
MÉMOIRE
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Fr. Boscowich has shown how one was able to resolve the preceding question, in
the case where one has only a single element to consider. Mr. Laplace has examined
a similar question in the third Book of the Méchanique céleste, which treats of the
figure of the terrestrial sphere, and has given an easy method in order to determine the
elliptic figure, in which the greatest gap of the degrees of the meridian, setting aside
the sign, becomes a minimum. One has in this case two elements to consider, instead
of one alone. But the function of the elements which represents the errors is not the
most general possible. There remains to extend the same theory to the case where this
function becomes the most general of its kind, and where the number of the elements is
superior to two. Mr. Laplace having well wished to show me this subject of researches,
I myself have endeavored to respond to his expectation; and I am arrived to a general
method which contains all the others, and which remains always the same, whatever
be the number of elements that one considers. Such is the object of the Memoir which
I have the honor to submit to the Class. Here is first in what consists the problem that
the question is to resolve.

When, in order to determine an unknown element, for example a length, an angle,
etc., one has made a great number of observations either on these elements themselves,
or on some other quantities which depend on them, then each observation taken in part
determines a particular value of the element. If one has already concluded, either from
the observations that one considers, or from the other observations made previously, an
approximate value to the element, in order to deduce from this value the truth, it will
suffice to add a small correction to it that one can designate by the variable x. Each
observation, taken separately and considered as exact, determines a particular value of
the correction. But if, instead of considering this equation as exact, one supposes that it
∗“Memoir on the system of values that it is necessary to attribute to diverse elements determined by
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is in error respecting the true result of a certain quantity, then the correction to make, or
the variable x which represents it, will become a function of this error, and reciprocally.
Hence, the error of each observation will be able in general to be expressed by a series
ordered according to the powers of the variable, and in which, seeing the smallness
of the correction to make, one will be able to be arrested at the first power of that.
This error will be therefore represented by a binomial, of which the first term will
be constant, and of which the second will contain only the first power of the variable
x. If the given observations must serve to determine many elements instead of one,
by designating the respective corrections of these by the variables x, y, z, . . . one will
arrive in the same manner to represent each error by a polynomial of the first degree in
x, y, z, . . . This put, the question is to find for these variables a system of values

x = ξ , y = η , z = ζ , . . . ,

such that the greatest of the polynomials that one considers, or that which returns to
the same, the greatest of the errors that they represent, becomes, setting aside the sign,
a minimum.

The problem is simplified considerably, when the polynomials which represent the
errors are two by two equal and of contrary signs. Then, in fact, for the values de-
termined of the variables x, y, z, . . .the greatest of the positive errors is equal to the
greatest of the negative errors; and the question is reduced to determine the system of
values of x, y, z, . . . for which the greatest of the positive errors becomes a minimum.
If the errors are not two by two equals and of contrary signs, one will be able to restore
this case in the preceding, by doubling by thought the number of errors and joining, to
the polynomials which represent the given errors, other equal polynomials and of con-
trary signs, destined to represent the fictive errors that one has proposed to consider. If
among the given errors there were found already many of them which were equals and
of contrary sign, it would be useless to double the number of them. By means of the
preceding artifice, one separates the difficulties which were able to be born from the
distinction of the signs, and one is then authorized to consider a greater negative quan-
tity as smaller than another lesser negative quantity. The proposed question is found
thus, as one has already remarked, restored to the following:

x, y, z, . . .being the corrections of the elements that one considers, to
determine for these variables a system of values such that the greatest of
the positive errors becomes a minimum.

I am going to expose in a few words the method which leads to the solution of this
new problem.

Let x = ξ , y = η , z = ζ , . . . be the values of the unknowns which resolve the ques-
tion. Each of these values must be chosen among an infinity of others. It seems there-
fore first of all that, in order to arrive to the sought solution, it would be necessary to
vary separately each of the corrections x, y, z, . . . and to examine what influence the
variation of each of them is able to have concerning the increasing and the diminishing
of the errors that one considers. One is able nonetheless to attain the end that one pro-
poses, by being content to make a single correction vary, z for example, thus as we are
going to show.
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We suppose one moment the problem already resolved for a number of elements
inferior by one unit to the one that one considers; we imagine moreover that one gives
successively to z all the possible values from z =−∞ to z =+∞, and that for each value
of z one determines the other variables x, y, z, . . . by the condition that the greatest error
becomes a minimum. One will obtain in this manner a sequence of systems of values
of x, y, z, . . ., among which will be found necessarily the sought system; and, in order
to obtain this last, it will suffice to choose, among the minima of the greatest errors
corresponding to the diverse values of z, the one which is itself smaller than all the
others. This last corresponds to the value ζ of z; and hence, if this value were known,
there would be nothing more to do, and the question would be found thus restored to the
case where one has one element less to consider. But, as one cannot hope to discover
immediately the value ζ of z which satisfies the question, it will be necessary to begin
by giving to z an arbitrary value, by supposing, for example, z = 0, and to determine
the corresponding values of x, y, . . ., for the condition enunciated above, namely, that
the greatest error becomes a minimum. After having thus obtained the minimum of
the greatest errors for the value zero of z, no more will remain but to make z vary in
a manner to make the minimum of which there is concern decrease, until this that it
acquires the smallest value possible. The method that it is necessary to use in order to
arrive to it is founded on the following theorem, demonstrated by Mr. Laplace:

Whatever be the number of elements contained in the errors that one
considers, if one makes vary, either all these elements, or only some among
them, and if one determines the values of the variable elements which ren-
der the greatest error a minimum, for the values of which there is concern,
many errors will become at the same time equals among them and the
greatest of all, and the number of these last will surpass always by at least
one unit the number of variable elements.

In order to show how one is able to make the application of this theorem to the
proposed question, we suppose that one has three elements to consider. Let x, y, z, . . .
be the corrections of these three elements. Let n be the number of errors, and we
designate those by e1, e2, e3, . . .en. By virtue of that which precedes, one will begin
by supposing in all the errors z = 0, and one will determine, under this hypothesis, the
values of x and of y which render the greatest error a minimum. Let

x = α, y = β

be the values of which there is question. It follows from the preceding theorem that,
for the values α , β and 0 of the variables x, y, z, . . ., three errors, for example

ep, eq, er,

will become equals among them and the greatest of all. Moreover, the double equation

ep = eq = er

will serve to determine the values of α and β of x and of y which correspond to z = 0.
If, now, one makes z vary by a very small quantity more or less, the three errors ep,eq,er
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will enjoy still the same property, that is to say that they will be always the greatest of
all the values of x and of y which render the greatest error a minimum, and these same
values will be yet determined by the double equation

ep = eq = er.

But, in order to make so that the common value of these three errors diminish, it will
be able to arrive that one is obliged either to make increase or to make decrease z.
We suppose, in order to fix the ideas, that this value diminishes when z increases, z
continuing to increase, the errors ep,eq,er will diminish simultaneously, by remaining
always the greatest of all, until a new error es arrives to equal them in order to surpass
them next. Let γ1 be the value of z for which the four errors ep,eq,er, es become equals
among them; and we designate by α1 and β1 the corresponding values of x and of y.
The system of values

x = α1, y = β1, z = γ1

will be determined by the triple equation

e = eq = er = es

and, for the value of γ1 of z, this system will be the one which renders the greatest
error a minimum. Besides, it follows from the theorem enunciated above that, for
the values of the unknowns which resolve the proposed question, four errors must be
equals among them and the greatest of all. This last condition being satisfied, at the
same time as the preceding, for the three values

x = α1, y = β1, z = γ1,

it is acceptable to research if these would not resolve the problem. One arrives to it in
the following manner:

When one makes z increase to beyond γ1, the three errors ep,eq,er cease to be
conjointly the greatest of all for the values of x and of y which render the greatest error
a minimum; and this property belongs then to two of among them taken conjointly with
the new error es. One determines easily what are, among the three errors ep,eq,er the
two which it is acceptable to choose for this object. Let, for example, eq, er be these
two errors; if one makes z increase to beyond γ1, the common value of the three errors
eq, er, es will go by increasing or by diminishing. In the first case, the values α1,β1,γ1
of x, y and z will satisfy the proposed question. In the second case, the errors of which
there is question will continue to decrease, by remaining always the greatest of all for
the values of x and of y which render the greatest error a minimum, until a new error
arrives to equal all three of them in order to surpass them next. Then one will obtain
anew a triple equation among four errors. One will be able to judge, as previously, if
the system of values of the unknowns determined by that triple equation satisfies the
proposed equation. In the contrary case, by following always the same march, one will
conclude by arriving to the solution of the problem.

The errors ep,eq,er being supposed known, in order to discover the error es, it
suffices evidently to seek that which, equaled to the first three, determine the smallest
positive value of the variable z. But it is able to happen that, for this value of z, many

4



errors, for example, es, et , eu, . . . become at the same time equals among them and to
the first three. We designate always by γ1 the value of which there is question. If one
makes z increase beyond γ1, three of the following errors

ep, eq, er, es, et , eu, . . .

will become conjointly the greatest of all for the values of x and of y which render
the greatest error a minimum; and, concerning these three errors, two at most must be
taken among the first three ep, eq, er. Excepting this restriction, the combination which
contains the three new errors will be able to be any one of those that one forms by
assembling three by three the errors

ep, eq, er, es, et , eu, . . .

In order to judge what is among these combinations that which merits the preference,
one will suppose that the variable z increases beyond γ1 by a positive, but indeterminate,
quantity represented by k, and that the corresponding values α1 and β1 of the two other
variables x and y receive at the same time the positive or negative increases g and
h. The increases of the errors ep, eq, er, es, et , eu, . . ., which, by hypothesis, were all
equals among them, will be found then expressed by the homogeneous polynomials
of the first degree in g, h and k; and it will suffice to determine the respective values
of g and h for which the greatest of all becomes a minimum, k being an essentially
positive quantity, one will be able, without any inconvenience, to divide by k each of
these polynomials. The quotients will contain no longer variables but the ratios of the
increases of x and of y to the one of z, and it will remain no more but to determine these
two ratios in such manner that the greatest of the quotients that one considers becomes
a minimum. Thus all the difficulties are found reduced to the solution of the general
problem, in the case where one has only two elements to correct.

One will reduce likewise the difficulties that this last hypothesis presents to the
difficulties which subsist, in the case where one has only a single element to consider.
Finally one will reduce those to the determination of the greatest error for a given value
of the variable, and then the proposed question will be found completely resolved.

One will be able likewise, in general, whatever be the number of the variables, to
restore the proposed question to the case where one has one variable less to consider,
and to lower next continuously the difficulty, until it disappears entirely. Thus, for
example, if m represents the number of variables, one will begin by giving to one of
them, that I will designate by z, an arbitrary value, by determining the others in a
manner that the greatest error becomes a minimum. Then one will obtain a system of
values for which m different errors will become equals among them and the greatest of
all. One will make next z vary in a manner to make decrease the common value of the
errors of which there is concern, until a new error arrives to equal them all, in order to
surpass them next. Then one will obtain an equation among m+1 different errors; and
one will judge easily if the values of the variables determined by this equation satisfy
the proposed equation. In the contrary case, if one continues to make z vary always in
the same sense, a new combination of m errors will replace the first; and, by following
the same march, one will finish necessarily by arriving to the solution of the problem.
The case where, for a like value of z, the number of errors equal among them and the
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greatest of all could come to surpass m+1, presents no difficulty that it is not always
easy to resolve, by means of the artifice employed for this object under the hypothesis
of three variables.

When one has a single element to correct, the preceding method is reduced to that
which Fr. Boscowich has given, provided that one supposes the first value of z, which
one is able to choose arbitrarily, equal to negative infinity. One is able nevertheless, in
this case, to simplify the solution, by taking for first value of z that which renders equals
among them the two errors where this variable has the greatest positive coefficient and
the greatest negative coefficient.

If one has many elements to consider, the calculations become much simpler, in
the case where some of these elements has the same coefficient, with sign excepted,
in all the given errors. Thus, for example, if one considers two elements, and if the
coefficient of the one among them is always equal to +1 or to −1, one arrives to a
method similar to that which Mr. Laplace has given in order to determine, relative to
the Earth, the elliptic figure in which the greatest gap of the degrees of the meridian
become, setting aside the sign, a minimum. (A).

I join here the demonstration of the theorems that suppose the preceding method,
and the formulas relative to the simplest cases.

I will finish by observing that, under the hypothesis of two and of three variables,
the proposed question is able to receive a rather singular geometric interpretation. It is
reduced then to one of the following two problems:

PROBLEM I. — Being given the equations of the straight lines which form the
sides of a polygon, to determine the lowest vertex of the polygon.

PROBLEM II. — Being given the equations of the planes which compose the faces
of a polyhedron, to determine the lowest vertex of this same polyhedron.

One can yet resolve, by the same analysis, the following problem:
Being given the equations of the planes which compose the faces of a pyramid, to

determine the lowest of its edges. (B)

ADDITIONS

(A) We have remarked above that the values of the variables which resolve the
proposed questions render always equals among them so many errors, plus one, as
there are elements to consider. One could therefore, in rigor, discover the system of
values demanded, by seeking, among those which satisfy the preceding condition, the
one which renders the greatest error a minimum: but this method would be long and
painful, and the number of the operations that it would require for a number m of
elements would be equal to the number of combinations of errors taken m+1 by m+1.
It is easy to see what advantage the preceding method exposed has on this last. Because,
instead of using all the systems of values of the variables for which m+1 errors become
equals among them, we have considered only a part of those where the equal errors
become at the same time greatest of all. One can appreciate this advantage with some
exactness by aid of a rather remarkable theorem, and of which the enunciation is here:
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Let m be always the number of elements that one considers. We suppose that one
combines successively the errors given one by one, two by two, three by three, etc.
finally m+1 by m+1, and that one had only regard for the combinations formed from
errors which are able to become simultaneously the greatest of all; the total number of
combinations where the errors will enter in odd number will surpass by one unit the
number of combinations where the errors will enter in even number.

Thus, for example, if one has a single element to consider, the number of errors
which will be able to become successively the greatest of all will surpass by one unit
the number of combinations two by two. If one has three elements to consider, the
number of errors, plus the number of combinations three by three, will surpass by one
unit the number of combinations two by two, and thus in sequence, . . . Besides, it is
easy to prove that the ratio of the number of combinations m by m to the number of
combinations m+1 by m+1 surpasses always the half of the number of the elements
increased by unity. This inequality, joined to the theorem enunciated above, suffices
in order to show that the number of combinations m+ 1 by m+ 1 is not of an order
higher than the number of combinations m− 1 by m− 1, when one has only regard
to the combinations formed of errors which become simultaneously the greatest of all.
One demonstrates, by this means, that, in the case of two variables, the number of
operations that the proposed method requires increases only as the number of errors;
while, by another method, it would increase as the cube of this last number. Likewise,
in the case of three variables, the number of operations which the first method requires
is not of an order higher than the square of the number of operations, while, by another
method, it would be of the same order as the fourth power. In general, the order of
which there is question is always lowered by the first method at least by two units.
One is able likewise to show that, in many particular cases, the number of operations
that it requires increases only as the number of observations. It is this which holds, for
example, all the time that, in the given errors, the diverse variables, with the exception
of one or two, have everywhere the same numeric coefficient.

In the case where one considers only two variables, the number of operations is
never able to surpass the double of the number of errors. I am arrived to this theorem
by three different paths; but one alone has led me to the determination of the number
of operations that one is obliged to make when the number of variables is superior to
two.

(B) Finally, the theorem of page 7 as particular cases, the following three:
1 ˚ In a polygon open out of its two extremities, the number of sides surpasses by

one unit the number of vertices.
2 ˚ In a polyhedron open out of its superior part, the number of faces, increased by

the number of vertices, surpasses by one unit the number of edges.
3 ˚ If one reunites, around one another, many polyhedra, some closed, the others

open, in such manner that each face is common to two different polyhedra, the number
of polyhedra, increased by the number of edges, will surpass by one unit the number of
faces increased by the number of vertices.

There results from the first theorem that, in each polygon, the number of vertices
is equal to the one of the sides. One deduces from the second the relation which Euler
has discovered among the diverse elements of a convex polyhedron. The third theorem
coincides with a theorem inserted in a Memoir that I have had the honor, three years
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ago, to present to the Class, and that it has deigned to welcome favorably.
Geometry could not go further, because it is limited to making the three dimensions

of space vary. But Analysis, restoring the propositions that we just announced to the
theory of combinations, furnishes the means to extend to any number of variables.

DEMONSTRATION OF THE THEOREMS WHICH
THE METHOD EXPOSED IN THIS MEMOIR SUPPOSES.

THEOREM I. — Whatever be the number of elements contained in the errors that
one considers, if one makes vary, either all these elements, or only some among them,
and if one determines the values of the variable elements which render the greatest
error a minimum, for the values of which there is question, many errors would become
at the same time equals among them and the greatest of all, and the number of these
last will surpass always by at least one unit the number of the variable elements.

Note. — One finds, in the calculation of probabilities, a demonstration of the pre-
ceding theorem, founded on this principle, that the values of x, y, z, . . . which render
the greatest error a minimum, render also a minimum the sum of the infinite powers of
the errors. But one can also demonstrate directly this theorem by aid of the following
considerations. Since I suppose that one does not set aside the sign of the errors, I will
regard a greater negative quantity as smaller than another lesser negative quantity.

Demonstration. — Let x, y, z, . . . be the corrections of the elements that one sup-
poses variables, and we designate by ξ , η , ζ , . . . the values of the elements which
render the greatest positive error a minimum. Finally let e1, e2, . . . , en be the given
errors in number equal to n, and we suppose generally

er = ar +brx+ cry+drz+ . . . ,

whatever be the value of r. If one makes x, y, z, . . . increase by arbitrary quantities
g, h, k, . . ., the increase of the error er will be

brg+ crh+drk+ . . .

We suppose now that this error becomes the greatest of all for the values of ξ , η , ζ , . . .
of the variables x, y, z, . . . It is easy to prove that, for these same values, many other er-
rors es, et , , . . . will be equal to it: because, if this equality did not hold, the error er
would remain the greatest of all for the values of x, y, z, . . . very near to ξ , η , ζ , . . . Be-
sides, if one makes ξ , η , ζ , . . . increase by very small but arbitrary quantities g, h, k, . . .,
one will be able to fix always the signs of these quantities in a manner that the increase
of er or

brg+ crh+drk+ . . .

becomes negative, and is changed into a diminution. Hence, the error er would be able
yet to diminish by remaining greatest of all, and ξ ,η ,ζ ,. . . would not be the values
of x, y, z, . . . which render the greatest error a minimum, this which is contrary to the
hypothesis.

It remains to show that the number of errors which will become equals for the
values ξ ,η ,ζ ,. . .of the variables x, y, z, . . . will be always superior at least by one unit
to that of these same variables.
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In fact, we designate by m the number of variables which one considers, and let

er, es, et , . . .

be the errors which become at the same time equals among them and the greatest of
all, when one supposes

x = ξ , y = η , z = ζ , . . .

If the number of these errors surpasses m by one unit, the multiple equation

er = es = et = · · ·

will suffice in general in order to determine completely the values ξ ,η ,ζ ,. . .of the
variables x, y, z, . . . But, in the contrary case, one will be able to give to these same
variables some very near values of ξ ,η ,ζ ,. . . which satisfy always the equation of
which there is concern, and for which the errors er, es, et , . . .are always the greatest
of all. In order to obtain these new values, one will make ξ ,η ,ζ ,. . . increase by very
small but indeterminate quantities g, h, k, . . . The increases corresponding to the errors
er, es, et , . . . will be

brg+ erh+drk+ . . . ,

bsg+ esh+dsk+ . . . ,

btg+ eth+dtk+ . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . ,

and by hypothesis they must all be equal among them. This equality will determine
some of the quantities g, h, k, . . .as function of the others; and, if one eliminates the
first of the one of the increases of which there is concern, those which will remain
after the elimination will remain entirely arbitrary. For the rest, the result will be the
same, whatever be the one of the increases that one considers; and it is easy to see
that this result will not contain a constant term. Hence, by giving appropriate signs to
those of the quantities g, h, k, . . . which are found included, one will be able always
to make so that it is negative, that is to say that it represents a diminution. Thus, in
this case, the errors er, es, et , . . .could yet diminish by remaining the greatest of all;
and ξ ,η ,ζ ,. . .would not be the values of x, y, z, . . . which render the greatest error a
minimum; this which is contrary to the hypothesis.

The preceding demonstration could hold parallelly, if, the errors er, es, et , . . .being
in number equal to m+1, the multiple equation

er = es = et = . . .

did not suffice to determine the values of the variables represented by

ξ , η , ζ , . . .

THEOREM II. — The problem which is the object of the preceding Memoir can
never admit but one solution, unless to admit an infinite number.
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Demonstration. — We imagine that one gives successively to z all the possible
values from −∞ to +∞, and that for each value of z one determines the other variables
x, y, z, . . . for the condition that the greatest error becomes a minimum. One will have
in this manner the minima of the greatest errors corresponding to the diverse values
of z, and one will be able always, by the preceding method, to obtain a minimum
smaller than those which precede it and those which follow it. This put, it will be easy
to prove that no other minimum can enjoy the same property. In fact, let ζ be the
value of z corresponding to the one that one considers; and we suppose that one gives
successively to z all the values possible from z = ζ to z = ∞, I say that the minimum of
the greatest of all for the value of x, y, . . . which render the greatest errors will go always
by increasing. Because, if it was otherwise, this minimum would cease to increase for
a certain value of z that I will designate by γ . Let now ep, eq, er, . . . be the errors which
are equals among them, and the greatest of all for the values of x, y, . . . which render
the greatest error a minimum, at the moment where z is at the point to attain the value γ .
These errors will be in number equal to the one of the variables x, y, z, . . .; and, hence,
whatever be the value of z, the equation

ep = eq = er = . . .

will determine always the values of x and of y which render a minimum the greatest of
the errors ep,eq,er,. . . By virtue of this same equation, the values of x, y, z, . . .become
proportionals to z, the common value of the errors ep,eq,er,. . . will become also pro-
portional to z; and, since this value increases when z is at the point to attain the value γ ,
it will increase still when one will make z increase beyond γ . Thus, when one is limited
to consider the errors ep,eq,er,. . . , if for the value γ of z the minimum of the greatest
errors is designated by M, for a value of z superior to γ , this minimum will become
superior to M. We suppose now that instead of considering only the errors ep,eq,er,. . .,
one has at the same time regard to all the given errors. The minimum of the greatest
errors corresponding to a given value of z will be able only to increase when one will
pass from the first hypothesis to the second. Hence, in this last case, for the values
of z superior to γ , the minimum of the greatest errors will be always superior to M.
This minimum will not be able to cease to increase for a certain value γ of z. But on
the contrary it will go always by increasing from z = ζ to z = ∞. One could prove
likewise that it will increase always from z = ζ to z = −∞. Thus, among the minima
corresponding to the diverse values of z, one alone is smaller than those which precede
it and those which follow it, and that one alone resolves the proposed question.

The preceding demonstration supposes that z comes to vary on all sides from ζ , the
minimum of the greatest errors begin to increase as soon as one gives to z a value greater
or lesser than ζ . But it could happen that before increasing the minimum of which there
is concern remain some times stationary. Then one would obtain an infinity of minima
all equal among them, and corresponding to an infinity of values of z. In all the cases,
as soon as one time the minimum of the greatest errors have begun to increase, it is no
longer able to stop. Thus, when the question becomes indeterminate, all the values of
z which resolve it are found contained between two given limits, and the minimum of
the greatest errors conserve always the same value between these two limits.
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THEOREM III. — We suppose that the error ep becomes the greatest of all: 1 ˚
for the values α1, β1, γ1, . . . of x, y, z, . . .; 2 ˚ for the values α2, β2, γ2, . . . of the same
variables; if one designates by α a value of x contained between α1 and α2, and by
β , γ , . . . the corresponding values that one obtains for y, z, . . . by making x = α in the
equations

y−β1

β2−β1
=

x−α1

α2−α1
,

z− γ1

γ2− γ1
=

x−α1

α2−α1
,

· · · · · · · · · · · · · · · · · · · · · · · ·

the error ep will be again the greatest of all for the values α , β ,γ , . . . of the variables
x, y, z, . . .

Demonstration. — In fact, we suppose that one gives successively to x all the
possible values from x = −∞ to x = +∞, and that for each value of x one determines
the values of y, z, . . . by the equations

(1)



y−β1

β2−β1
=

x−α1

α2−α1
,

y− γ1

γ2− γ1
=

x−α1

α2−α1
,

· · · · · · · · · · · · · · · · · · · · · · · ·

one will obtain an infinity of systems of values of x, y, z, . . . among which the three
systems will be found contained

α, β , γ, . . . ,

α1, β1, γ1, . . . ,

α2, β2, γ2, . . . ,

Moreover, whatever be the system that one considers, the difference between the error
ep and any other error eq will be a polynomial of the first degree in x, y, z, . . .; and,
if, one substitutes into it for y, z, . . . their values in x deduced from equations (1), this
difference will become simply a polynomial in x of the first degree or of the form

Ax+B.

Now, if this polynomial remains positive for the values of α1 and α2 of x, it is clear
that it will be yet positive for each value of x contained between α1 and α2. If therefore
the error ep is superior to each other eq for the two systems

α1, β1, γ1, . . . ,

α2, β2, γ2, . . . ,

it will yet be superior to all the others for the system

α, β , γ, . . .

11



Corollary I. — If two, three, . . ., or a greater number of errors ep, eq, er, . . . are
equals among them and the greatest of all: 1 ˚ for the values α1, β1, γ1, . . . of the
variables x, y, z, . . .; 2 ˚ for the values α2, β2, γ2, . . . of the same variables, they enjoy
still the same property for the values α,β ,γ, . . . of x,y,z, . . . provided however that these
values satisfy equations (1), and that α is contained between α1 and α2.

In fact, that which one has said above concerning the error ep is able to be applied
equally to the errors eq, er, . . . Moreover, each of the differences

ep− eq,

ep− er,

· · · · · · · · ·

becoming, in virtue of equations (1), a polynomial in x of the first degree, is not able to
be null for the values α1 and α2 of x without being equally null for each other value α

of the same variable. Hence, the errors ep, eq, er, . . . remain constantly equals among
them for all the systems of values of x,y,z, which satisfy the equations (1).

Corollary II. — If, for the value α1 of the variable x, one is able to determine the
other variables y,z, . . . in a manner that the error ep becomes the greatest of all, and that
one arrives to fulfill the same condition by giving to x the value α2; one will be able
again to arrive there by giving to x any one of the values contained between α1 and α2.

Corollary III. — If, for the values α1 and α2 of the variable x, one is able to deter-
mine the other variables y,z, . . . in a manner that the errors ep,eq,er, . . . become simul-
taneously superior to all the others, one will be able again to fulfill the same condition
by giving to x any one of the values contained between α1 and α2.

Corollary IV. — If one considers a combination formed from l errors ep,eq,er, . . .
and if, for two systems of different values of the variables x,y,z, . . . all the errors which
form this combination become equals among them and the greatest of all, one will
be able, by passing from one to the other system by insensible degrees, to obtain an
infinity of different systems each contained between the first two, and for which the
errors ep,eq,er, . . . will remain the greatest of all. Moreover, for each of these systems
the values of x,y,z, . . . will satisfy always the multiple equation

ep = eq = er = . . .

This multiple equation will determine many of the variables x,y,z, . . . as functions of
the others, and the number of those which will be thus determined will be, in general,
inferior by one unit to the number of errors ep,eq,er, . . ., that is to say equal to

l−1.

But it will be able to become less. If one designates this number by k− 1, k will be
that which we will call henceforth the order of the combination formed with the errors
ep,eq,er, . . . This order will indicate therefore, in general, the number of the errors
contained in the combination that one considers: but it is able to become inferior to it,
without being nevertheless ever null. It would be reduced to unity, if one had l = 1,
that is to say if one is limited to consider an isolated error.

12



In that which will follow, we will occupy ourselves no longer but with errors which
become the greatest of all, or with the combinations formed of errors which enjoy
simultaneously this property. As for any system of values of x, y, z, . . . it is necessary
that one, or two, or three, . . . or a greater number of errors become superior to all the
others, to each system of values will correspond always a combination of a certain
order. This put, it follows from that which precedes that the different systems which
correspond to one same combination are always reunited into one same group and,
consequently, contained between certain limits. The determination of these limits is
the object of the following proposition:

THEOREM IV. — The systems of values of x,y,z, . . . which correspond to the com-
binations of order k have for respective limits the systems which correspond to the
combinations of order k+1.

Demonstration. — In fact, we consider first simple errors, by having regard only
to those which are able to become, each separately, superior to all the others. As it is
necessary that each system of values correspond at least to one of these errors, all the
systems of possible values will be found apportioned into groups, if I am able thus to
express myself, among the diverse errors of which there is concern. In some of these
groups, the values of the variables will remain finite always. In others, they will be able
to be extended to infinity. Moreover, as one will not be able to exit from a group without
passing into another, each group will be necessarily encircled by many others, which
will be neighboring or contiguous with it. This put, the systems which are common
to two neighboring groups and which correspond to the combinations of the second
order will be evidently the limits of the errors which correspond to the simple errors or
to the combinations of the first order. If one designates under the name of contiguous
errors those which correspond to some neighboring groups, one will be able to say
again that two contiguous errors have always for common limit a combination of the
second order.

The different systems which correspond to the combinations of the second order,
as those which correspond to the simple errors, can, in certain cases, admit only finite
values of the variables, and, in other cases, many of these systems would be extended
to infinity. If one designates under the name of errors and definite combinations those
which can correspond only to some systems of finite values of the variables, and those
which are in the contrary case under the name of errors and indefinite combinations,
one will recognize without difficulty that one indefinite combination of the second
order is able to serve as limit only to two indefinite errors.

We consider now the diverse combinations of the second order which serve as limits
to one same simple error, and we suppose that one traverses the different systems which
correspond to these combinations in a continuous manner, that is to say by making the
variables increase or decrease by insensible degrees. As, in this case, one will not be
able to quit the systems which correspond to a combination of the second order without
encountering those which correspond to another combination of the second order, one
will find in the passage from one to the others of the intermediate systems which will
serve as limits to them. These intermediate systems will be those which correspond to
the combinations of the third order. If one calls contiguous combinations of the second
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order those which correspond to some neighboring systems, one will be able to say
that two contiguous combinations of the second order have always for common limit a
combination of the third order.

By continuing likewise, one will show that the systems corresponding to a com-
bination of order k have always for limits some other systems corresponding to some
combinations of order k+1; this which one is able also to express by saying that a com-
bination of order k has always for limits other combinations of order k+1. Moreover,
these limits belong at the same time to the given combination and to other neighboring
or contiguous combinations. Finally, an indefinite combination of order k+1 is able to
serve as limit only to some indefinite combinations of order k.

If one designates by m the number of given variables, m+1−k will be the number
of variables which remain arbitrary in the systems which correspond to a combination
of order k. Hence, there will remain only a single arbitrary variable in the systems
corresponding to the combinations of order m. The diverse values that this variable
will be able to receive will be contained between two fixed limits, of which one will be
able to extend to infinity; and each of these limits, when it will be finite, will determine,
for the variables x, y, z, . . . , a system of values corresponding to a combination of order
m+ 1. Thus each combination of order m has for limits two combinations of order
m+1, unless to one of these limits the values of the variables do not become infinite;
and, in this case, the other limit is always a combination of order m+1.

If one considers now the combinations of this last order, one will find that, in the
corresponding systems, there no longer remains arbitrary variables, but that the vari-
ables are entirely determined. These combinations are therefore of the highest order
that one is able to admit. Moreover, one has shown that it was among the systems cor-
responding to the combinations of this order that one must have sought the one which
resolves the proposed question; and the method that we have indicated for the solu-
tion of the problem is reduced in fact to test successively many of the combinations of
which there is concern. The number of these tests has therefore for limit the number
of combinations of order m+ 1, and it could not increase more rapidly than this last
number. Thus, in order to have a limit of the number of tests that the method requires,
it matters to know how the number of the combinations of order m+1 increases with
the number of simple errors. We will give, in this regard, the following theorems:

THEOREM V. — Whatever be the number of elements that one considers, the num-
ber of combinations of odd order will surpass always by one unit the number of com-
binations of even order.

(One supposes always that one had regard only to the combinations formed of errors
which are able to become simultaneously the greatest of all.)

Demonstration. — It follows from the preceding theorem: 1 ˚ that the simple
errors, compared among them two by two, have for respective limits combinations of
the second order; 2 ˚ that the combinations of the second order which serve as limits
to one same error, being compared two by two, have for respective limits combinations
of the third order, etc. One will find likewise that the combinations of the third order
which serve as limits to one same combination of the second order, being compared
among them two by two, have for respective limits combinations of the fourth order,
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etc.; and, if one designates always by m the number of variable elements, one will see
again that the combinations of the order m which serve as limits to a like combination
of order m− 1 have for respective limits combinations of the order m+ 1. Finally
each combination of order m will have for limits two combinations of order m+ 1,
unless one of these limits is not extended toward infinity. If therefore one increases by
one unit the total number of combinations of order m+1, in order limits to take place
which diverge toward infinity, one will find placed into some circumstances completely
similar to those which would take place, if one had to consider only errors and definite
combinations.

This put, we designate respectively by
M1 the number of simple errors or combinations of the first order,
M2 the number of combinations of the second order,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,
Mm the number of combinations of the mth order,
Mm+1 the number of combinations of the (m+1)st order.

Mm+1 +1 will be this last number increased by unity; and, in order to demonstrate
the theorem enunciated above, it will suffice to show that one has

(1) M1 +M3 + · · ·+Mm = M2 +M4 + · · ·+(Mm+1 +1),

if m is an odd number, and

(2) M1 +M3 + · · ·+(Mm+1 +1) = M2 +M4 + · · ·+(Mm +2),

if m is an even number.
These two equations are contained in the following

(3) M1−M2 +M3−·· ·±Mm∓Mm+1 = 1,

of which it is necessary to prove exactness.
I observe first that, if the theorem contained in this equation is true, whatever be

m, relatively to the total number of errors that one considers and of their respective
combinations, there will subsist yet among the combinations of the second order or
of a higher order, which belong to a like indefinite error. Thus, for example, if one
designates by

P2, P3, P4, . . . , Pm, Pm+1

the combinations of the diverse orders in which the indefinite error ep enters, one will
have

(4) P2−P3 +P4−·· ·∓Pm±Pm+1 = 1.

One sees in fact, by that which has been said above, that the conditions to which the
quantities P2, P3, . . . ,Pm, Pm+1 must satisfy are entirely similar to those in which the
quantities M1, M2, . . . ,Mm+1 are subjected. If therefore these conditions are sufficient
in order to establish, relatively to the last kind of quantities, the theorem proposed, they
will suffice also in order to establish it relatively to the first.
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If the error ep instead of being an indefinite error, was a definite error, it would be
necessary, by virtue of the remark made above, to diminish by one unit the number of
combinations of the highest order and, hence, equation (4) would become

(5) P2−P3 +P4−·· ·∓Pm± (Pm+1−1) = 1.

an equation in which one must admit the superior sign, if m is an odd number, and the
inferior sign in the contrary case.

It is again good to remark that the theorem contained in equation (3) is only a
particular case of another more general theorem, of which here is the enunciation:

We suppose that among the given errors one may choose many of them ep, eq, er, . . . ,
all contiguous to one another, and we designate respectively by

N1, N2, N3, . . . , Nm, Nm+1

the numbers of these same errors and of the combinations which contain them, by
having care however to increase the number of combinations of order m+ 1 by one
unit; if, among the errors ep, eq, er, . . . there is found some indefinite of them, one will
have always

(6) N1−N2 +N3−·· ·±Nm∓Nm+1 =∓1;

the superior sign must be admitted when m will be an odd number, and the inferior sign
when m will be an even number.

In order to deduce equation (3) from equation (6), it will suffice to suppose that the
sequence of errors ep, eq, er, . . . contains all the definite and indefinite errors, with the
exception of one alone. One has in fact, under this hypothesis,

N1 = M1−1, N2 = M2, N3 = M3, . . . , Nm = Mm, Nm+1 = Mm+1 +1;

and these values, substituted into equation (6), reproduce equation (3).
If equation (6) was one time demonstrated, applying to it the reasonings which

have served to deduce equation (4) from equation (3), one could obtain the following
theorem:

Let ep be any error. Let eq, er, es, . . . be many other definite or indefinite errors,
contiguous among them and to the error es, and we designate by

p2, p3, . . . , pm, pm+1

the numbers of combinations of the diverse orders where enter, with the error ep, one
or many of the errors eq, er, es, . . ., by having need however to increase the last number
by one unit, if some of the combinations that one considers are indefinite; one will have

(7) p2− p3 + p4−·· ·∓ pm± pm+1 =±1,

the superior sign must prevail if m is an odd number, and the inferior sign in the con-
trary case.

It is easy to understand that this last equation contains equations (4) and (5), just as
equation (6) contains equation (3).
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The theorem contained in equation (4), and all the other theorems reported above,
rest uniquely, as one comes to see, on the one which contains equation (6). It will
suffice therefore to demonstrate this last in order to establish all the others.

This put, we imagine first that the theorem contained in equation (6) had been
demonstrated for a number of elements inferior by one unit to the one that one con-
siders, or equal to m− 1. Equations (4), (5) and (7) will be found, that way likewise,
sufficiently established; and, hence, if one designates by ep any definite error, and by

P2, P3, . . . , Pm, Pm+1,

the numbers of combinations of the diverse orders which contain this same error, one
will have

(5) P2−P3 +P4−·· ·∓Pm± (Pm+1−1) = 1.

Let now eq be another definite error, contiguous to the error ep; we designate by

Q2, Q3, Q4, . . . , Qm, Qm+1

the numbers of combinations of the diverse orders which contain the error eq, and by

Q2−Q′2, Q3−Q′3, . . . , Qm−Q′m, Qm+1−Q′m+1

the numbers of those which contain the error eq with the error ep;

Q′2, Q′3, . . . , Q′m, Q′m+1

will be the numbers of those which contain the error eq without the error ep. One will
have besides, by virtue of equation (5),

Q2−Q3 + · · ·∓Qm± (Qm+1−1) = 1,

and, by virtue of equation (7),

(Q2−Q′2)− (Q3−Q′3)+ · · ·± (Qm+1−Q′m+1) =±1.

If one subtracts these two equations the one from the other, one will find

(8) Q′2−Q′3 +Q′4−·· ·∓Q′m±Q′m+1 = 1.

We consider again a third definite error er contiguous to one of the first two, or to
both together. We designate by

R2, R3, . . . , Rm, Rm+1

the numbers of combinations of the diverse orders where the error er enters, and by

R′′2 , R′′3 , . . . , R′′m, R′′m+1
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the numbers of combinations where it enters without any of the errors ep, eq; one will
have, by virtue of equations (5) and (7),

R2−R3 + · · ·∓Rm± (Rm+1−1) = 1,
(R2−R′′2)− (R3−R′′3)+ · · ·∓ (Rm−R′′m)± (Rm+1−R′′m+1) =±1,

and, hence,

(9) R′′2−R′′3 +R′′4−·· ·∓R′′m±R′′m+1 = 1.

By continuing likewise, and considering successively many definite errors ep, eq, er, es, . . .,
one will obtain a sequence of equations similar to equations (8) and (9). Besides, if one
designates by N the number of errors ep, eq, er, es, . . ., and by

N2, N3, . . . , Nm, Nm+1

the numbers of combinations of diverse orders which contain these same errors, one
will have evidently

N1 = 1 +1 +1 + · · · ,
N2 = P2 +Q′2 +R′′2 + · · · ,
N3 = P3 +Q′3 +R′′3 + · · · ,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,
Nm = Pm +Q′m +R′′m + · · · ,
Nm+1 = Pm+1 +Q′m+1 +R′′m+1 + · · · .

This put, if one adds among them equations (5), (8), (9), . . . or

P2−P3 +P4−·· ·∓Pm± (Pm+1−1) = 1,
Q′2−Q′3 +Q′4−·· ·∓Q′m± (Q′m+1−1) = 1,
R′′2−R′′3 +R′′4−·· ·∓R′′m± (R′′m+1−1) = 1,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

one will have equation (6), namely

N2−N3 +N4−·· ·∓Nm± (Nm+1−1) = N1,

or, that which reverts to the same,

N1−N2 +N3−·· ·±Nm∓Nm+1 =∓1.

If, among the errors ep, eq, er, . . . which we have supposed each definite, some became
indefinite, it would suffice, in order to have regard to this circumstance, to increase, in
the preceding equation, the value of Nm+1 by one unit.

There results from the preceding calculations that if equation (6) is true for a num-
ber of variables equal to m−1, it will be yet true for a number of variables equal to m.
Besides, if the number of variables is reduced to unity, each error will have for limits
two combinations of the second order; and each combination of the second order will
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be a limit common to two contiguous errors. Then, if one considers many defined and
contiguous errors in number equal to N1, and if N2 is the number of combinations of
the second order where they are found contained, one will have evidently

N2 = N1 +1.

Because, all the errors of which there is question being found then contained between
two determined limits, if one makes the unique variable increase from the first limit to
the second, the diverse values of this variable will correspond successively: 1 ˚ to the
combination of the second order which forms the first limit; 2 ˚ to one of the errors
that one considers; 3 ˚ to a new combination of the second order; 4 ˚ to another error,
etc.; finally, to the combination of the second order which forms the last limit. But as,
having to arrive to this last combination, one will have encountered alternately some
combinations and some errors, there results from it that the number of combinations
will surpass by one unit the one of the errors that one considers. One will have therefore

N2 = N1 +1 or N1−N2 =−1.

Equation (6), being thus verified for the case of one variable, will be true, by virtue
of that which precedes, for the case of two variables and, hence, for the case of three,
of four, etc., and, in general, of any number of variables.

Equation (6) being true, equation (3) will be equally, since, in order to obtain it, it
will suffice to suppose in equation (6) the number of errors ep, eq, er, . . . equal to the
total number of definite and indefinite errors diminished by one unit.

Scholium. — We have already remarked the geometric interpretation which was
able to receive theorem (3) in the case where one considers one, two, or three variables.
One is able also to present this theorem under a simple and analytic form at the same
time, whatever be the number of variables, by enunciating it as it follows.

We suppose that having combined among them, in diverse ways, one by one, two
by two, three by three, . . ., m by m the indices

1, 2, ,3, . . . , M1,

one forms from these observations many sequences in number equal to m. Let there be
respectively

[1]
[2]
[3]

1, 2, 3, . . . , M1
a1, a2, a3, . . . , aM1 ,
b1, b2, b3, . . . , bM1 .
. . . , . . . , . . . , . . . , . . .

these same sequences, which we indicate respectively by the numerals [1], [2], [3], . . . ,
[m−1], [m], and of which each term represents one of the combinations of which there
is question. We suppose, moreover, that the first sequence being uniquely composed of
the indices themselves, each term of the second is formed by a reunion of two indices,
and that the terms of any one of the other sequences comprehend each of the indices
contained in two or many terms of the preceding sequence, in a manner that one ends
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always by exhausting the terms of one sequence, by writing successively near the ones
from the others those to which one or many terms of the preceding series belong in
common. We suppose next that one supposes, in the sequences [2], [3], . . . , [m]: 1 ˚
all the terms which do not contain the index α; 2 ˚ the index α and all those which
are not found with the index α in one of the terms of the sequence [2]; and that after
the deletions of which there is concern, the sequences [2], [3], [4], . . . , [m] fulfill the
same conditions to which the preceding sequences [1], [2], [3], . . ., [m− 1] satisfied.
We suppose further that one suppresses anew, in the sequences [3], [4], . . . , [m]: 1 ˚ all
the terms which do not contain the index β ; 2 ˚ the index β and all those which are not
found with the index β in one of the terms of the sequence [3]; and that after these new
deletions, the sequences [3], [4], . . . , [m] fulfill the conditions to which in first place the
sequences [1], [2], . . . , [m− 2] satisfied; finally that one has operated, with the same
success, many consecutive deletions similar to the preceding, in a manner to conserve
only the sequences [m−1] and [m], reduced, first, to a sequence of isolated indices, and
second, to some combinations of these same indices considered two by two; and we
imagine that, under this hypothesis, each index of the sequence [m−1] may reappear
in two different terms of the sequence [m]. If the deletions indicated above succeed
equally whatever be the indices α,β , . . . and whatever be the order established between
these same indices, then, in designating by

M1, M2, M3, . . . , Mm−1, Mm

the numbers of the terms of the sequences

[1], [2], [3], . . . , [m−1], m],

one will have

(10) M1−M2 +M3−·· ·±Mm−1∓ (Mm−1) = 1,

the superior sign must be admitted, if m is even, and the inferior sign, if m is an odd
number. We have here diminished Mm by one unit, because the case that we consider
corresponds to the one where all the errors would be definite.

Example. — We consider the three sequences of combinations
[1] 1, 2, 3, 4, 5, 6,
[2] (1,2), (1,3), (2,3), (4,5), (4,6), (5,6), (1,4), (2,5), (3,6),
[3] (1,2,3), (4,5,6), (1,4,2,5), (2,5,3,6), (1,4,3,6).

It is easy to see that these three sequences satisfy the required conditions. Because: 1 ˚
The terms of the second result from the combinations two by two of the terms of the
first, and each term of the third contains the indices contained within two terms of the
second. 2 ˚ If, in the sequences [2] and [3], one suppresses all the terms which do not
contain the index 1, and if, in the other terms, one conserves only the indices 2, 3 and
4 which are contained, with index 1, in the first, the second and the third term of the
sequence [2]; the sequences [2] and [3] will become

[2] 2, 3, 4,
[3] (2,3), (2,4), (3,4),

Hence, the sequence [2] will no longer be formed but with isolated indices; the se-
quence [3], but of the combinations two by two of these same indices; and, moreover,
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each term of the sequence [2] will be contained in two different terms of the sequence
[3]. 3 ˚ It is easy to be assured that one will obtain similar results if, instead of deleting
the terms which do not contain the index 1, one deletes those which do not contain
any of the other indices 2, 3, 4, . . . Finally, before or after the deletions, one is able to
exhaust all the terms of the sequence [3], by writing after one another those to which
appear in common one or many terms of the sequence [2]; and the terms of the second
sequence enjoy again the same property relatively to those of the first. This put, as the
numbers of terms of the series

[1], [2], [3]

are respectively
6, 9, 5,

one must have, by virtue of equation (10),

6−9+(5−1) = 1,

this which is exact.

THEOREM VI. — If one designates by m the number of variable elements, each
definite error will be found comprised at least in m+1 combinations of order m+1.

Demonstration. — 1 ˚ If one considers first only one element alone, each definite
error will have for limits two combinations of the second order, this which verifies the
enunciated theorem.

2 ˚ We suppose that one considers two elements; and let ep be any one definite
error. Let (ep,eq) be one of the combinations of the second order which serve as limits
to it. This combination of the second order will have itself for limits two combinations
of the third order, which we designate by

(ep, eq, er), (ep, eq, es).

Let α1, β1; α2, β2 be the values of the two given variables x, y, which satisfy the two
double equations

ep = eq = er, ep = eq = es;

the equation ep = eq will be equivalent to this one

x−α1

α2−α1
=

y−β1

β2−β1
;

and, if one gives to the variables x and y the values which satisfy this equation, x being
contained between α1 and α2, the two errors ep, eq will become simultaneously the
greatest of all. Now, if, instead supposing ep = eq, one supposes

ep = eq +δ ,

δ being a very small positive quantity, and if one imagines always the values of x and
of y contained between those which the double equations

ep = eq +δ = er, ep = eq +δ = es;
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determine it is clear that the error ep will remain superior to all the others, and that it
will surpass even the error eq conjointly with the error er, if one supposes

ep = eq +δ = er,

and, conjointly with the error es, if one supposes

ep = eq +δ = es.

If, now, one makes δ increase, by supposing always ep = eq +δ = er, the errors ep, er
will continue to be conjointly the greatest of all, until this that a new error et or else
the error es itself finishes by equaling them both for a like system of values of x and of
y; and it is this which will arrive always necessarily, since, the error ep being supposed
definite, δ is not able to increase indefinitely without that the error ep ceases to be the
greatest. One will obtain therefore, by this way, a new combination of the third order,
namely (ep,eq,et), (et being able to be equal to es), which will contain the error ep;
and, hence, the three combinations of the third order

(ep,eq,er), (ep,eq,es), (ep,eq,et)

will contain the definite error ep, this which verifies the enunciated theorem.
3 ˚ We suppose that one considers three elements. Let ep be any definite error and

(ep,eq) one of the combinations of the second order which contains this error. As the
equation ep = eq leaves only two arbitrary variables, one will prove, as in the preceding
case, that the combination of the second order of which there is concern belongs to
three combinations of the fourth order. Let

(ep,eq,er,es), (ep,eq,es,et), (ep,eq,er,et)

be respectively these three combinations. If one gives to the three variables x, y.z some
values which satisfy the equation

ep = eq,

and which are comprehended between the limits determined by the three multiple equa-
tions

ep = eq = er = es, ep = eq = es = et , ep = eq = er = et ,

is to say the values for which one has

ep = eq > er,es,et ;

the errors ep,eq will become simultaneously the greatest of all.
Now, if, instead of supposing ep = eq, one supposes ep = eq + δ , δ being a very

small positive quantity, and that one gives to x, y, z some values comprehended between
those which determine the three multiple equations

ep = eq +δ = er = es, ep = eq +δ = es = et , ep = eq +δ = er = et ,

it is clear that the error ep will remain superior to the others, and that it will surpass the
error eq conjointly with the errors er, es, if one supposes

ep = eq +δ = er = es.
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If now one makes δ increase, by supposing always

ep = eq +δ = er = es,

the errors ep, er, es will continue to be conjointly the greatest of all, until this that
the error et or a new error eu arrive to equal them; this which will finish necessarily
by arriving, since the error ep is supposed definite. Then, one will obtain a fourth
combination of the fourth order, which will contain the error ep, this which will verify
the enunciated theorem.

By reasoning in the same manner, one will finish by demonstrating the theorem,
whatever be the number of elements that one considers.

We have supposed, in that which precedes, that the combinations of the second
order contained only two errors, those of the third order, three errors, etc. But it is easy
to see that the same conclusions would subsist, if the number of errors of one or many
combinations became superior to their order.

THEOREM VII. — Let ep, eq, er, . . . be many errors, definite or indefinite, compre-
hended in one same combination of order m+ 1, each of them being able to become
separately the greatest of all. Let, moreover, eu be a fictive error which is equal to
the errors ep,eq,er,. . . when these become equals among them, that is to say for the
system of values of x,y,z, . . . which correspond to the combination that one considers.
If the fictive error eu becomes superior to all the others for some systems of values
which rendered previously the error ep the greatest of all, the difference eu−ep will be
necessarily positive for some of the systems of values which correspond to those of the
combinations of the order m where the errors eq,er, . . . enter conjointly with the error
ep.

Demonstration. — In fact, the systems which correspond to the error ep, that is to
say to those for which the error ep became superior to all the others, will be found now
separated into two groups more. For one of these groups, one will have

ep > eu

and, for the other,
ep < eu.

Each of these groups will have for limits systems corresponding to some combinations
of the second order, these of the systems corresponding to some combinations of the
third order, and thus in sequence . . ., until this that finally one arrives to some combina-
tions of the order m, which will have themselves for limits the combination of the order
m+1 that one considers. The difference eu− ep will be therefore positive for some of
the systems which correspond to those of the combinations of the order m where the
errors eq,er, . . . are found comprehended with the error ep.

If the two groups of which we have spoken are reunited into one, one will have, for
this last group, eu > ep, and the preceding conclusions will hold a fortiori.

THEOREM VIII. — Let ep be an error which becomes, for certain systems of val-
ues, superior to all the others. Let moreover

(ep, eq, er, es, . . .)

23



be one of the combinations of order m+ 1 which contain the error ep. One will be
able to imagine always a fictive error eu which becomes equal to each of the errors
ep, eq, er, es, . . . for the system of values which correspond to the preceding combina-
tion, and which is inferior to ep for each other system corresponding to this last error.

Demonstration. — This theorem appears true and general. But it will suffice, for
our object, to demonstrate it in the case where the number of combinations of order
m, which contains the error ep, and which has for limit the combination given of order
m+1, does not surpass m.

This put, we designate by α,β ,γ ,. . . the system of values of x,y,z, . . . which corre-
spond to the combination of order m+1

(ep, eq, er, es, . . .)

Let moreover
ep = ap +bpx+ cpy+dpz+ · · · ,
eq = aq +bqx+ cqy+dqz+ · · · ,
er = ar +brx+ cry+drz+ · · · ,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

We make likewise
eu = au +bux+ cuy+duz+ · · · ;

au,bu,cu,du, . . . being indeterminate coefficients. Finally we designate by A the com-
mon value of the errors ep, eq, er, . . . which correspond to the system of values α,β ,γ ,. . .
Since one supposes, in this case, the error eu equal to the others, one will have

au +buα + cuβ +duγ + · · ·= A.

This equation will serve to determine au, when one will know bu,cu,du, . . . There re-
mains to determine these last coefficients in a manner that, for each system correspond-
ing to error ep and different from α,β ,γ ,. . . the difference ep− eu is positive.

We make, for more convenience,

x = α + x′, y = β + y′, z = γ + z′, . . .

One will have, in this case,

ep = A+bpx′+ cpy′+dpz′+ · · · ,
eq = A+bqx′+ cqy′+dqz′+ · · · ,
er = A+brx′+ cry′+drz′+ · · · ,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
eu = A+bux′+ cuy′+duz′+ · · · ,

If one equals among them the preceding values of those of the errors eq, er, es, . . .
which enter with ep into one same combination of order m, one will have a multiple
equation, and this multiple equation will determine the ratios

y′

x′
,

z′

x′
, . . .
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which agrees in all the systems corresponding to this combination. Let k, l, . . . be these
same ratios. If one supposes that the errors comprehended in the combinations of which
there is concern become superior to all the others for some positive values of x′= x−α ,
the common value of these diverse errors, corresponding to any one value of x′e, will
be of the form

A+Bx′,

provided that one supposes

(1) B = bp + cpk+dpl + · · ·= bq + cqk+dql + · · ·= br + crk+drl + · · · ;

and, as in the contrary case one must have

eu < ep = A+Bx′,

it will be necessary to suppose

bu + cuk+dul + · · ·< B.

If therefore one designates by δ a very small quantity, that one will be able besides to
choose at will, and if one makes

B(1−δ ) = B′,

one will be able to suppose

(2) bu + cuk+dul + · · ·= B′.

This first equation will establish among the unknowns bu,cu,du, . . . a relation by virtue
of which the difference ep− eu will remain positive for the system of values corre-
sponding to one of the combinations of order m which contain the error ep, and which
have for limit the combination given of order m+1.

We suppose now that the number of combinations of this kind does not surpass
m; one will be able to form as many equations parallel to equation (2) as there will
be of similar combinations, and to determine the values of the unknowns bu,cu,du, . . .
in a manner that all these equations are satisfied. Then one will be assured that the
difference ep− eu remains positive for all the systems of values corresponding to the
combinations of which there is concern. Hence, this difference will be positive for all
the systems of values which corresponded to the error ep. Because, if, for some among
them, it became negative, it was it again, by virtue of Theorem VII, for some of the
systems corresponding to the combinations of order m that one considers.

Corollary I. — One will be able always to determine the coefficients of the fictive
error eu in a manner that this error is inferior to ep for all the systems of values which
render the error ep superior to the others, excepting however the one which renders the
errors ep, eq, er, . . . equals among them, and for which one will have again eu = ep.
Moreover, since, for the given values of the variables x,y,x, . . . the difference

ep− eu
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will depend on the difference B−B′ = Bδ and on all the similar differences each of
which are able to become so small that one will judge it suitable, and that the coeffi-
cients of ep− eu, namely

bp−bu, cp− cu, dp−du, . . .

are, thus as one is able to conclude from equations (1) and (2), of the same order as
these differences; one sees that the difference

ep− eu

will be able itself to become less than each given quantity.
Corollary II. — We consider a system of values for which one has

eq > ep;

one will be able always to determine the coefficients of eu in a manner that the differ-
ence

ep− eu

is inferior (setting aside the sign) to

eq− ep

and, hence, in a manner that eu is inferior to eq. Thus one will be able always to make
so that the error eu never becomes greatest of all, if it is for the system of values which
corresponds to the combination of order m+ 1 that one considers, and for which one
will have at the same time

ep = eq = er = · · ·= eu.

Corollary III. — The error eu being determined as we just said, the differences

ep− eu, eq− eu, er− eu, . . .

will be all equal to zero for the system of values

α, β , γ, . . .

which corresponds to the combination which one considers. But, for each other system,
one or many of these differences will become positive, and if one increases indefinitely
the value of x−α , by leaving all the same values in the ratios

y−β

x−α
,

z− γ

x−α
, . . . ,

that of the differences
ep− eu, eq− eu, . . .

which will be positive, will finish by becoming greater than each given quantity.
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Corollary IV. — The error eu being always determined in the same manner, let ev
be a second fictive error, and we make

ev = eu + ε;

ε being a very small quantity, but arbitrary. Then, for the system of values α,β ,γ, . . .
and for the neighboring systems, the error ev will become superior to all the others.
Moreover, as for the infinity of values of x−α , y−β , z− γ ,. . . some of the differences

ep− eu, eq− eu, . . .

become positive and infinite, and that on the contrary the difference ep− eu is always
constant, one sees that for greater values x−α , y−β , z−γ , . . . some of the differences

ep− ev, eq− ev, . . .

become positive. Hence, the systems of values which render the error ep superior to
the others is not able to be extended to infinity. This error will be therefore a definite
error. Finally it is easy to see that the combinations of order k which would contain
some of the errors ep, eq, er, . . . comprehended in the combination of order m+1 that
one considers, will be found, by the addition of the error ev transformed into some
combinations of order k+1.

THEOREM IX. — If one designates by m the number of variable elements, each
combination of order m+1 will serve as limit, at least, to m+1 combinations of order
m.

Demonstration. — Let
(ep, eq, er, es, . . .)

be the combination of order m+ 1 that one considers, and let ep be one of the errors
contained in this combination, an error which will be able to become superior to all the
others. If the number of combinations of order m which contain the error ep is superior
to m, the theorem will be verified immediately; but, if this number is not superior to
m, one will be able, by virtue of the preceding proposition (corollary IV), to imagine
a fictive error ev which is definite and which surpasses all the others for the system of
values

α, β , γ, . . .

corresponding to the combination of order m+ 1 that one considers. Moreover, if the
fictive error ev is determined by the method that we have indicated, then each of the
combinations of order k which belonged to the given combination of order m+1 will
become, by the addition of the error ev, a combination of order k + 1. Hence, the
number of combinations of order m+ 1 which will contain the definite error ev will
be equal to the number of combinations of order m which had for common limit the
given combination of order m+ 1. Besides, by virtue of theorem VI, the number of
combinations of order m + 1 which contain a like definite error is at least equal to
m+1. It will be likewise of the number of combinations of order m which have a same
limit; this which verifies the enunciated theorem.
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When the number of errors contained in the combination of order m+ 1 that one
considers is only equal to m+1, one is able again to demonstrate easily theorem IX in
the following manner:

Let ep,eq,er, . . . be the errors contained in one same combination of order m+1, in
number equal to m+1. These errors will become simultaneously the greatest of all, if
one determines the variables x,y,z, . . . by the equation

ep = eq = er = · · ·

But, if one designates by δ a very small and positive quantity, and if one determines
x,y,z, . . .

ep +δ = eq = er = · · · ,

the error ep will become inferior to the others, and the errors eq, er, es, . . . will be si-
multaneously the greatest of all. In the same case, the combination

(eq, er, es, . . .)

will be of order m. One will obtain therefore a combination of order m formed of errors
which become simultaneously the greatest of all, if in the given combination

(ep, eq, er, es, . . .)

one suppresses the first error ep. One would arrive again to the same conclusions if,
instead of suppressing the error ep, one would suppress the error eq, or the error er, . . .,
or some one of the other given errors. These last being, by hypothesis, in number equal
to m+ 1, one will obtain, by these diverse suppressions, m+ 1 combinations of order
m, which all will be found contained in the given combination.

Corollary. — Let Mm+1 be the total number of combinations of order m+ 1, and
Mm the total number of combinations of order m, as many definite as indefinite. Since
each combination of order m+1 contains at least m+1 combinations of order m, and
since each combination of order m has for limits two combinations of order m+1, if it
is definite, and one alone, if it is indefinite; one will have

(m+1)Mm+1 < 2Mm, or Mm >
m+1

2
Mm+1.

This inequality joined to equation (3) of theorem V serves to determine a limit to the
number of operations that the method exposed in this Memoir requires.

THEOREM X. — The number of operations that the method exposed in this Memoir
requires is not of an order higher than the number of combinations m−1 by m−1 of
the given errors, m being the number of variable elements.

Demonstration. — In fact, we suppose that in having regard only to the combina-
tions formed of errors which are able to become simultaneously the greatest of all, one
designates by M1 the number of the simple errors or combinations of the first order,
and by

M2, M3, . . . ,Mm, Mm+1,
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the numbers of combinations of the second, of the third, . . ., finally of the mth and of
the (m+1)st order. One will have, by virtue of theorem V,

Mm+1−Mm +Mm−1−·· ·±M2∓M1±1 = 0,

and by virtue of theorem IX,

Mm >
m+1

2
Mm+1.

If one adds member to member the equation and the inequality preceding, one will
have

Mm−1−Mm−2 + · · ·±M2∓M1±1 >
m−1

2
Mm+1,

whence one concludes

(1) Mm+1 <
2

m−1
(Mm−1−Mm−2 + · · ·±M2∓M1±1);

the superior sign must be admitted if m is an odd number, and the inferior sign in the
contrary case. Besides Mm+1 represents, as we have already remarked, the limit of
the number of operations to make, and Mm−1 indicates the number of combinations of
order m−1, which is either equal or inferior to the number of combinations m−1 by
m−1 of the given errors or of a part of these errors. The preceding inequality verifies
therefore the enunciated theorem.

Corollary I. — If one has two variable elements, it will be necessary to suppose
m = 2, and the preceding inequality will become

M3 < 2M1−2;

Hence, the number of operations to make will not be able to surpass 2M1 or the double
to the number of errors.

Corollary II. — If one supposes m = 3, one will have

M4 < M2−M1 +1;

Hence, the number of operations to make will not be able to be of an order superior to
the number of combinations two by two, that is to say to the square of the number of
errors.

Corollary III. — If one supposes m = 4, one will have

M5 <
2
3
(M3−M2 +M1−1);

Hence, the number of operations to make will not be able to be of an order superior to
M3 or to the cube of the number of errors, etc.
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