m+1 + 1

2n+m

This hypothesis can be applied to some questions, for example, if one has cast a
coin n+m times if one has heads m times & tails n times, n > m, & if one demands
the probability to bring forth heads: this probability will be expressed by the preceding
formula, if I have no other reason besides to suppose that the reason for which I have
had heads more often than tails, holds to this that the coin is constructed in a manner
to fall more often on this side, rather than to regard this superiority as produced by the
manner of casting the coin, which is without influence on the following trials. One sees
finally that there are some cases where however great that m & n be, & although n has
then the superiority to m, one has no probability which leads to suppose a constant law.

11. Now consider more closely the nature of the first hypothesis, we will find first
that that it is legitimate only in two cases: 1. ˚ when the probability of each event is
always the same, as when one draws some black or white balls always from one same
urn; 2. ˚ when drawing them from different urns, one supposes that these urns have
been replenished by taking some balls in a common mass, where they were in a certain
ratio. In the first case, it is the probability itself which is constant; & in the second, it
is only the mean probability.

For example, suppose a sequence of packs of cards in number r+ s, that from r of
these packs one has drawn n red & m black cards, & that one demands the probability
to draw p red & q black cards of p + q = s following packs, one can suppose either
that one knows that in each of these packs there are the same number of red cards & of
black cards, or else that these packs have all been formed by drawing them at random
from one same pile of cards, in this case the probabilities are the same in each pack, &
one could express this by having p red cards, & q by the preceding formula; but if one
knows not in advance the reality of one of these two hypotheses, nor that of the contrary
hypothesis, that is to say, that where there is no liaison between the probability, relative
to each of the piles of cards, & that one demands the expression of the same probability,
one will take the following method, let r + s = t & x′, x′′, x′′′ . . . x′′t, t different
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probabilities of the event A & making x′+x′′+x′′′···+x′′t

t = X & t−x′−x′′−···−x′′t
t =

X ′, X will express the mean probability of A, X ′ the mean probability of N &

s.s− 1 . . . p+ 1

1.2 . . . q

∫
Xn+pX ′m+qdx′dx′′ . . .∫
XnX ′mdxx′dx′′ . . .

the probability to have p, A & q, N after having had n, A & m, N, the integrals being
taken successively for each x from 1 to zero.

It is easy to see, by examining this formula, that if n > m one will have a greater
probability in favor of A than in favor of N, that this probability will be so much greater
as m & n will be greater, & that if one seeks the probability in the indefinite sequence
of future events, the number of A will surpass that of N, one will have a probability so
much greater in favor of A, as n will surpass m, & that these numbers will be greater,
although this probability is much smaller than if one had supposed x the same for all
the events.

12. In all preceding formulas we have supposed the probabilities the same. In some
order that the events succeeded themselves, or that which reverts to the same, we have
supposed whether variable or constant the value of these probabilities was independent
of the order in which the events succeeded each other.

But this hypothesis, far from being admitted necessary in every case, appears, in
many, contrary to that which the simple reason seems to indicate. Suppose indeed
that out of one sequence of twenty thousand successive acts4 A or N, the number of
A has surpassed the one of N by 300, & that one demands the probability that in two
hundred following acts the number of A will surpass the number of N, it is easy to
see that one must naturally regard this conclusion as more probable, if in one hundred
sequences of two hundred events each the number of A surpasses that of N, than if after
having surpassed by much in the first ones, this difference moreover was diminished
successively, in a manner that, in the following sequences, the plurality has been in
favor of N. One must therefore in general, & if one has not a priori some reason to adopt
another hypothesis, to regard the probability not only as dependent on the events, but
also as dependent on the order that they follow among them. For this one will designate
the probabilities of A & N, for the successive events by

A B
1 x 1− x

2
x+ x′

2

1− x− x′

2

3
x+ x′ + x′′

3

1− x− x′ − x′′

3

4
x+ x′ + x′′ + x′′′

4

1− x− x′ − x′′ − x′′′

4

& thus in sequence: one will take the sequence of products of these probabilities corre-
sponding to those of the observed events, & of those which one supposes must succeed

4Translator’s note: Condorcet usually uses the word événemen for an event. However, here he introduces
the word fait for the same purpose. To distinguish the two here, the latter is rendered as act.
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them & of which one seeks the probability; one will take successively the integral of it
with respect to each x from 1 to zero; one will divide this value by a similar product,
taken only for the observed events & integrated in the same manner, & the quotient
will express the probability sought from the given sequence of future events.

13. In this last formula the probability depends on the order of the events, & it is
rigorously this that it must be, independently of all hypotheses, since the probability
to have a probability, either the same or different for all the events is itself determined
only according to the order of past events. But, if one wishes to apply this method
to some researches on natural phenomena, it is necessary to make the following two
observations: 1. ˚ that the preceding formula, varying for all the possible dispositions,
will be with more difficulty subject to some general methods of calculation. 2. ˚ That
if one has the x dependent on the time following any one law, there would be still more
exactitude to seek, in the sequence of events, a certain combination of these events, a
certain law which is absolutely constant, & of which then one can regard the constancy
as independent of time; & instead to apply the calculus to the production of the events
themselves, this would be in the constancy of this general law which one would apply
to it.

14. In following the methods proposed above, one will find that the probability
deduced from the calculus for the constancy of an observed law is very small; but it
is necessary to remark, 1. ˚ that this probability, if the number is very great, will give
a probability rather strong in the constancy of the law observed for a certain period
of time; that if during this time the observation teaches that the law has continued to
be constant, one will have a greater probability than it will be observed in the future
during an equal period of time, & thus in sequence. If on the contrary it ceases to be
executed, then it will be necessary to seek a new general law constantly executed. 2. ˚
One can moreover consider the probability of the constancy of each law, not in a single
sequence of events of the same nature, but in the total sequence of observed events.

Let n, for example, be the number of classes of events A’, A“ . . .A”n of diverse
nature subject to a constant law, & p′, p′′ . . . p′′n the one of the events observed in each
class, & let one seek the probability that in the class of A“n, for example, the constant
law will continue to be observed.

We will suppose that the probability of each event A’, A“, A”’ . . .A“n is expressed
by x′+x′′···+x′′n

n . The assumption of a mean probability, the same for these events,
is here legitimate, because it is not that of the event A’ or A” by itself which we will
consider, but that of the natural event which is itself presented first, rather than the
contradictory event.

We will form next for A’, the sequence

P ′ =
x′ + x′′ · · ·+ x′′n + x′′n+1

′
n+ 1

x′ + x′′ · · ·+ x′′n + x′′n+1
′ n+ r′ + 1− x′n+2

′
n+ 2

x′ · · ·+ x′′n + x′′n+1
′ + x′n+r−1

′
n+ r′ − 1
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for the other A of the similar sequence to

P ′ =
x′ + x′′ · · ·+ x′′n + x′′n+1

′
n+ 1

x′ + x′′ · · ·+ x′′n + x′′n+1
′′ n + x′n+2

′′n · · ·
n+ 2

x′ + x′′ · · ·+ x′′n + x′′n+1 + x′n+2 · · ·+ x′′n+1−1

n+ r − 1

one will take next

Q =
x′ + x′′ · · ·+ x′′n + x′′n+1

′′n + x′′n+1
′′n

n+ r

x′ + x′′ · · ·+ x′′n + x′′n+1
′′ n + x′n+r+1

′′n · · ·
n+ 1

x′ + x′′ + x′′n + x′′n+1
′′ · · ·+ x′′n+r+s−1

n+ r + s− 1

s being the number of events A“n for which one demands that the law is observed, &
the probability will be expressed by∫

P ′P ′′ · · ·P ′′n Qdx′dx′′ · · ·∫
P ′P ′′ · · ·P ′′n dx′dx′′ · · ·

the integrals being taken for all the x from 1 to zero. We suppose here some x dif-
ferent for each event A’, as this is necessary for the case where the probabilities are
independent of those of the first events which form the succession.

If one wishes to employ the same method, by supposing the x always the same,
then this method would give, for the probability of a new event, A“n+1

r′ + r′′ + r′′′ · · ·+ r′′n + t− n

r′ + r′′ + r′′′ · · ·+ r′′n + p− n

instead of the
r′ + r′′ + r′′′ · · ·+ r′′n + t

r′ + r′′ + r′′′ · · ·+ r′′n + p

which the assumption of the same continued in a single event will give.
One sees how often these last results are brought together by the common reason,

& they can explicate how we can believe in the permanence not of the act alone, but of
the permanence observed in all the analogous acts, or of that which has struck us in all
the phenomena of nature.

15. There remains to us to examine still another hypothesis: suppose that the total
mass of the observed events A & N are divided into two sequences s & s′, for the one
of which one has n events A, & m events N, while for the other one has n′ events
A, & m′ events N; if besides one has some reasons to believe that the value x of the
probability of A is not the same in the two sequences, then, for example, it will not be
necessary to resolve the questions respecting the probability of future events, as if one
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had had n + n′ events A, & m +m′ events N; but to suppose, for the two sequences,
two different probabilities x & x′. One could make next the calculation by supposing,
according to the circumstances, either that the future events can equally belong to the
two sequences, or that a certain combination of events A or N must belong to one
of these two sequences rather than to the other, according to the manner in which
the events have found themselves in the same sequences, or finally that these events
belong more or less to one of these sequences, by reason of the number of observations
of which they are formed.

One can form still some other hypotheses, of which each must merit preference,
according to the nature of the particular questions which one proposes to resolve.

One must observe in general that immediately if the question is to have by the
calculus, either a mean value, or a mean probability, one must resort to the direct
calculation only after having sought to procure all possible knowledge that it is possible
to acquire respecting the real value of these quantities, & to not regard as equally
possible, as equally probable, only those among which a thorough examination permits
not at all to suppose differences; the calculation of the probabilities is never indeed but
a supplement to our ignorance of real events, of the real laws observed in nature; & it
is this which one must never forget in the applications of this calculus.

16. One can propose this general question: the probability of an act being given
only by observation, to find how often it is necessary to observe in order to have a cer-
tain probability, that one sequence of a given number of future events will deviate from
the result of these observations as in a given ratio also, or in general knowing two of
these three elements, to have the third. It is clear that it will be easy to deduce from the
formulas exposed above, the equations of which one will have need, in order to resolve
these different questions & those of the same genre. We will expose in the article vérité
some necessary principles in order to apply the calculus of probabilities to the discov-
ery & to the proof of natural acts, & we will give in the article votans the application
of the same principles to the probability of the decisions rendered in the plurality of
votes. The theory exposed in this third article is yet little known. Messers. Price &
Bayes have given the fundamental principles of it in the Philosophical Transactions of
the years 1764 & 1765. Mr. de Laplace has treated the first analytically, & has made
many scholarly applications of it in the Mémoires de l’académie des sciences. One
will find also some reflections on the same subject in the work that I have published
respecting the probability of decisions, & in some memoirs inserted in the volumes of
the academy, years 1781, 1782 & 1783.
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