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In the applications of analysis to Geometry, to Physics, to Astronomy . . . two sorts
of questions present themselves to resolve, and the question is 1 ˚ to find the general
laws of figures and of phenomena, that is to say the general form of the equations which
exist among the diverse variables, for example, among the coordinates of curves and
surfaces, among velocities, time, the spaces traversed by moving things, etc.; 2 ˚ to fix
in numbers the values of the parameters or arbitrary constants which enter into the ex-
pression of these same laws, that is to say the values of the unknown coefficients which
comprise the found equations. Among the variables one distinguishes ordinarily, as
one knows, those which are able to vary independently from one another, and that one
names for this reason variables independent, away from those which are deduced from
it by the resolution of diverse equations, and which are named functions of independent
variables.

We consider in particular one of these functions, and we suppose that it is deduced
from the independent variables through an equation or formula which contains a certain
number of coefficients. A parallel number of observations or experiences, of which
each will furnish a particular value of the function corresponding to a particular system
of values of the independent variables, will suffice for the numerical determination of
all these coefficients; and, this determination made, one will be able to obtain without
difficulty new values of the function corresponding again to new systems of values
of the independent variables, and to resolve thus that which one calls the problem of
interpolation.

For example, if the ordinate of a curve is found expressed as function of the ab-
scissa through an equation which contains three parameters, it will suffice to know
three points of the curve, that is to say three particular values of the ordinate cor-
responding to three particular values of the abscissa, in order to determine the three
parameters; and, this determination effected, one will be able without pain to trace the
curve through points by calculating the coordinates of a number as great as one will
wish of new points situated on the arcs of this curve contained among the given points.
Thus, envisioned in all its extent, the problem of interpolation consists in determining
the coefficients or arbitrary constants which contain the expression of the general laws
of the figures or of the phenomena, according to a number at least equal to given points,
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or to observations, or to experiences. In one crowd of questions the arbitrary constants
enter in the first degree only in the equations which contain them. It is precisely that
which happens when a function is developable into a convergent series ordered accord-
ing to the ascendant or descendant powers of an independent variable, or else again
according to the sine or cosine of the multiples of one same arc.

Then the question is to determine the coefficients of those of the terms of the series
which one is not able to neglect without having to fear that there results from it a
sensible error in the values of the function. In the small number of formulas which
have been proposed for this object, one must distinguish a formula drawn from the
calculus of finite differences, but applicable only to the case where the diverse values
of the independent variable are equidifferent among them, and the formula of Lagrange
applicable, whatever be these values, to some series ordered according to the ascendant
powers of the independent variable. However this last formula itself is complicated
more and more in measure as one wishes to conserve in the development of the function
into series a greater number of terms; and that which is more troublesome, is that the
approximate values of the diverse orders corresponding to the diverse cases where one
would conserve into the series a single term, next two terms, next three terms. . . is
obtained by some calculations nearly so independent from one another, so that each
new approximation, far from being rendered easy by those which precede it, demand
on the contrary more time and more work.

Struck with these inconveniences, and led by my researches on the dispersion of
light to occupy myself anew with the problem of interpolation, I have had the good
luck to encounter for the solution of this problem a new formula which, under the
double relation of the certitude of the results and of the facility with which one obtains
them, appears to me to have over the other formulas some advantages so incontestable,
that I scarcely doubt that it is soon of a general use among the persons adopted to the
culture of the physical and mathematical sciences.

In order to give an idea of this formula, I suppose that a function of x, represented
by y, is developable into a convergent series ordered according to the ascendant or de-
scendant powers of x, or else further according to the sines or cosines of arcs multiples
of x, or even more generally according to other functions of x that I represent by

φ(x) = u, χ(x) = v, ψ(x) = w, . . .

so that one has

(1) y = au+bv+ cw+ · · ·

a,b,c, . . . designating some constant coefficients. The question is to know, 1 ˚ how
many terms one must conserve in the second member of equation (1) in order to obtain
a value of y sufficiently closely, of which the difference with the exact value is insensi-
ble and comparable to the errors which involve the observations; 2 ˚ to fix in numbers
the coefficients of the terms conserved, or, that which reverts to the same, to find the
approximate value of which we just spoke. The data of the problem are a sufficiently
great number of values of y represented by

y1, ,y2, . . . , yn,
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corresponding to a parallel number n of values of x represented by x1,x2, . . .xn, con-
sequently also to a parallel number of values of each of the functions u,v,w, . . . values
that I will represent likewise by

u1, ,u2, . . . , un,

for the function u, by
v1, ,v2, . . . , vn,

for the function v, etc.
Thus, in order to resolve the problem, one will have among the unknown coeffi-

cients a,b,c, . . . the n equations of the first degree

(2)


y1 = au1 +bv1 + cw1 + · · · ,
y2 = au2 +bv2 + cw2 + · · · ,

yn = aun +bvn + cwn + · · · ,

which, if one designates by i any one of the whole numbers

1, 2, . . . , n,

will be found entirely contained in the general formula

(3) yi = aui +bvi + cwi + · · ·

One will effect the first approximation by neglecting the coefficients b,c, . . ., or, that
which reverts to the same, by reducing the series to its first term. Then the general
value approximated from y will be

(4) y = au;

and, in order to determine the coefficient a, one will have the system of equations

(5) y1 = au1, y2 = au2, . . . yn = aun.

The diverse values of a, which one is able to deduce from these equations (5) con-
sidered each in part, or combined among themselves, would be all precisely equals if
the particular values of y, which we suppose given by observation, were rigorously ex-
act. But it is not so in practice where the observations comport with errors contained
between certain limits; and then it matters to combine among them the equations (5)
in a manner, in the cases more unfavorable, the influence exercised on the value of
the coefficient a by the errors committed on the values of y1,y2, . . .yn may be the least
possible. Now the diverse combinations that one is able to make on the equations (5)
in order to draw from it a new equation of first degree, with respect to a, furnishes all
the values of a contained in the general formula

(6) a =
k1y1 + k2y2 + · · ·+ knyn

k1u1 + k2u2 + · · ·+ knun
,
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that one obtains by adding member to member the equations (5) after having them
respectively multiplied by some constant factors k1,k2, . . . ,kn.

There is more; as the value of a determined by equation (6) does not vary when
one makes the factors k1,k2, . . . ,kn vary simultaneously in the same ratio, it is clear
that among these factors, the greatest (setting aside the sign) can always be counted
reduced to unity. We remark finally that, if one names

ε1, ε2, . . . , εn,

the errors committed respectively in the observations on the values of

y1, ,y2, . . . , yn,

the preceding formula (6) will furnish for a an approximate value, of which the differ-
ence with the true will be

(7) a =
k1ε1 + k2ε2 + · · ·+ knεn

k1u1 + k2u2 + · · ·+ knun
.

It is necessary now to choose k1,k2, . . . ,kn of such sort that, in the most unfavorable
cases, the numerical value of the expression (7) is the least possible.

We represent by
Sui

the sum of the diverse numerical values of ui, that is to say that which becomes the
polynomial

±u1±u2±·· ·±un

when one disposes of each sign in a manner to render each term positive. We represent
by Sεi not the sum of the numerical values ε1,ε2, . . . ,εn, but that which the sum Sui
becomes, when one replaces each value of ui by the corresponding value of εi.

If one reduces to +1 or to −1 each of the coefficients k1,k2, . . . ,kn, in choosing the
signs in a manner that, in the denominator of the fraction

k1ε1 + k2ε2 + · · ·+ knεn

k1u1 + k2u2 + · · ·+ knun

all the terms are positives, this fraction will be reduced to

(8)
Sei

Sui
;

and it will offer a numerical value all the more equal to the ratio

E
Sui

,

if one designates by E the sum of the numerical values of εi, or, that which reverts to
the same, the numerical value of Sei in the most unfavorable case. On the other hand,
by attributing to k1,k2, . . . ,kn some unequal values of which the greatest (setting aside
the sign) is unity, one will obtain for denominator of the fraction a quantity of which
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the numerical value will be evidently inferior to Sui, while the numerical value of the
numerator will be able to be raised to the limit E;

this which will happen effectively if the errors ε1,ε2, . . . ,εn are all null, with the
exception of that which will be multiplied by an equal factor, with sign excepted, to
unity. There results from it that the greatest error to fear on the value of a determined
by the formula

a =
k1y1 + k2y2 + · · ·+ knyn

k1u1 + k2u2 + · · ·+ knun
.

will be the least possible if one puts generally

k1 =±1,

by choosing the signs in a manner that in the polynomial

k1u1 + k2u2 + · · ·+ knun

all the terms are positives. Then this formula will give

(9) a =
Syi

Sui
,

Syi being that which the sum Sui becomes when one replaces each value of ui in it by
the value corresponding to yi, and the equation y = au will become

(10) y =
u

Sui
Syi.

In one makes for brevity

(11) α =
u

Sui
.

one will have simply

(12) y = αSyi.

If one supposed generally u = 1, the equation y = au, reduced to

y = a,

would express that the value of y is constant; and as one would have then

α =
u

Sui
=

1
n
,

the formula y = αSyi would give

y =
1
n

Syi.

Therefore then one should take for the approximate value of y the arithmetic mean
among the observed values; and the greatest error to fear would be smaller for this
approximate value than for each other.
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This property of arithmetic means, joined to the ease with which one calculates
them, justifies completely the usage where one is to accord to them preference in the
evaluation of the arbitrary constants which are able to be determined directly by obser-
vation.

Let now ∆y be the rest which must complete the approximate value of y furnished
by the equation

(12) y = αSyi.

so that one has

(13) y = αSyi +∆y.

We put likewise

(14) v = αSvi +∆v, w = αSwi +∆w, · · ·

One will deduce from the formula yi = aui +bvi + cwi + · · · ,

(15) Syi = aSui +bSvi + cSwi + · · · ;

then from this last, multiplied by α , and subtracted from equation (1),

(16) ∆y = b∆v+ c∆w+ · · ·

Let there be besides αi, ∆yi, ∆vi, ∆wi, . . . that which the values of α , ∆y, ∆v, ∆w, . . .
become, drawn from equations (11), (13) and (14), when one replaces x by xi, i being
one of the whole numbers 1, 2, . . . ,n. If the values of

∆y1, ∆y2, . . . , ∆yn

are very small, and comparable to the errors which include the observations, it will
be useless to proceed to a second approximation, and one will be able to hold to the
approximate value of y furnished by the equation y = αSyi.

If the contrary holds, it will suffice, in order to obtain a new approximation, to
operate on formula (16) which gives ∆y = b∆v+ · · · , as in the first approximation one
has operated on formula (1) y = au+ · · · .

This put, we designate by
S′∆vi

the sum of the numerical values of ∆vi, and by

S′∆yi, S′∆wi, . . .

the polynomials in which the sum S′∆vi is changed when one replaces each value of
∆vi by the value corresponding to ∆yi or to ∆wi,. . .; let be finally

(17) β =
∆v

S′∆vi
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if one is able, without sensible error, to neglect in series (1) the coefficient c of the third
term and those of the following terms, one would take for approximate value of ∆y

(18) ∆y = βS′∆yi.

Let ∆2y be the remainder of the second order which must complete this approximate
value, and we make consequently

(19) ∆y = βS′∆yi +∆
2y.

We put likewise

(20) ∆w = βS′∆wi +∆
2w, . . . ;

one will deduce successively, from formula (16),

(21) ∆yi = b∆vi + c∆wi + · · ·

(22) S′∆yi = bS′∆vi + cS′∆wi + · · · ;

then this last, multiplied by β and subtracted from equation (16),

(23) ∆
2y = c∆

2w+ · · ·

Let there be besides βi,∆
2yi,∆

2wi, . . ., that which the values of β , ∆2y,∆2w, . . . become,
deduced from equations (17), (19) and (20), when one replaces x by xi, i being one of
the whole numbers 1,2, . . . ,n. If the values of

∆
2y1, ∆

2y2, . . . , ∆
2yn

are very small and comparable to the errors which involve the observations, it will
be useless to proceed to a new approximation, and one will be able to be held to the
approximate value of ∆y furnished by equation (18).

If the contrary takes place, it will suffice, in order to obtain a third approximation, to
operate on formula (23) which gives ∆2y, as one has operated in the first approximation
on formula (1). In continuing in that way, one will obtain the following rule:

The unknown y, function of the variable x, being supposed developable into a con-
vergent series

(I) au+bv+ cw+ · · ·

where u,v,w, . . . , represent some given functions of the same variable, if one knew n
particular values of y corresponding to n particular values

x1, x2, . . . , xn

of x, if besides one names i any one of the whole numbers 1,2, . . . ,n, and yi, ui, vi, . . . ,
that which y, u, v, . . . , become when one replaces x by xi; then, in order to obtain the
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general value of y with a sufficient approximation, one will determine first the coeffi-
cient a by aid of the formula

(II) u = αSui,

in which Sui designates the sum of the numerical values of ui, and the difference of the
first order ∆y by aid of the formula

(III) y = αSyi +∆y.

If the particular values of ∆y, represented by ∆y1,∆y2, . . . ,∆yn, are comparable to the
errors of observation, one will be able to neglect ∆y and to reduce the approximate
value of y to

αSyi.

In the contrary case, one will determine β by aid of the formulas

(IV) v = αSvi +∆v, ∆v = βS′∆vi,

S′∆vi being the sum of the numerical values of ∆vi, and the difference of the second
order ∆2y by aid of the formula

(V) ∆y = βS′∆y+∆
2y.

If the particular values of ∆2y, represented by ∆2y1,∆
2y2, . . . ,∆

2yn, are comparable to
the errors of observation, one will be able to neglect ∆2y and to reduce in consequence
the approximate value of y to αSyi +βαS′∆yi.

In the contrary case, one will determine γ by the formulas

(VI) w = αSwi +∆w, ∆w = βS′∆wi +∆
2w, ∆

2w = γS′′∆2wi,

S′′∆2wi being the sum of the numerical values of ∆2wi, and the difference of the third
order ∆3y by the formula

(VII) ∆
2y = γS′′∆2yi +∆

3y, . . .

Thus, finally, by supposing the coefficients α,β ,γ ,. . ., determined by the system of
these equations, etc., one ought to calculate the differences of the diverse orders repre-
sented by

∆y, ∆
2y, ∆

3y, . . . ,

or rather their particular values corresponding to the values x1,x2, . . . ,xn of the variable
x, until this that one arrives to a difference of which the particular values are comparable
to the errors of observation. Then it will suffice to equate to zero the value of this
difference drawn from the system of equations (III), (V), (VII), . . ., in order to obtain
the value of y with a sufficient approximation. This general value will be therefore

y = αSyi, or y = αSyi +βS′∆yi, or etc.,
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according as one will be able, without sensible error, to reduce the series to its first
term, or to its first two terms . . . Therefore, if one names m the number of conserved
terms, the problem of interpolation will be resolved by the formula

y = αSyi +βS′∆yi + γS′′∆2yi + · · · ,

the second member being prolonged to the term which contains ∆m−1yi.
It is good to observe that from the preceding formulas one draws not only

Sαi = 1; Sβi = 0, S′βi = 1; Sγi = 0, S′γi = 0, S′′γi = 1; . . . ;

but also
S∆vi = 0; S∆wi = 0, S∆

2wi = 0, S′∆2wi = 0, . . .

and
S∆yi = 0; S∆

2yi = 0, S′∆2yi = 0;

S3
∆yi = 0, S′∆3yi = 0 S′′∆3yi = 0, . . .

These last formulas are as many equations of condition to which the particular values of
α,β ,γ, . . . must satisfy, as those of the differences of the diverse orders of u,v,w, . . . ,y;
and there results from it that one is able to commit into the calculation of these par-
ticular values no error of numbers without being cautioned by the single fact that the
equations of condition cease to be verified.

In summary, the advantages of the new formulas of interpolation are the following:
1 ˚ They apply themselves to the development into series, whatever be the law

according to which the different terms are deduced from one another, and whatever be
the values equidifferent or not of the independent variable.

2 ˚ The new formulas are of very easy application, especially when one employs
logarithms for the calculations of the ratios α,β ,γ , . . . and of the products of these
ratios by the sums of the diverse values of the functions or of their differences. Then,
in fact, all the operations are reduced to some additions or to some subtractions.

3 ˚ By aid of our formulas the successive approximations are executed with a
greater and greater facility, seeing that the differences of the diverse orders go gen-
erally by diminishing.

4 ˚ Our formulas permit to introducing at the same time into the calculation the
numbers furnished by all the given observations, and to increase thus the exactness of
the results by making agree to this end a very great number of experiences.

5 ˚ They offer yet this advantage, that at each new approximation, the values that
they furnish for the coefficients a, b, c, . . . , are precisely those for which the greatest
error to fear is the least possible.

6 ˚ Our formulas indicate by themselves the moment where the calculation must
stop, by furnishing then from the differences comparable to the errors of observation.

7 ˚ Finally the quantities that they determine satisfy some equations of condition
which do not permit to commit the slightest fault of calculation, without that it be
perceived nearly immediately.

One will find in the new exercises of mathematics numerous applications of our
formulas of interpolation.
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