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Abstract

This note sketches a syllabus for an introductory course in statistics built around
the notion of testing by betting. This sketch is prefaced by an explanation of
the author’s personal attitudes towards betting and his personal opinions about
betting’s role in our culture.
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The language of betting provides a good way of communicating the results of
statistical tests. So I claimed in [19]. Some of the paper’s discussants questioned
the claim. Can we really teach testing by betting? Is it easier to teach than
p-values?

As Judith ter Schure has emphasized, these questions can only be answered
experimentally [22]. To see whether we can teach testing by betting, we need
to give it a try. In this note, I try to think through how to teach testing by
betting to students who may not have already studied p-values or concepts in
mathematical statistics.

For clarity, I begin by explaining my personal attitudes towards betting
and my personal opinions about its role in our culture. Then I sketch a possible
syllabus for a semester-long introductory course in statistics built around testing
by betting. I hope to teach such a course at Rutgers, and I welcome advice on
how to do so.

1 Cards on the table

I have been writing and talking about betting and probability for forty years,
discussing mathematical, philosophical, and historical aspects of the relation
between the two. Often, however, my listeners brush the broad picture aside
and raise more personal points: their feelings about the moral and cultural
aspects of betting and their intuitions about probability.

This experience has convinced me that it is futile to ignore these moral and
cultural issues. So I begin by putting my own cards on the table, explaining my
own feelings and intuitions and how they have informed my work.

1.1 Opposition to gambling

For whatever reason, I have never been attracted to gambling. But I know
that it can become dangerously attractive to many people, and I have always
opposed its expansion. In 1974, I voted against legalizing casino gambling in
New Jersey. (This proposal failed.) In 1986, I voted against the establishment
of a state lottery in Kansas. (This proposal passed.) Most recently, in 2021, I
voted against allowing betting on college sports in New Jersey. (This proposal
failed.)

I have also never personally ventured into the stock market. As an academic
in the United States, I have been fortunate enough to have a well managed
pension fund (TIAA-CREF). Other savings have gone into savings accounts, a
passive mutual fund (Vanguard), and real estate where I have lived.

1.2 The metaphor of betting in our culture

Growing up, I did not have any experience with gambling. But expressions
such as “I bet that . . . ”, “I will bet you a hundred to one”, and “Put your
money where your mouth is” were a common and even prominent part of the
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language I learned. I suspect that my experience is not unusual. I suspect that
talk about betting has long been one way of expressing belief and confidence for
most people in the United States and most other countries.

It is implicit in this sort of talk that success in betting is evidence that the
winner is more knowledgeable about the topic of the bets or more clever in
using what they know. They are the better forecaster. I want to be careful
and tentative here, because systematic observation of actual bets and of the
success and failure of particular bettors is surely less widespread in our culture
than bold talk about betting. I do not contend that most people have extensive
intuitions about the meaning and pitfalls of betting success. I do contend they
can develop such intuitions more easily than they can develop intuitions about
the meaning and pitfalls of p-values.1

1.3 The fallacy of untutored intuition

In his most famous book, The General Theory of Employment, Interest and
Money, John Maynard Keynes wrote,

Practical men, who believe themselves to be quite exempt from
any intellectual influence, are usually the slaves of some defunct
economist. [13, p. 383]

I think I once read some similarly scathing comment by some similarly re-
knowned author concerning intuition. I cannot remember who it was, so I must
speak for myself. I feel that when philosophers (including philosophical statisti-
cians) talk about their intuition, they are talking about some theory they have
learned or absorbed, from family, friends, teachers, or books.

This feeling weighs on me whenever someone speaks of intuition about nu-
merical probability as if it were something untutored. Numerical probability is a
theoretical invention. Long before the time of Blaise Pascal and Jacob Bernoulli,
European intellectuals talked about the probabilities for and against something,
but these probabilities were not numbers, and they usually had nothing to do
with betting or Pascal’s logic of betting.

1.4 Opposition to always assessing evidence in terms of
betting odds

My first scholarly publications developed a calculus for combining evidence that
used numerical “degrees of belief” (or “evidential support”) that did not obey
the standard rules of mathematical probability [15]. This calculus came to be
called the Dempster-Shafer theory. Many Bayesian critics called it incoherent
or irrational, arguing that its degrees of belief would lose money when used as
betting rates.

These Bayesian objections partly motivated my mathematical and historical
study of the relation between betting and probability. This study has convinced

1This point has been argued by Judith ter Schure in her doctoral thesis [22, pp. 13–14].
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me that betting games are indeed the historical origin and the only complete
justification for the definitions and axioms of standard mathematical probability.
But I contend that both Bayesian and non-Bayesian claims for the generality of
the standard calculus are flawed for precisely this reason. Not all evidence can
be well described or summarized with betting ideas. Sometimes we should not
even try to evaluate the strength of given evidence numerically, and sometimes
it is useful to make numerical evaluations that do not follow the logic of betting.

1.5 Concerns about morality and frivolity

These are genuine concerns. To address them, we can make these points:

1. Standard mathematical probability was invented as a theory of betting.

2. The role of betting is a secret to no one. Speakers of English understand
“odds two to one that . . . ” as a reference to betting and a statement
of numerical probability. Especially today, when gambling is so available
online, we need to teach about its dangers rather than averting our gaze.

3. Attempts to give the standard calculus’s numerical probabilities a meaning
other than betting odds have never been fully satisfactory. We can see this
already in Jacob Bernoulli’s Ars conjectandi (1713), where he generalizes
Huygens’s theory of chance in games by discerning “equal possibility” in
ways other events in life can happen [3, pp. 326–327]. Since the advent of
civilization, no doubt, gamblers have thought to generalize their prowess
with dice to life’s other business, but Bernoulli was the first to attach the
word “probability” (probabilitas in Latin, probabilité in French) to betting
mathematics.

4. The interpretation of probabilities as frequencies is misleading, because
it makes the independent identically distributed case seem fundamental
even though, as Laplace said, it never happens in nature.

5. The frequency interpretation is also mathematically inadequate. As
George Barnard asserted [1, p. 263], “Ville showed that any attempt to
define randomness along the lines of von Mises-Wald-Church would run
against the difficulty, for example, that it was not excluded that the lim-
iting frequency should be approached from above only.”

6. To test probabilities, we can bet with pennies or tiny fractions of a penny
or, equivalently, just pretend to bet. The size of the bet is irrelevant to
the evidential meaning of its success, which depends on how much you
multiply the money you risk.

A full understanding of the dangers of gambling will include an understand-
ing of the danger of martingaling [7, 8, 20]. Teaching about martingaling is also
an important step in teaching game-theoretic testing, because it clarifies what
is meant by “the money you risk”.
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1.6 What our culture knows about betting success

When two people have different opinions, it is natural to make an even-money
bet. This does not mean that anyone thinks the probability is 50–50. Yet it is
a fair bet in an obvious sense.

Our culture also has the concept of offering odds to express one’s strong
opinion. No one will argue, I think, with these ideas:

1. Consistently winning at odds Jane offers is evidence of greater knowledge
or insight than Jane.

2. If someone with more knowledge and insight than Jane consistently fails to
win betting against Jane’s betting offers, then her probabilities are pretty
good, and the opponent’s greater knowledge and insight are not really
relevant to the prediction problem.

Beyond this, however, our culture does not offer a fully developed and widely
understood concept of testing by betting that fits the standard probability cal-
culus. We need to develop this concept, and then we need to teach it.

1.7 Teaching Bernoulli and Bayes

While teaching testing by betting, how much attention should we give to estab-
lished Bernoullian and Bayesian ideas: p-values, likelihood-ratio tests, power,
the likelihood principle, priors and posteriors, etc.?

A fair test of testing by betting must, I think, leave competing foundations
for statistics to fend for themselves. Twenty-five years ago, Steffen Lauritzen
taught me that even when different ways of organizing a mathematical topic
are simple on their own terms, relating them to each other is likely to be very
complicated.

The topic of p-values is already a muddle, and relating p-values to betting
scores only muddies the muddle further. In [19], I argued that the notion of
implied target is more useful and coherent than the notion of power, but this
argument should not take center stage in a first course in statistics built around
testing by betting. In my experience, most people who have already studied and
even used statistics do not remember the word “power” and cannot reproduce
the definition of “Type II error”. Teaching or reteaching these topics would take
us too far afield.

Likelihood ratios, confidence intervals, and the averaging of probability dis-
tributions are native concepts in game-theoretic statistics. When we encounter
them, we must mention that they also have roles in Bernoullian and Bayesian
statistics. But detailing those roles will not be our task.

A course that does not teach established concepts and techniques will not
prepare students to use those concepts and techniques. The experimental course
I am asking us to think about addresses a different purpose and perhaps a
different audience. Perhaps it should be an honors course or elective for students
more interested in learning something new than in learning methods already
widely used.
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2 Syllabus for an introduction to game-theoretic
statistics

This is a very preliminary syllabus. I seek advice on how to improve it and on
resources for teaching each of its lessons.

If I teach a course along these lines at Rutgers. I expect that my greatest
difficulty will be in providing computational resources.

2.1 Multiplying the capital you risk

Begin with betting against a single probability (perhaps a probability for rain
tomorrow). Then betting against a point prediction (perhaps a prediction of
tomorrow’s earnings announcement or of the point spread in tomorrow’s bas-
ketball game). Then betting against a probability distribution by selecting a
variable and buying it at its expected value with respect the distribution. Dis-
tinguish between bet and betting score (how much you multiply your money).
The bet is a function of the outcome to be observed; the betting score is its
realized value.

Multiplying the capital you risk is evidence against the forecaster who ad-
vanced the probability, point prediction, or probability distribution. But this
evidence needs to be weighed, usually informally, with other evidence, positive
or negative. Everyone knows that you might just have been lucky; on this point
our culture is already sophisticated enough.

Explain that the factor by which you multiply your capital is invariant to
the amount bet. So the amount bet does not matter; it can be so small that
the outcome of the bet does not matter to anyone monetarily. Or the betting
can just be imagined. But the bet must still be declared in advance, just like a
real bet.

You will seldom be able to multiply the capital you risk a lot with a single
bet. But you might use the total capital resulting from your bet to make another
bet against the same forecaster. Repeating this many times, you may obtain a
large betting score.

Give examples with data.

2.2 Kelly and Neyman-Pearson betting

Explain these two ways of selecting a bet if you have your own probabilities
for the outcome being predicted. Discuss half-Kelley and and half-Neyman-
Pearson as well. Kelley can be used when the forecaster does not offer an entire
probability distribution. Neyman-Pearson is less flexible.

If the forecaster offers an entire probability distribution, then your choice
of a bet defines an alternative for which the bet is the Kelly bet. The betting
score is a likelihood ratio.

How might you choose a bet if you do not have an entire probability distri-
bution for the outcome yourself?
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1. You might have some beliefs of your own that fall short of a probability
distribution but still give you some hints.

2. You might want to test some feature of the forecast without necessarily
having different opinions of your own. You might question, for example,
the level of confidence of a forecaster who gives a probability close to zero
or one. More generally, you might question the precision of a probability
distribution for a numerical outcome. When the forecast is a joint proba-
bility distribution for several numerical outcomes, there are many aspects
that you might question, such as a high probability for the outcomes to
be close or far apart. Etc. If you want to bet against a particular feature
of a probability distribution P , say its precision, then you might make a
Kelly bet based on an alternative Q that resembles P but is more diffuse.
In this case, Q does not represent probabilities of your own.

3. You may simply choose a bet wildly, blindly. In this case, success in
multiplying your capital may be less convincing as evidence against the
forecaster, because your success is so clearly a matter of luck.

The interpretation of success in testing by betting depends on what the per-
son doing the testing is trying to accomplish. Is she championing probabilities
of her own? Is she checking some particular possible defect of the forecaster’s
probability or probabilities — that the probability is too far from one-half or
that the probabilities are too spread out? Or is she just looking randomly for
weak spots?

This is an inescapable feature of statistical testing. Without full and honest
disclosure by the person doing the testing, others cannot reliably interpret their
results.

2.3 Testing probabilities of rain for successive days

Each time you use the capital from the previous bet, never risking more than
you have. More precisely, you begin by putting on the table the most your first
bet risks. After each bet, you add your gain from that bet, positive or negative.
Otherwise, you never put more money on the table, and you never make a bet
that risks more than what you have on the table.

The fundamental principle at work here is that you can discredit a forecaster
and his probabilities by multiplying your capital by a large factor betting against
them. This principle requires that you make the bet against each forecast as
soon as the forecaster announces it. But it permits much other flexibility. You
may have more information that than the forecaster. Some of the information
you use to decide on your tenth bet may arrive after the earlier bets are made
and settled. You do not need to specify a whole strategy for betting at the
outset, and you do not even need to anticipate what sort of information you
might receive. You can decide to stop betting whenever you want (optional
stopping). You can decide to continue longer than you might have initially
intended (optional continuation).
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This fundamental principle is constitutive. It is not derived from some other
interpretation of mathematical probability. The very meaning of probabilities
in the theory we are teaching is that they will resist testing by betting that
follows this fundamental principle.

How strong is the evidence if we multiply our money by two? By five? By
ten? Here we need some conventions, informed by experience.

Give artificial numerical examples of successive bets on rain in which the
betting score reaches and does not reach a conventional level such as two, five,
or ten. Use these to argue for an interpretation of these levels of evidence.

Give similar examples of bets against a financial analyst who predicts earn-
ings announcements.

2.4 The insidious temptation of martingaling

When you run low on capital with successive bets, why not raise more capital
(put more money on the table)? Then, at the end when you calculate how
much you have multiplied your money, you would use the total capital raised
as the denominator. Explain why this does not work, using as examples the
classic casino martingale (double your bet until you win) and the d’Alembert.
See [7, 8]. Discuss the properties of Borel’s martingale [4, 5].

Assignment: select a betting martingale from [9] and find its martingale
index.

2.5 Making probability predictions

Discuss different methods at a high level:

1. The physical models used to make weather predictions.

2. Neural networks.

3. Statistical modeling, particularly time-series methods.

4. Defensive forecasting.

5. Averaging predictions: Bayes, betting with expert advice.

Discuss how testing enters into the implementation of each prediction
method.

2.6 Testing successive forecasts for a single outcome

We have apps that give a probability for rain tomorrow at 7 am and may change
that probability hourly in the course of the day. A rival weather forecaster, say
Jane, who thinks she has better probabilities can bet against these changing
forecasts just as a trader might bet against the market’s changing prices for a
stock in the course of a day. Jane buys when she thinks the price is going to
go up in the next hour (or minute or millisecond), sells when she thinks it is
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going to go down. There is a final settlement when everyone sees whether it has
rained or not. If Jane avoids martingaling and yet multiplies her initial capital
by a substantial factor betting in this way, she has reason to brag that she is a
better forecaster than the app.

If a forecaster says 50–50 and sticks with it until the end, Jane will not be
able to make money from him until the final settlement. Refusing to change
your forecast may make sense in the case of a closely matched ball game or
an election with a polarized electorate, at least if forecasting stops as soon as
the game begins or the polls open. But when we are predicting rain at 7 am
tomorrow, or a champion who will emerge by winning the most games in a series,
or a party’s nominee for president of the United States who will emerge from a
series of primary elections, the forecaster who does not change his probabilities
as the outcome comes into view may be vulnerable long before the settlement.

Twenty years ago, the example of changing probabilities might have been
seemed both artificial and too complicated for elementary instruction. But
today changing probabilities for rain are the most ubiquitous probabilities in
many people’s lives.

2.7 Testing multiple forecasts of the same outcome

Here begins our consideration of the pitfalls of multiple testing. But the first
point to make is the one I made already about testing a single forecaster: proper
interpretation of your results depends on what you were trying to accomplish.
Reliable understanding by others depends on full and honest disclosure of what
you were trying to accomplish.

At one extreme, you have your own probability distribution and use Kelly
or half-Kelly or some Kelly cousin your bet against all the forecasters. If you
defeat them all, you have some evidence that you are a better forecaster than
any of them. If you defeat most of them, you have some evidence that you are
among the better forecasters.

At the other extreme, you look for possible (not necessarily likely) weak
points in each of the forecasts and bet against them. One forecaster seems to
confident, another may be spreading out her probabilities too much. Perhaps
you try to arbitrage between a forecaster who gives some event a high probabil-
ity and another who gives it a low probability. In this case we might say that
you are on a fishing expedition, and you should charge the cost of the entire
expedition against what you catch. You are testing only the hypothesis that at
least one of the forecasters is a bad forecaster.2 Rather than assessing your suc-
cess against each forecaster separately, by the factor you multiplied the money
you bet against that forecaster, you should assess only your overall success, by
the factor by which you multiplied all the capital you invested betting against
them.

A Bayesian critic may be tempted to justify the distinction between these
two extremes with a just-so story about prior probabilities. But such prior

2Can two forecasters who give different forecasters both be good forecasters? Perhaps so
in the medium run. Perhaps not in the longer run [21, §10.7].
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probabilities have no place in this game-theoretic picture, precisely because they
cannot be specified in advance and bet against. Instead, we should consider our
different treatments of the two extremes as a matter of first principles.

Statisticians are familiar, of course, with the problem of betting against
many forecasters of the same outcome; they call it the problem of testing the
goodness-of-fit of a statistical model. Statistical models are usually described as
consisting of infinitely many probability distributions. Even if we reduced this
to a finite number, could we hope to accomplish much by finding different ways
to bet against each one and looking at the ratio by which we multiply our total
capital? There seems to be an argument here for finding a single alternative
that guides our bet against each one.

2.8 The game-theoretic notion of objective probability

What does it mean for a probability or a probability distribution to be ob-
jectively correct? It means that we are predicting that the distribution will
withstand any reasonable testing by betting. An objective probability distribu-
tion is usually unknown or only partially known. The goal of statistical inference
is to learn more about it.

The concept of probability, especially when it is based on betting, is sub-
jective in important respects. There must be a subject, or at least we must
imagine a subject, who announces the probabilities and another who challenges
them by betting. Their objectivity resides in the inability of the challenger to
defeat them and is therefore relative to the information the challenger has and
acquires in the course of the betting.

Both the objective probabilities and the information with respect to which
they are objective are usually unknown. We can think of the two together
as a limit toward which a statistical investigation progresses. This unknown
limit is not a single unknown probability distribution relative to an unknown
set of information but rather an unknown probability tree — i.e., an unknown
stochastic process relative to an unknown filtration (event tree) [16].

This probability tree represents the information and opinions of a real in-
dividual nor those of an all-knowing god. Rather, they belong to an imagined
being between God and man: a demigod. This picture of objective probabilities
as the probabilities of a demigod goes back to Cournot, who called the demigod
merely a “superior intelligence” [6, §45].3

Discuss role of probabilities that are not close to zero or one.
Discuss the use of causal language when discussing objective probabilities.

2.9 Interval estimation of objective probabilities

Before trying to estimate objective probabilities, statisticians usually adopt a
statistical model — a class of probability distributions, say (Pθ)θ∈Θ, for an
outcome or sequence of outcomes. Adopting the model means assuming that

3Some relevant passages are translated from the French in [17].
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one of these probability distributions is objectively correct, at least with respect
to the information available to us.

Given this assumption, we can obtain an interval estimate for θ by betting
against all the probability distributions in the model. The estimate at level 1/α
consists of those θ for which we do not multiply our capital by 1/α.

How do we choose the bets? The assumption that one of the distributions
is objectively correct seems relevant here; under this assumption it seems that
our bet against each Pθ should be guided by the other Pθ′ . Suggestions that
have been put forward include using a maximum likelihood value θ′ from a
different sample [24] and averaging bets recommended by somewhat similar Pθ′

[12]. These methods can be adapted to a sequential setting, where the interval
(and usually shrinks) is updated as additional observations are made.

Another method, not adapted to sequential updating, would be to test each θ
using nearby θ′. If we are interested in a Gaussian mean, for example, we might
use an average of Kelly bets with θ ± δ for some δ of practical significance.
This seems especially reasonable if we consider our Gaussian model somewhat
conventional rather than exact or nearly so.

Do we have a problem of multiple testing here? By the argument of Lesson
2.7, there is no problem if our bets for testing all the θ are based on a single
probability distribution. But if we vary our challenge, testing one θ from the
viewpoint of one alternative and another θ from the viewpoint of some other
alternative, then we might reasonably be accused of being on a fishing expedi-
tion.

But because we are assuming that there is a correct objective θ, we can avoid
the real or perceived problem of multiple testing in a way spelled out in [21,
§10.3] and [19, §4.2]:

� We imagine that the statistician does not do the testing himself but in-
structs another player, Skeptic, how to test each θ in the model.

� Some demigod tells Skeptic which θ is correct.

� Skeptic tests only this θ following the statistician’s instructions.

The statistician does not see Reality’s announcement of the correct θ or Skeptic’s
bets in response; she sees only the observations. But from this she can calculate
how the capital would have been multiplied for each θ, and this allows her to
calculate the estimation interval.

Should we call the estimation interval a “confidence interval”? By Markov’s
inequality, it is a confidence interval according to Jerzy Neyman’s definition of
the name [14]. On the other hand, we know that the name can be misleading.
In [19], I proposed the alternative name “1/α warranty interval”, which has the
virtue that it demands explanation. The explanation is that if Skeptic gives the
statistician the money at the end of time, the statistician has a warranty that
her account has been credited with at least 1/α− 1 if the objectively correct θ
is not in the interval. This gloss gives a legitimacy to nested warranty intervals
that is not available for nested confidence intervals in Neyman’s theory.
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2.10 Sampling

Using number theory, mathematicians create experiments that produce num-
bers with specified objective probabilities. If these numbers are associated with
members of a population, this becomes sampling from the population, which
leads to warranty intervals for average properties of the population.

2.11 Randomized experimentation

Mention pioneering clinical trials where “choosing every second man” was
thought to be sufficient randomization.

2.12 Limiting false discoveries

Report on [23].

2.13 Descriptive probability

Suppose we do not really believe the assumption that one of the Pθ in our
model is objectively correct. Suppose the model is merely a convenient way of
describing our data — a way of reducing the data, as R. A. Fisher put it in 1922
[10]. Perhaps the model cannot be taken seriously because it describes the data
as a random sample, whereas we know it is a convenience sample or an entire
population.

Conventional confidence intervals are awkward when we do not believe the
model. We are proclaiming confidence in something we do not believe. Betting
by testing still makes sense, however, because we can ask which of the Pθ best
predicts (i.e., describes) the data. Because the Pθ are in competition with each
other, we can have them bet against each other, by Kelly, half-Kelly, or some
other Kelly cousin. In [18], I emphasize that when we use Kelly betting we
obtain the likelihood intervals that Fisher advocated in 1956 [11].

2.14 Testing multiple forecasters who forecast different
outcomes

Here we arrive at the center of the multiple testing problem, already described
by Cournot in 1843 [6, §111]. Perhaps you are studying different aspects of the
same individuals, perhaps you are performing related experiments, continuing
in either case until you obtained a “significant” result. Does testing by betting
have anything new to say here?

Averaging betting scores is unlikely to give you the significant results you
want, and even this is illegitimate except in the unlikely case where you have
planned the sequence of experiments or tests in advance. Otherwise you are
martingaling.

Often, it may make the most sense to fall back on Lesson 2.13, testing by bet-
ting as descriptive probability. If you have analyzed the entire population, then
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perhaps you can only leave the matter there. If you can do another experiment
or use another body of individuals to replicate your study, then your descriptive
analysis can be thought of as an exploratory analysis, with the replication in
the confirmatory role.
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