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Abstract

This paper establishes the asymptotic uniqueness of long-term probability fore-
casts in the following form. Consider two forecasters who repeatedly issue prob-
ability forecasts for the infinite future. The main result of the paper says that
either at least one of the two forecasters will be discredited or their forecasts will
converge in total variation. This can be regarded as a game-theoretic version
of the classical Blackwell–Dubins result getting rid of some of its limitations.
This result is further strengthened along the lines of Richard Jeffrey’s radical
probabilism.

This paper has also been published as an arXiv report. The conference version
has been published in the Proceedings of COPA 2024 (PMLR volume 230).
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. . . scientific disagreements tend to disappear. . . when new data
accumulate. . . .

Jeffreys (1938, p. 673); also in Jeffreys (1961, Sect. 1.9)

1 Introduction

This paper belongs to the general area of probabilistic prediction, and we will be
interested in ways of testing long-term predictions and the asymptotic unique-
ness of successful long-term predictions. The long-term nature of such predic-
tions makes our results quite different from the usual results in conformal predic-
tion (Vovk et al., 2022; Angelopoulos and Bates, 2023), prediction with expert
advice (Cesa-Bianchi and Lugosi, 2006; Vovk, 1998), and game-theoretic proba-
bility (Shafer and Vovk, 2019), which are usually concerned with one-step-ahead
prediction. In this paper “prediction” and “forecast” are used interchangeably.

To demonstrate the asymptotic uniqueness of successful long-term predic-
tions, we consider two forecasters issuing such predictions. The asymptotic
uniqueness holds if either the forecasts that they issue eventually become al-
most indistinguishable or we are able to demonstrate that at least one of the
forecasters is inadequate. This paper establishes new results of this kind and
reviews related known results.

Blackwell and Dubins (1962, Sect. 2) prove a classical result about the
asymptotic uniqueness of long-term predictions. They consider two probabil-
ity measures that agree in a certain sense (namely, one of them is absolutely
continuous w.r. to the other). They then show that the predictions output by
the two probability measures for the infinite future converge in total variation
almost surely as time progresses. We will remove unnecessary restrictions and
generalize this result.

The general phenomenon of convergence of opinions (i.e., forecasts for the
future) for adequate forecasters will be referred to as Jeffreys’s law, although
originally this expression was used by Dawid (1984, Sect. 5.2) for his result
about convergence of one-step-ahead predictions:

I shall call this finding “Jeffreys’s Law”, after an admittedly dis-
torted interpretation of Jeffreys (1938): “When a law has been ap-
plied to a large body of data without any systematic discrepancy
being detected. . . the probability of a further inference from the law
approaches certainty whether the law is true or not.”

Another quote from the same paper (Jeffreys, 1938) is given as the epigraph to
this paper.

We start in Sect. 2 from discussing ways of testing long-term predictions and
applying those ways to deriving our first version of Jeffreys’s law. This version
is stated in terms of a testing protocol involving three players: Forecaster I,
Forecaster II, and a new player, Sceptic, who performs testing. We will construct
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Figure 1: Jeffreys and Jeffrey. Left panel: Harold Jeffreys (1891–1989), British
geophysicist. Right panel: Richard Jeffrey (1926–2002), American philosopher.

a strategy for Sceptic that discredits at least one of the two forecasters if their
opinions do not converge. This removes limitations of Blackwell and Dubins’s
result, as discussed in Sect. 5.

One respect in which the result of Sect. 2 (and the Blackwell–Dubins original
result) is restrictive is that it assumes that we observe data with certainty.
Section 3 extends the result of Sect. 2 to Jeffrey’s picture of radical probabilism,
in which no evidence is certain.

Proofs of the results of Sects 2–3 are postponed to Sect. 4. All our proofs
will be constructive and will exhibit simple strategies for Sceptic that enforce
convergence of opinions.

Section 5 discusses related results in literature starting from the Blackwell–
Dubins result (Sect. 5.1) and then going on to results about one-step-ahead
prediction (Sect. 5.2). The most conspicuous difference between the two kinds
of results, those for long-term and one-step-ahead prediction, is that the lat-
ter can be both asymptotic and small-sample, while the former are invariably
asymptotic (to the best of my knowledge); making them non-asymptotic looks
to me an important direction of further research. Section 6 concludes and lists
some other directions of further research.

This paper and its predecessor (Vovk, 2024) were motivated by a conversa-
tion with A. Philip Dawid (Vovk and Shafer, 2023). Among topics of the con-
versation were one-step-ahead vs multi-step prediction (Vovk and Shafer, 2023,
Sect. 7) and the Blackwell–Dubins theorem (Vovk and Shafer, 2023, Sect. 7 of
the arXiv version).

Two people with similar surnames will play key roles in this paper, Jeffreys
and Jeffrey. (See Fig. 1.) Harold Jeffreys (1891–1989) was a contemporary
of Ronald Fisher who spent his professional life in Cambridge, England. His
main speciality was geophysics, but he was also one of the founders of Bayesian
statistics. Richard Jeffrey (1926–2002) was an influential American philosopher.
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2 Jeffreys’s law

Before we state Jeffreys’s law we need to discuss ways of testing probability
forecasts. Let us fix a finite observation space Y (equipped with the discrete
σ-algebra). At each step Reality produces an observation yn ∈ Y, n = 1, 2, . . . ,
and Forecaster is trying to predict future observations by issuing a probabil-
ity forecast Pn ∈ P(Y∞) (P(Y∞) standing for the family of all probability
measures on Y∞ equipped with the Borel σ-algebra). In the following testing
protocol, we let Y∗ stand for the set of all finite sequences of observations, Y+

stand for the set of all non-empty finite sequences of observations, |x| stand for
the length of x ∈ Y∗, and [x] stand for the set of all infinite continuations of
a finite sequence x ∈ Y∗ (in other words, [x] is the set of all sequences in Y∞

that have x as their prefix).

Protocol 1. Testing protocol:
K0 := 1
FOR n = 1, 2, . . . :

Forecaster announces Pn ∈ P(Y∞)
IF n > 1:

Kn−1 := K-
n−1 +

∑
x∈Y+ fn−1(yn−1x)Pn([x])

−
∑

x∈Y∗:|x|>1 fn−1(x)Pn−1([x]) (1)

Sceptic announces fn ∈ RY+

such that
fn(x) = 0 for all but finitely many x ∈ Y+

Reality announces yn ∈ Y
K-

n := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn([y]). (2)

Protocol 1 is interpreted in terms of betting, as described in de Finetti
(1937, Chap. 1) and, in our current terminology, Vovk (2024, Sect. 3). At each
step n Forecaster announces a probability measure Pn for the infinite future
yn, yn+1, . . . . The betting interpretation of Pn is that, for each non-empty fi-
nite sequence x ∈ Y∗, Pn([x]) is the price of a ticket (the x-ticket) that pays
1{x⊆(yn,yn+1,... )} (i.e., it pays 1 if and only if x is a prefix of the sequence
(yn, yn+1, . . . ) of the future observations and pays nothing otherwise). Fore-
caster allows his opponent to buy any real number (positive, negative, or zero;
not necessarily integer) of such tickets.

Testing the forecasts is performed by another player, Sceptic. At step n,
for each non-empty x ∈ Y∗, Sceptic announces the number fn(x) of x-tickets

that he chooses to buy at this step. Therefore, his move is fn ∈ RY+

, which
means that fn : Y+ → R. The numbers fn(x) are allowed to be different from
zero only for finitely many x-tickets, and so the sums

∑
x in the protocol are

uncontroversial. At the end of each step Reality announces the actual observa-
tion yn ∈ Y, and the y-tickets for y ∈ Y are cashed in: the yn-ticket pays 1,
the other y-tickets do not pay anything, and the total cost of all the y-tickets is∑

y∈Y fn(y)Pn([y]). The x-tickets for longer x are sold at the next step at the
new prices (which accounts for the term

∑
x∈Y+ fn−1(yn−1x)Pn([x]) in Proto-

col 1) and the loss due to their total cost is recorded also at the next step (which
accounts for the term

∑
x∈Y∗:|x|>1 fn−1(x)Pn−1([x])).
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The interpretation of Kn is that it is Sceptic’s capital at time n, but a large
Kn only means that Forecaster’s predictions P1, P2, . . . have been discredited
(so Sceptic is using “play money”). For this interpretation to be valid, Sceptic
is never allowed to go into debt: as soon as Kn < 0, the game is stopped and
Sceptic’s attempt at discrediting Forecaster fails.

In the case of one-step-ahead prediction we do not need the capital update
(1), and (2) is sufficient. On the other hand, for multi-step prediction, we do
not need to have (2) (which is the standard capital update in game-theoretic
probability) as a separate entry and can merge it into (1). The following protocol
is a slightly simplified version of Protocol 1.

Protocol 2. Simplified testing protocol:
K0 := 1
FOR n = 1, 2, . . . :

Forecaster announces Pn ∈ P(Y∞)
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈Y∗ fn−1(yn−1x)Pn([x])
−
∑

x∈Y+ fn−1(x)Pn−1([x]) (3)

Sceptic announces fn ∈ RY+

such that
fn(x) = 0 for all but finitely many x ∈ Y+

Reality announces yn ∈ Y.

In Protocol 2 we merge the steps (1) and (2) of Protocol 1 into one step (3).
The testing protocol that we use for stating Jeffreys’s law involves one Scep-

tic playing simultaneously (but separately) against two forecasters who output
probability forecasts P I

n, P
II
n ∈ P(Y∞) at steps n = 1, 2, . . . .

Protocol 3. Double testing protocol:
KI

0 = KII
0 := 1

FOR n = 1, 2, . . . :
Forecaster I announces P I

n ∈ P(Y∞)
Forecaster II announces P II

n ∈ P(Y∞)
IF n > 1:

KI
n−1 := KI

n−2 +
∑

x∈Y∗ f I
n−1(yn−1x)P

I
n([x])

−
∑

x∈Y+ f I
n−1(x)P

I
n−1([x])

KII
n−1 := KII

n−2 +
∑

x∈Y∗ f II
n−1(yn−1x)P

II
n ([x])

−
∑

x∈Y+ f II
n−1(x)P

II
n−1([x])

Sceptic announces f I
n, f

II
n ∈ RY+

such that
f I
n(x) = f II

n (x) = 0 for all but finitely many x ∈ Y+

Reality announces yn ∈ Y.

We will state Jeffrey’s law using the total variation distance

∥P −Q∥ := 2 sup
E

|P (E)−Q(E)| ∈ [0, 2]

between probability measures P and Q on Y∞, where E ranges over the events
in the common domain of P and Q.
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Theorem 4. Sceptic has a strategy in Protocol 3 that guarantees the disjunction
of

� ∥P I
n − P II

n ∥ → 0 as n → ∞,

� KI
n → ∞ as n → ∞,

� KII
n → ∞ as n → ∞.

Theorem 4 can be interpreted as establishing a connection between the cor-
respondence (see, e.g., Popper 1945) and convergence (see, e.g., Peirce 1877)
theories of truth. The correspondence theory of truth (of the probability fore-
casts in this case) refers to agreement with reality, and our interpretation of a
large Kn is lack of agreement with reality. The convergence theory of truth re-
gards truth as the point at which different opinions converge. In Peirce’s words,
“the settlement of opinion is the sole end of inquiry” (Peirce, 1877). According
to Theorem 4, a version of the correspondence theory implies a version of the
convergence theory.

Remark 5. Theorem 4 is stated in terms of the total variation distance
∥P I

n − P II
n ∥ between probability measures P I

n and P II
n . It is easy to check

that we cannot replace the total variation distance by the Kullback–Leibler
divergence

DKL(P
I

n ∥ P II

n ) = H(P I

n, P
II

n )−H(P I

n),

where the first entry of H stands for cross-entropy and the second for entropy.
Namely, Sceptic’s opponents (Forecaster I, Forecaster II, and Reality) have a
joint strategy that guarantees the conjunction of

� DKL(P
I
n ∥ P II

n ) = ∞ for all n,

� KI
n ≤ 2 for all n,

� KII
n ≤ 2 for all n.

The interpretation is that the two Forecasters are both successful while disagree-
ing sharply. (The two entries of 2 can be replaced by any number exceeding
1.) The idea of such a joint strategy is that P I

n and P II
n should be very close to

each other and such that P II
n (E) = 0 and P I

n(E) is very small but positive for
suitably chosen events E. A similar remark is also applicable to Theorem 10
below.

3 Agnostic probabilism

According to the idea of radical probabilism, put forward very clearly by Jeffrey
(1968), empirical evidence is never certain. In particular, we never learn the
outcomes y1, y2, . . . for sure.

Jeffrey referred to the opposite point of view, in which we do observe the
true yn (in our current context), as dogmatic probabilism. We would like our
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mathematical results to cover dogmatic probabilism as a special case, and the
title of this section, agnostic probabilism, refers to its prediction protocol even-
tually disclosing, or never disclosing, the true outcomes yn, as the case may be
for different n. In particular, the following protocol includes Protocol 3 as a
special case.

Protocol 6. Double agnostic testing protocol:
KI

0 = KII
0 := 1

FOR n = 1, 2, . . . :
Forecaster I announces P I

n ∈ P(Y∞)
Forecaster II announces P II

n ∈ P(Y∞)
IF n > 1:

KI
n−1 := KI

n−2 +
∑

x∈Y+ f I
n−1(x)(P

I
n([x])− P I

n−1([x])) (4)
KII

n−1 := KII
n−2 +

∑
x∈Y+ f II

n−1(x)(P
II
n ([x])− P II

n−1([x]))

Sceptic announces f I
n, f

II
n ∈ RY+

such that
f I
n(x) = f II

n (x) = 0 for all but finitely many x ∈ Y+.

Protocol 6 does not include Reality as a separate player. Her role is played by the
two forecasters: in order to model Reality of Protocol 3, they should choose P I

n

and P II
n concentrated on [(y1, . . . , yn−1)] for some observations y1, . . . , yn−1 ∈ Y.

Such a choice already implies a certain agreement between the forecasters; in
particular, P I

n − P II
n → 0 as n → ∞ weakly, meaning that, for any x ∈ Y∗,

P I

n([x])− P II

n ([x]) → 0 as n → ∞.

More precisely, to embed Protocol 3 into Protocol 6, the two forecasters in the
latter should choose the probability measures concentrated on [(y1, . . . , yn−1)]
and defined by

P I

n([y1 . . . yn−1x]) := P I

n([x]),

P II

n ([y1 . . . yn−1x]) := P II

n ([x]), x ∈ Y∗,

where the P I
n and P II

n on the right-hand sides are the predictions in the former.

Remark 7. Jeffrey traces the idea of radical probabilism back to Ramsey and
de Finetti. In Jeffrey (1992, p. 66), he says, “this is his radical probabilism—
Ramsey denies that our probable knowledge need be based on certainties”. And
in Jeffrey (1988, p. 2), he says, “De Finetti’s probabilism is ‘radical’ in the
sense of going all the way down to the roots: he sees probabilities as ultimate
forms of judgment which need not be based on deeper all-or-none knowledge.”
(Although there is some tension between this interpretation of de Finetti’s views
and de Finetti’s acceptance, at least in some cases, of Bayesian conditioning in
de Finetti 2017, Sect. 4.5.3.)

Remark 8. Jeffrey often uses “radical probabilism” in the sense of our “agnostic
probabilism”: “Radical probabilism doesn’t insist that probabilities be based
on certainties” (Jeffrey, 1992, p. 11). However, in other places he appears to
deny the existence of certain empirical evidence; e.g., in one of his earliest
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(1968) publications on radical probabilism he says, “Radical probabilism adds
[to “probabilism”] the “nonfoundational” thought that there is no bedrock of
certainty underlying our probabilistic judgments” (Jeffrey, 1992, pp. 44–45).

Example 9. Let us check that Theorem 4 does not hold under agnostic prob-
abilism (without any further conditions). Suppose P I

n = P I and P II
n = P II do

not depend on n. Then we have KI
n = KII

n = 1 for all n, and so we have no
convergence of opinion for successful forecasters even if P I and P II are very
different.

Theorem 10. Sceptic has a strategy in Protocol 6 that guarantees ∥P I
n − P II

n ∥ →
0 as n → ∞ whenever the following three conditions are satisfied:

� P I
n − P II

n → 0 weakly as n → ∞,

� KI
n ̸→ ∞ as n → ∞, and

� KII
n ̸→ ∞ as n → ∞.

Theorem 10 includes Theorem 4 as a special case. According to Example 9,
we need to impose some condition of agreement (which we want to make as
weak as possible) between the two forecasters before we can claim that they
agree in the strong sense of convergence in total variation. In Theorem 4 both
forecasters weakly agree with Reality (and therefore, between themselves): for
a fixed x, P I

n([x]) and P II
n ([x]) of Protocol 6 become equal (namely, both equal

to 0 or to 1) as soon as n exceeds the length of x. In Theorem 10 we require an
even weaker agreement between forecasters (and do not require any agreement
with Reality, who is not even a player).

In Sect. 2 we interpreted Jeffreys’s law in the form of Theorem 4 as estab-
lishing a connection between the correspondence and convergence theories of
truth. There is no absolute notion of truth under radical probabilism, and so
this interpretation is not applicable to Theorem 10. Theorem 10 merely pro-
vides a means of boosting agreement between successful forecasters: agreement
in the sense of weak convergence implies agreement in the sense of convergence
in total variation.

4 Proofs

In this section we will prove Theorems 4 (in Sect. 4.1) and 10 (in Sect. 4.2).

4.1 Proof of Theorem 4

For simplicity, in the proofs in this section we assume that P I
n([x]) > 0 and

P II
n ([x]) > 0 for all x ∈ Y∗ (“Cromwell’s rule”).
We will construct a strategy for Sceptic that guarantees the disjunction of

� ∥P I
n − P II

n ∥ → 0 as n → ∞,
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�

√
KI

nKII
n is unbounded as n → ∞.

This is sufficient since we can apply Proposition 11.2 in Shafer and Vovk (2019)
to turn an unbounded capital KI

n or KII
n into KI

n → ∞ or KII
n → ∞.

As a second step, let us replace ∥P I
n − P II

n ∥ → 0 by H(P I
n, P

II
n ) → 1, where

H is the Hellinger integral (Shiryaev, 2016, Definition 3.9.3):

H(P,Q) :=

∫
Y∞

√
dPdQ ∈ [0, 1].

This can be done because of the standard connection between total variation
distance and Hellinger integral (Shiryaev, 2016, Theorem 3.9.1):

2 (1−H(P,Q)) ≤ ∥P −Q∥ ≤
√
8 (1−H(P,Q)). (5)

We will also need an approximation to H(P,Q), given in the following
lemma, in terms of

Hm(P,Q) :=

∫
Ym

√
(dP |m)(dQ|m),

where P |m and Q|m stand for the restrictions of P and Q to the first m ob-
servations; in other words, P |m and Q|m are the probability measures on Ym

satisfying (P |m)(x) = P (x) and (Q|m)(x) = Q(x) for all x ∈ Ym.

Lemma 11. As m → ∞, Hm(P,Q) → H(P,Q).

Proof. Applying Doob’s martingale convergence theorem (Shiryaev, 2019, The-
orem 7.4.1) to (dP |m)/(dR|m) and (dQ|m)/(dR|m), where R := (P + Q)/2,
we obtain their R-almost sure convergence as m → ∞ to dP/dR and dQ/dR,
respectively (this step uses Carathéodory’s theorem, as in the proof of Shiryaev
2019, Theorem 7.6.1). Therefore,√

dP |m
dR|m

dQ|m
dR|m

→
√

dP

dR

dQ

dR

R-almost surely and, since all these fractions take values in [0, 2], in L1 w.r. to
R.

Fix temporarily an ϵ > 0 (we will later mix over a sequence of ϵ → 0). Given
ϵ, Sceptic can bet at the steps n = 1, 2, . . . as in Algorithm 1. The instructions
in Algorithm 1 should be read in parallel with the description below.

In our interpretation of Protocol 3 we assumed that at each step Sceptic
sells all tickets bought at the previous step and buys new tickets. For a given
x-ticket, an important special case is where the new amount of x-tickets is equal
to the old amount (and so we can assume that no trade in x-tickets takes place
at this step). In particular, Sceptic can buy an x-ticket at any step n and hold
it to maturity collecting 1{(yn,...,yn+m−1)=x} at step n+m, where m := |x|.
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Algorithm 1 Betting strategy for Sceptic for a fixed ϵ ∈ (0, 1)

1: for n = 1, 2 . . . :
2: Observe P I

n and P II
n on step n of Protocol 3

3: if H(P I
n, P

II
n ) < 1− ϵ:

4: Find m such that Hm(P I
n, P

II
n ) < 1− ϵ

5: Buy a collection of x-tickets, x ∈ Ym, from Forecaster I that

multiplies the current KI
n by

1

Hm(P I
n, P

II
n )

d
√

P I
n|mP II

n |m
dP I

n|m
6: Buy a collection of x-tickets, x ∈ Ym, from Forecaster II that

multiplies the current KII
n by

1

Hm(P I
n, P

II
n )

d
√
P I
n|mP II

n |m
dP II

n |m
7: Skip the next m steps

Line 5 of Algorithm 1 instructs Sceptic to buy a collection of x-tickets mul-
tiplying his current capital by

1

Hm(P I
n, P

II
n )

d
√
P I
n|mP II

n |m
dP I

n|m

=
1

Hm(P I
n, P

II
n )

√
P I
n([(yn, . . . , yn+m−1)])P II

n ([(yn, . . . , yn+m−1)])

P I
n([(yn, . . . , yn+m−1)])

. (6)

Let us check that it is indeed possible to turn an initial capital of 1 into (6). By
definition, Sceptic can buy from Forecaster I a ticket paying 1{x=(yn,...,yn+m−1)}
(i.e., the x-ticket) for P I

n(x), for any x ∈ Ym. Therefore, Sceptic can buy a
ticket paying √

P I
n([x])P

II
n ([x])

P I
n([x])

1{x=(yn,...,yn+m−1)}

for
√
P I
n([x])P

II
n ([x]), for any x ∈ Ym. Buying such a ticket for each x ∈ Ym

results in a payoff of√
P I
n([(yn, . . . , yn+m−1)])P II

n ([(yn, . . . , yn+m−1)])

P I
n([(yn, . . . , yn+m−1)])

for the price of ∑
x∈Ym

√
P I
n([x])P

II
n ([x]) = Hm(P I

n, P
II

n ).

Therefore, we can indeed turn 1 into (6).
A similar argument applies to Forecaster II (line 6 of Algorithm 1).
When the condition in line 3 is satisfied, the geometric mean

√
KI

nKII
n of

Sceptic’s capitals over the m steps in line 7 will be multiplied by 1/Hm(P I
n, P

II
n ),

i.e., by more than 1
1−ϵ . Therefore,

√
KI

nKII
n will be unbounded if the condition

in line 3 is satisfied infinitely often.
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Let KI
n(ϵ) and KII

n(ϵ) be the capital processes that result from using Algo-
rithm 1 with parameter ϵ in Protocol 3. Then

KI

n :=

∞∑
j=1

2−jKI

n(2
−j) and KII

n :=

∞∑
j=1

2−jKII

n(2
−j)

are also capital processes for a valid strategy for Sceptic, and
√
KI

nKII
n will be

unbounded unless H(P I
n, P

II
n ) → 1. This completes the proof.

Remark 12. The proof given in this section relies on the method of combin-
ing probability measures P I and P II known as “geometric pooling”; see, e.g.,
Pettigrew and Weisberg (2024) for a recent review.

4.2 Proof of Theorem 10

We follow the proof of Theorem 4 in Sect. 4.1 modifying it slightly. We still use
Algorithm 1, but now P I

n and P II
n have a different meaning: both of them are

predictions for the whole sequence of observations y1, y2, . . . rather than only
for the future observations yn, yn+1, . . . (there is no clear-cut division between
past and future under radical probabilism).

It will be convenient to say that in (4) in Protocol 6 Sceptic invests in the
x-tickets at step n−1, with his initial investment being P I

n−1([x]) and his payoff
being P I

n([x]) for each x-ticket. Since Sceptic can hold the same position f I
n(x)

over a number of steps, he can invest in the x-tickets at step n receiving a payoff
at step N > n, with the initial investment being P I

n([x]) and the final payoff
being P I

N ([x]).
Now we modify the argument leading to the possibility to increase Sceptic’s

capital (6)-fold (where (6) is the equation number). Sceptic can invest P I
n(x)

in the x-ticket at step n, and his payoff at step N > n will be P I

N (x), for any

x ∈ Ym. Therefore, Sceptic can invest
√
P I
n([x])P

II
n ([x]) for a payoff of√

P I
n([x])P

II
n ([x])

P I
n([x])

P I

N (x).

Investing in each x ∈ Ym results in a payoff of∑
x∈Ym

√
P I
n([x])P

II
n ([x])

P I
n([x])

P I

N (x)

for the initial investment of∑
x∈Ym

√
P I
n([x])P

II
n ([x]) = Hm(P I

n, P
II

n ).

Therefore, starting from step 5 of Algorithm 1 the capital KI
n can be multiplied

by
1

Hm(P I
n, P

II
n )

∑
x∈Ym

√
P I
n([x])P

II
n ([x])

P I
n([x])

P I

N ([x]) (7)

10



by step N (later we will make N large, definitely N > m), and starting from
step 6 the capital KII

n will be multiplied by

1

Hm(P I
n, P

II
n )

∑
x∈Ym

√
P I
n([x])P

II
n ([x])

P II
n ([x])

P II

N ([x]) (8)

by step N .
Using the weak convergence P I

N −P II

N → 0 and the uniform continuity of (7)
as function of P I

N |m and of (8) as function of P II

N |m, we can replace, asymptot-
ically, P I

N |m and P II

N |m by the same probability measure P on Ym, and so the
geometric mean of (7) and (8) can be bounded below, for a sufficiently large N ,
by the last term of the chain

1

Hm(P I
n, P

II
n )

√√√√( ∑
x∈Ym

√
P I
n([x])P

II
n ([x])

P I
n([x])

P ([x])

)( ∑
x∈Ym

√
P I
n([x])P

II
n ([x])

P II
n ([x])

P ([x])

)

≥ 1

Hm(P I
n, P

II
n )

∑
x∈Ym

√√
P I
n([x])P

II
n ([x])

P I
n([x])

√
P I
n([x])P

II
n ([x])

P II
n ([x])

P ([x])

=
1

Hm(P I
n, P

II
n )

>
1

1− ϵ
,

where the “≥” follows from the concavity of the geometric mean function
(u, v) ∈ [0,∞)2 7→

√
uv and Jensen’s inequality (Ferguson, 1967, Lemma 2.8.1).

Therefore, we can wait until the geometric mean of the capitals increases 1
1−ϵ -

fold. The proof is completed as before, by mixing over ϵ. Notice that in our
construction Sceptic’s capital cannot become negative.

5 Comparison with known results

In this section we will discuss two kinds of Jeffreys’s law: for predicting the
infinite future (Sect. 5.1) and for one-step-ahead prediction (Sect. 5.2).

5.1 Blackwell–Dubins result

The main topic of this subsection is limitations of Blackwell and Dubins’s clas-
sical result (1962, Sect. 2) and how they are overcome by this paper’s results.

From the purely mathematical point of view, one limitation of Blackwell and
Dubins’s result is that they consider two probability measures, Q and P (which
correspond to our Forecasters I and II) such that Q is absolutely continuous w.r.
to P , denoted Q ≪ P . This requirement means that Q(E) = 0 for any event E
such that P (E) = 0. Let us write P I and P II for Q and P , respectively.

We regard P I as a base forecasting strategy; the corresponding nth forecast
P I
n is the conditional probability of the future observations yn, yn+1, . . . given

the past observations y1, . . . , yn−1, with the observations y1, y2, . . . generated

11



from P I. Then P II is an alternative forecasting strategy producing, in a similar
manner, P II

1 , P
II
2 , . . . . The condition P I ≪ P II can be interpreted as P II being

at least as adaptive as P I. Blackwell and Dubins’s result says that P I
n and P II

n

converge in total variation with P I-probability 1 whenever P I agrees with P II, in
the sense of P II being at least as adaptive as P I. (This ignores technical issues
surrounding the existence of conditional distributions, which are less acute in
our current context of a finite observation space Y.)

What if the two forecasting strategies do not agree (we have neither P I ≪ P II

nor P II ≪ P I)? For example, suppose that they agree perfectly everywhere
apart from two events, EI and EII, for which

P I(EI) = P II(EII) = 10−6, P II(EI) = P I(EII) = 0.

For this case the Blackwell–Dubins result does not say anything. To prevent the
possibility of waiting until one or both events become settled, suppose further
that, for all n,

P I(EI | y1, . . . , yn), P II(EI | y1, . . . , yn),
P I(EII | y1, . . . , yn), P II(EII | y1, . . . , yn) ∈ (0, 1).

In our context, the condition of absolute continuity becomes not only re-
strictive but also less natural. Namely, in our framework, there are no a priori
connections between the probability forecasts P I

1, P
I
2, . . . and P II

1 , P
II
2 , . . . output

at different steps, and so it is possible to have P I
1 ≪ P II

1 followed by P I
2 ⊥ P II

2

(⊥ meaning mutual singularity) followed by P I
3 ≪ P II

3 , etc.
The condition of absolute continuity is very natural (or even unavoidable)

under the Bayesian interpretation of Blackwell and Dubins’s result (both Black-
well and Dubins were Bayesians (DeGroot, 1986, pp. 43–44 and p. 48)). Its
Bayesian interpretation is that Forecaster I believes that the forecasts issued by
the two forecasters will converge in total variation. Bayesian theory is based on
personal probability, and for a Bayesian interpretation it is essential to indicate
the person whose beliefs we are talking about. It is difficult to see who can be
such a person without the requirement of absolute continuity.

Our interpretation of Theorem 10 was in terms of boosting: weak conver-
gence can be boosted to convergence in total probability. Blackwell and Dubins’s
result can also be interpreted in these terms: agreement between two forecast-
ing strategies in the sense of P I ≪ P II can be boosted to convergence in total
variation P I-almost surely.

The game-theoretic version of Blackwell and Dubins’s result proved in Sect. 2
of this paper not only removes some of the unnecessary restrictions but is also
more constructive. We have an explicit strategy for Sceptic that discredits at
least one of the forecasters by successful betting against his forecasts unless
the predictions that the forecasters output converge in total variation. While
Blackwell and Dubins’s result under its Bayesian interpretation only concerns a
Bayesian’s beliefs, our result establishes connections with idealized reality.
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Figure 2: Two known special cases of Jeffreys’s law

5.2 One-step-ahead prediction

Figure 2 represents two known special cases of Jeffreys’s law. Blackwell and
Dubins’s result is an instance of one of them; more generally, Fig. 2 refers to the
Blackwell–Dubins law as an asymptotic qualitative statement about convergence
between forecasts for the infinite future (or, in the case of radical probabilism,
infinite past, present, and future). Theorem 4 and its generalization Theorem 10
are also results of this kind. Despite overcoming some limitations of Blackwell
and Dubins’s result, they are still asymptotic and qualitative.

A very different approach to Jeffreys’s law was pioneered by Kakutani (1948),
with a crucial step made by Kabanov et al. (1977). Their results also show
that, provided P I ≪ P II, the one-step-ahead predictions computed from P I and
P II converge, but the nature of these results very different. Their important
advantage is that they are quantitative (albeit with interesting qualitative im-
plications); the price to pay, however, is that they only cover one-step ahead
prediction.

The results by Kakutani (1948) and Kabanov et al. (1977) are measure-
theoretic and have similar disadvantages to those of the Blackwell–Dubins result
discussed in Sect. 5.1, but these disadvantages were eliminated in the game-
theoretic versions described in Shafer and Vovk (2019, Sect. 10.7) (and developed
in the references given in Shafer and Vovk 2019, Sect. 10.9). One such result is
that in Protocol 3 Sceptic can ensure

lnKI

n + lnKII

n ≥ 1

4

n∑
i=1

∥(P I

i |1)− (P II

i |1)∥
2

(9)

for all n, where P I
i |1 and P II

i |1 are the restrictions of P I
i and P II

i , respectively, to
Y, as defined earlier (i.e., they are the one-step-ahead restrictions). (To obtain
(9), combine Proposition 10.17 in Shafer and Vovk (2019) with the standard
bound for Hellinger distance, which is essentially the right-hand side of (5)
(Shiryaev, 2016, Theorem 3.9.1, (23)).)

It is clear that (9) implies Theorem 4 with P I
n and P II

n replaced by P I
n|1 and

P II
n |1, respectively. However, (9) is an explicit lower bound rather than merely

an asymptotic result. Figure 2 refers to the class of such quantitative one-step-
ahead results as Kakutani’s law. The ellipsis represents new special cases of
Jeffreys’s law, those yet to be discovered.
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6 Conclusion

A big disadvantage of Theorems 4 and 10, inherited from their measure-theoretic
prototype (Blackwell and Dubins, 1962), is that they are merely asymptotic; it
is not obvious how to make them quantitative. The versions given in Shafer
and Vovk (2019, Sect. 10.7) are much more precise, but they cover only one-
step-ahead forecasting. Bridging the gap between these two very different kinds
of results (depicted in Fig. 2) looks to me an interesting direction of further
research.

Other possible directions of further research are:

� Generalizing our testing protocols and results to the case of an infinite
observation space Y.

� Are there situations where a wider set of permitted moves for Sceptic
would be useful? In Protocols 1–3 and 6 we considered Sceptic’s moves f
such that f(x) = 0 apart from finitely many x. More generally, we could
permit f such that f(x) ̸= 0 for arbitrarily long x, but this would require
careful analysis of convergence of the resulting infinite series in expressions
for Sceptic’s capital.
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