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Abstract
Game-theoretic probability reproduces the usual theory of discrete-time prob-
ability without using any concept of randomness. Probabilities are understood
as forecasts, and the assumption of independence is replaced by the assumption
that the forecaster always makes the same forecast or uses the same forecasting
rule.

A probability distribution for outcomes can serve as a forecasting rule, but
it can also serve as a strategy for testing a probability forecaster by betting. As
explained in [64], this involves interpreting the likelihood ratio as the payoff of
a gamble. We assert objective validity for a statistical model consisting of many
distributions, by claiming that it will withstand testing by betting.

As explained in this paper, game-theoretic probability also allows us to use a
statistical model in a purely descriptive way, without claiming objective validity.
In this case, estimated parameters merely tell us which distributions in the
model best describe the data, and the place of confidence intervals is taken
by ranges of parameter values that forecast relatively well. In the simplest
implementation, these ranges coincide with R. A. Fisher’s likelihood intervals.
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1 Introduction

In many branches of science, researchers routinely use significance tests and
other methods of statistical inference without believing the assumptions on
which they are based. As the prominent sociologist William H. Starbuck wrote
in 2016 [66, p. 171],

. . . the practice of making unjustified assumptions about random-
ness is so prevalent that most researchers see this as conventional
behavior . . .

What goals lead researchers to use inferential methods in this way? Are there
better ways to achieve these goals?

Some critics argue that when our study population is not a random sample
from some larger population or data-generating mechanism, our only reasonable
goal is description. Estimated parameters, such as regression coefficients are
legitimate elements of a description, they advise, but we should dispense with
significance tests and confidence intervals.1 Researchers often resist this advice,
because the techniques of statistical inference seem to help us describe data.
Statistically significant differences are salient on the data landscape; perhaps
we can consider differences that do not reach this threshold details. Confidence
intervals for parameter values indicate, it seems, how much the description can
be varied without much loss in validity.

Here we have a muddle. We are using a language and a mathematical tech-
nology that is concerned with uncertainty about unseen truths to gauge the
relative validity of descriptions. This is confused and confusing.

The thesis of this paper is that we can better support the descriptive use of
statistical models by interpreting them as collections of forecasting algorithms
rather than as a hypotheses about the unseen.

Consider a study population in which we measure a variable Y and variables
X1, . . . , XK . Suppose we want to describe this population with a family of
algorithms (Pθ)θ∈Θ, where each algorithm Pθ uses the Xk to give probabilities
for Y . A reasonable first step is to evaluate and rank the Pθ according to the
success of their forecasts within the study population. Then we can consider a
smaller family, say (Pθ)θ∈ΘGood

, where ΘGood consists of those θ whose forecasts
performed well. The range of forecasts made by this smaller family provides one
description of the study population. For some aspects of Y and some values of
the Xk, the range of forecasts may be tight enough to be interesting.

Like any method of description, this one requires relatively arbitrary choices
and conventions. First we must choose Y (the target variable) and the Xk (the
forecasting variables). Inferential statistical theory has accustomed us to think
of these choices as causal modeling, but this can be pretentious and misleading.
When description is our goal, Y and theXk are simply what we want to describe.
For whatever reason, we want to know how they vary together in the study
population.

1Among a multitude of examples, we may cite [4, pp. 206–217] and [?].
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We always want to limit the complexity of the family (Pθ)θ∈Θ. In inferential
statistics, simplicity is said to be a virtue of a model because complex models
are likely to overfit — i.e., not to generalize to other study populations. When
are goal is description rather than inference, either because we are uninterested
in other populations or because we cannot make assumptions that would jus-
tify inference, a more immediate virtue of simplicity is salient. Description is
description only when it is simple enough to be understood.

What family of algorithms (Pθ)θ∈Θ do we use? What tests do we use to
evaluate the performance of each Pθ? What counts as performing well? Here
the answers may be more conventional. Developing conventions for description
is an appropriate task for theoretical statistics, and some existing statistical
methods can be seen as contributions to this task.

This paper uses the method of testing probability forecasts called game-
theoretic in [64, 65]. Here probability distributions play a dual role. On the
one hand, a probability distribution is a forecast. On the other hand, it gives
guidance for betting against such forecasts. When this guidance is implemented
using Kelly betting, the outcome of the bet is a likelihood ratio. This suggests
a way of evaluating the relative performance of the Pθ: have them against each
other and rank them by the resulting likelihood ratios.

The next section, §2, gives two examples to illustrate the need for descriptive
probability. Then §3 develops theory of descriptive probability, §4 discusses how
we can overcome the entrenched interpretation of probability as frequency and
belief, and §5 summarizes the argument.

2 Two examples

Here are two very simple examples where the study population is not a random
sample. In the first it is a convenience sample; in the second an entire popula-
tion. In both examples, ostensibly inferential error probabilities awkwardly and
inadequately fill a descriptive role. The theory of this paper will be applied to
these examples in §3.

2.1 Example 1, Fourier’s masculine generation

Let’s begin at the beginning. The calculation of error probabilities from statis-
tical data was first made possible by Laplace’s central limit theorem, and the
calculation was first explained to statisticians by Joseph Fourier (1768–1830).

Fourier had been an impassioned participant in the French revolution and
an administrator under Napoleon. After the royalists regained power, a former
student rescued him from impoverishment with an appointment to the Paris
statistics bureau [56]. This assignment left him time to perfect the theory of
heat diffusion for which he is best known, but as part of his work at the statistics
bureau, he published two marvelously clear essays on the use of probability
in statistics, in 1826 and 1829 [32, 33]. As Bernard Bru, Marie-France Bru,
and Olivier Bienaymé have noted, these were apparently the only works on
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mathematical probability read by statisticians in the early 19th century [12,
p. 198].

To illustrate Laplace’s asymptotic theory, Fourier studied data on births and
marriages gleaned from 18th-century parish and governmental records in Paris.
He was particularly interested in the length of a masculine generation — the
average time, for fathers of sons, from the father’s birth to the birth of his first
son. On the basis of 505 cases, he estimated this average time to be 33.31 years.
In Table 64 of the bureau’s report for 1829 [33, pp. 143 ff], he gave bounds, in
months, on the estimate’s error for five different probabilities:

1/2 1/20 1/200 1/2000 1/20000
±2.7528 ±7.9932 ±11.4516 ±14.2044 ±16.5480

In modern terminology, the second bound can be read as a 95% confidence
interval of 33.31 years ±7.9932 months.

For Laplace’s theory to be valid, the 505 cases must be mutually independent.
Were the 505 fathers of sons a random sample from all 18th-century fathers of
sons in Paris. Surely not. It was what the bureau could find — what has
sometimes been called a convenience sample. So what meaning can be given to
the error probabilities?

We need a different theory.

2.2 Example 2, a fictional survey of perceptions

Some organizations in the United States have recently surveyed their employees
about perceptions of discrimination. To avoid the complexities involved in real
examples, consider the following fictional example.

An organization wants to know whether its employees of different genders
and racial identities differ systematically in their perception of discrimination.
Most of the employees respond to a survey asking whether they have suffered
discrimination because of their gender or race. The employees saying yes are
distributed as shown in Table 2.2.

According to the usual test for the difference between two proportions, the
difference between the rows (male vs female) and the difference between the
columns (BIPOC vs White) are both statistically significant at the 5% level. But
the 20 percentage-point difference between BIPOC males and BIPOC females
is not, as its standard error is√

1

3

2

3

(
1

20
+

1

10

)
≈ 0.18 = 18 percentage points.

These simple significance tests seem informative. The differences declared sta-
tistically significant seem general enough to be considered features of the or-
ganization, while the difference declared not statistically significant, because
it might be attributed to the idiosyncrasies of two or three people, seems less
general.

3



Table 1: Numbers and proportions of positive responses, in a fictional study
of the employees of a fictional organization, to the question whether one has
experienced discrimination in the organization as the result of one’s identity.
Here BIPOC means Black, indigenous, and people of color.

Female Male Totals

BIPOC
8

10
= 80%

12

20
= 60%

20

30
≈ 67%

White
20

50
= 40%

20

120
≈ 17%

40

170
≈ 24%

Totals
28

60
≈ 47%

32

140
≈ 23%

60

200
= 30%

Yet the theory of significance testing does not fit the occasion. Have the
individuals in the study (or their responses to the survey) been chosen at random
from some larger population? Certainly not. For anyone who has been inside an
organization long enough to see its employees come and go, seeing or guessing
the reasons, the idea that they constitute a random sample is phantasmagoria.
Nor can we agree that their responses are independent with respect to some
data-generating mechanism. Many of them see the same media and talk with
each other.

If we took the theory seriously, we would also worry about multiple testing.
The 5% error rate we claim for our tests is valid under the theory’s assumptions
only when we make just a single comparison. We have made three comparisons
and might make more.

The theory’s assumptions are not met, and we have abused the theory. But
perhaps these are minor objections. The theory is irrelevant from the outset,
because its goals are irrelevant. The organization did not undertake the survey
in order to make inferences about a larger or a different population or about
some data-generating mechanism. The organization wanted only to know about
itself. It wanted to know how its employees’ perceptions vary with gender and
race. Again, we need a different theory. We need a descriptive theory.

2.3 R. A. Fisher’s descriptive theory

Statistics began as description. Eighteenth-century statistics was description
without probability, and nineteenth-century statistics was description with very
little probability. Even twentieth-century statistics began with description. Karl
Pearson’s early work, with its emphasis on frequency curves, was unabashedly
descriptive.

To his credit, R. A. Fisher tried to reconcile his small-sample theory of
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statistical modeling with the descriptive tradition. In the pathbreaking 1922
paper in which he distinguished between parameter and statistic and fixed the
notion of a statistical model that has endured for a century, Fisher wrote,

. . . , briefly, and in its most concrete form, the object of statistical
methods is the reduction of data. A quantity of data, which usu-
ally by its mere bulk is incapable of entering the mind, is to be
replaced by relatively few quantities which shall adequately repre-
sent the whole, or which, in other words, shall contain as much as
possible, ideally the whole, of the relevant information contained in
the original data. This object is accomplished by constructing a hy-
pothetical infinite population, of which the actual data are regarded
as constituting a random sample. The law of distribution of this
hypothetical population is specified by relatively few parameters. . .

The word regarded is crucial here; as Fisher repeated from time to time in
course of his career, the hypothetical infinite population is in the mind of the
statistician. In 1925, he further explained that the statistician is only asserting
that the data is “typical” of a random sample from the specified hypothetical
infinite population [27, p. 701].

We see here an “as-if” mode of description: we describe the data by saying
that it looks as if it were a random sample. This is coherent, and it also fits
Fisher’s general conception of the relation between statistical work and scientific.
Scientific inference operates by induction over multiple studies and experiments,
and it only it is only when we find that the same description fits many studies
that we can say a theory has been confirmed.

Influential as Fisher was, his “as-if” interpretation of statistical models has
not become part of the statistical tradition.2 Its weakness is clear. So long as
our culture insists on giving probability itself some reference outside the data,
the vague judgment that the sample is typical of a random sample quickly drifts
into an assumption about what lies outside the study population. A descriptive
theory that uses probability needs a theory of descriptive probability.

3 Likelihood as description

We now develop the idea sketched in the introduction: interpret likelihood as a
result of betting and therefore as a description of a study population.

We make likelihood descriptive by imagining that probability distributions
bet against each other. In order to make the generality and simplicity of this
idea clear, let us first consider the case where successive probability forecasts are
made not by an algorithm but by a forecaster whose methods (if any) are not
known to us. What we learn in this picture applies when probability forecasts
are given by algorithms, which may or may not use information they do not
forecast (forecasting variables).

2Notably, David J. Hand, in his recent celebration of Fisher’s 1922 paper [44], does not
mention it.
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Because description is not inference, the descriptive use of likelihood must
be distinguished from its troubled inferential use. This point is elaborated at
the end of this section, in §3.6.

3.1 Competing probability forecasters

Suppose we observe successivelyN variables Y1, . . . , YN . SupposeM forecasters,
who see the successive variables along with us, forecast each Yn after seeing the
preceding values y1, . . . , yn−1 and perhaps much other information as well. Each
forecast is a probability distribution. For each n, we assume that the forecasters’
probability distributions for Yn all have densities, discrete or continuous, with
respect to the same measure, and we write Pn

m for the density of Forecaster m’s
forecast of Yn. (This formulation allows the sample space to vary with n, but
we will not use this generality in this paper.)

Perhaps we have no expertise about Y1, . . . , YN ourselves. We do not know
exactly how the forecasters are making their forecasts. We do not assume that
there is a true or correct probability distribution for each Yn given y1, . . . , yn−1,
and we certainly do not know one. The forecasters themselves constitute our
standard for what can be done. But after seeing their forecasts and the outcomes
y1, . . . , yN , we want to pick out those who have done a good job.

How might Forecaster 2 bet against Forecaster 1? The most natural way is
Kelly betting. Suppose the two forecasters have just given their forecasts for Yn,
Pn
1 and Pn

2 , and Yn is about to be observed. The ratio

Pn
2 (Yn)

Pn
1 (Yn)

(1)

has expected value 1 under Pn
1 and is therefore a bet against Pn

1 . Of all bets
against Pn

1 that would cost Forecaster 2 a unit of capital, it is the one that
maximizes his own expected value of the logarithm of his subsequent capital
and hence can best help him maximize his rate of growth over multiple bets.3

If Forecaster 2 begins by paying one unit of capital for P 1
2 (Y1)/P

1
1 (Y1) and

then, for each n from 2 to N , invests all his winnings from his first n − 1 bets
in a bet proportional to (1), then his capital after the N observations will be

P 1
2 (y1)

P 1
1 (y1)

· · · P
N
2 (yN )

PN
1 (yN )

. (2)

Having risked one dollar, say, he walks away from the betting with the amount
(2) in dollars. He may have lost money, or he may have made a great deal.

When each forecaster bets against the other in this way, the result will be a
ranking, from the largest to the smallest value of

P 1
m(y1) · · ·PN

m (yN ). (3)

3For more on Kelly betting, see [23, Chapter 10] and [9, 75]. For other roles Kelly betting
can play in statistical theory, see [64, 73]. An important alternative to Kelly is fractional
Kelly betting, which risks only a fixed proportion of current capital on each bet. Being more
cautious, this penalizes the forecasters less for extreme errors. This potential robustness merits
study, but it is outside the scope of this paper.
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Generalizing Fisher, let us call (3) Forecaster m’s likelihood.
Our culture tells us how to think about betting results. The forecaster with

the largest likelihood is the winner of the contest, perhaps not the very best
among the forecasters, but lucky enough this time and entitled to claim a place
among the best. As in any contest that combines skill and luck, our assessment
will depend on what we know about the credentials of the competitors and the
difficulty and extent of the task. But any competitor who falls far short has
been discredited. If Forecaster m has the highest likelihood and Forecaster m′’s
likelihood is only (1/15)th as great, then Forecaster m′’s competence will, in
Fisher’s words, be open to grave suspicion. Forecaster m, betting against him,
has risked $1 and come away with $15.

Using cutoffs suggested by Fisher in 1956 [30, p. 71],4 we may classify the
forecasters according to the ratio of their likelihood to that of the winner:

Relatively good. Those who did at least half as well.

Relatively fair. Less than half but at least (1/5)th as well.

Relatively poor. Less than (1/5)th but at least (1/15)th as well.

Unacceptable. Worse than (1/15)th as well.

These cutoffs are arbitrary, but no more so than the 5% and 1% frequencies
used for statistical significance. If equally accepted as conventions, they can be
equally serviceable. Their meaning in terms of betting will be readily understood
by the public.

3.2 Competing probability forecasting algorithms

Fisher was not writing about probability forecasters. He was writing about
a statistical model — a class of probability distributions (Pθ)θ∈Θ. But the
Pθ can be thought of as probability forecasters, and the preceding discussion
applies; their likelihood ratios can be interpreted as the factors by which each
has multiplied its money betting against the other. This is equally true for any
collection (Pθ)θ∈Θ of algorithms that make probability forecasts.

Let us call a collection (Pθ)θ∈Θ of such algorithms a forecasting family. Just
as Fisher, in his celebrated 1922 paper on theoretical statistics [26, p. 314],
treated the selection of a statistical model as an empirical matter, to be left to
the “practical statistician”, we expect the statistician to choose the forecasting
family after studying the data.

We call the elements of Θ forecasters. Each θ ∈ Θ forecasts variables
Y1, . . . , YN , Forecaster θ’s forecast Pn

θ being a probability distribution for Yn. It
is convenient to say that the forecasters all have the same information available,
although some may ignore some of this information. Similarly, it is convenient
to say that the forecasters observe the Yn in order, meaning that y1, . . . , yn−1

are available for forecasting Yn, but some or all of the forecasters may ignore

4The suggestion appears on page 75 of the posthumous third edition (1973).
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this information as well. The number N may be equal to one. We call the
collection of N individuals for which Y and the other information is collected
the study population.

We call the product
P 1
θ (y1) · · ·PN

θ (yN ) (4)

Forecaster θ’s likelihood. We assume the forecasting family (Pθ)θ∈Θ has been

chosen so that there is always a forecaster, say θ̂, who has the greatest likelihood,
and we call the ratio

L(θ) :=
P 1
θ (y1) · · ·PN

θ (yN )

P 1
θ̂
(y1) · · ·PN

θ̂
(yN )

(5)

Forecaster θ’s relative likelihood. The natural logarithm, ln(L(θ)) denoted l(θ),
is the log relative likelihood.

The information used in making the forecasts is left implicit in (4) and (5).
It is also implicit in our terminology. We call (4) simply θ’s likelihood, not its
conditional likelihood given the information used, as in inferential theory [60,
p. 155].

To use the relative likelihoods descriptively, we consider the θ for which L(θ)
is relatively good (at least 1/2) and describe the ranges of forecasts they make.
We might similarly describe the range of forecasts for which L(θ) is acceptable
(at least 1/15). The virtues of these ways of describing the data include their
honesty and transparency. They are honest because they do not use assumptions
we do not believe. They are transparent because their methods of assessing the
forecasting algorithms can be explained in terms of betting even to those who
have not studied statistics.

A probability distribution is generally a complex object. So summaries are
needed. When Y takes numerical values, the expected value is often a useful
summary; we may call it the point forecast. For particularly interesting values of
the forecasting variables, we may choose to report ranges of point forecasts for
the good performing or acceptably performing θ. We may call these ranges point-
forecast ranges. We may also be interested in a range of values for Y to which all
the good performing θ assign high probability. We might report the union of all
the interquartile ranges predicted by good performing θ, or perhaps the union
over the good performing θ of some other interval prediction. These may be
called interval-forecast ranges. What ranges the statistician reports will depend
on what she and her audience want to know about the study population. When
we want to know what is typical of the study population, the point-forecast
range is appropriate. An interval-forecast range, if it disagrees sharply with the
empirical spread of the data, may lead us to question our choice of the forecasting
family. In general, point-forecast ranges may add more than interval-forecast
ranges to empirical variances, quantiles, and other descriptive statistics available
directly from the data. Here we may want to take a lesson from the French
mathematicians of the 19th century, whose sophisticated Laplacean statistical
theory was displaced in geodesy by a Gaussian methodology less interested in
inference than in best estimates [46, 62].
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How do we choose a forecasting family? As in other domains of description, it
will be useful to have conventional choices, and so we will prefer to use families
that are already well known. The choice of a family includes the choice of
forecasting variables (when forecasting is by multiple regression, for example),
and here we begin with the questions we are asking. In Example 1, for example,
the organization was asking about how perception varies by minority status
and gender, not how it varies by age, health status, or other features of the
organization’s employees.

In both our examples, Example 1 and Example 2, the target variable and
the forecasting variables of interest were specified before the data were gathered.
But in other cases, a statistician may come to data uncertain about what tar-
get and forecasting variables might permit interesting descriptions. Identifying
them requires exploring the data – exploratory data analysis, John Tukey called
it.

Forecasting within a study population generally looks better and better as
we increase the number of forecasting variables. In inferential statistics, we
learn that this can lead to overfitting, giving a misleading picture of the target
superpopulation. This fact is not irrelevant in cases where we want to compare
descriptions of different but similar study populations. But when description is
the goal, simplicity also has a more direct value. The most complete description
of data from a study population is the data itself. Useful description requires
the reduction of data.

In addition to having the forecasters in the family test each other by betting,
the statistician might want to implement a betting strategy to test the forecast-
ing adequacy of the entire family. This is surely advisable if the statistician
is concerned about a particular way the family might fail and has at hand a
corresponding alternative family. On the other hand, experience suggests that
traditional comprehensive goodness-of-fit tests of conventional families can be
undiscerning [10]. When observations are made sequentially, machine-learning
tests of randomness have the opposite but equal problem: they generally re-
ject [72]. So we should always bear in mind that the choice of a family is a
convention made for the purposes of description, not an empirical assumption.

We can, of course, later use our relatively good algorithms to forecast out-
side of the study population. This is inference in only a weak sense. We are
trying outside the study population what worked inside. If a particular forecast-
ing family is repeatedly successful when used in this way, then we engaged in
induction and inference. We can think of this as a shift from exploratory data
analysis, where we are looking for good descriptions, to confirmatory data anal-
ysis, where we are looking for descriptions so stable over time and circumstance
that they may be given causal meaning.

Let us now apply this paper’s proposal to three simple examples. The first is
the simplest possible example, where a single probability is used to forecast an
event for each individual in a study population. The other two are the examples
we considered in §2.

As we will see, the proposal requires much more computation than the statis-
tical analyses it might replace. This will be even more true when we undertake
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to apply the proposal to multiple regression and other statistical models where
it might be most useful.

3.3 Example 0, forecasting with a single probability

Suppose we observe successive trials of an event, and each algorithm in our
forecasting family has a fixed probability that it uses each time as its forecast.
Formally, Θ = (0, 1), and Forecaster θ always gives θ as the probability that the
event will happen.

If we observe 100 trials, and the event happens 70 times, then

L(θ) :=

(
θ

0.7

)70 (
1− θ

0.3

)30

.

Our scheme for rating the forecasters yields these point-forecast ranges:

Relatively good: L(θ) > 1
2 , or 0.64 < θ < 0.76.

Fair or better: L(θ) > 1
5 , or 0.61 < θ < 0.78.

Acceptable: L(θ) > 1
15 , or 0.59 < 0.80.

The forecaster θ = 1/2 may have been of particular interest, and we may want
to emphasize that its performance was unacceptable.

Not surprisingly, Fisher’s categories are consistent with inferential practice.
The standard error of the maximum-likelihood forecaster 0.7 is 0.046, suggesting
a 95% confidence interval of (0.61, 0.79), very significantly different from 1/2.
But unlike the analogous inferential model and significant tests, the forecasting
family and the resulting data analysis merely describe the data. The forecasting
family does not say that the trials of the event are in any sense independent.
The analysis tells us merely which constant probabilities perform relatively well
in the data.

3.4 Example 1, Fourier’s masculine generation, continued

Recall Fourier’s estimation of the average age in 18th-century French fathers of
sons when their first son was born. From the ages of 505 fathers, say y1, . . . , y505,
he found the empirical average

y :=

∑505
n=1 yn
505

= 33.31 years, (6)

and the empirical standard deviation5

s :=

√∑505
n=1(yn − y)2

505
= 7.642 years. (7)

5The empirical standard deviation given here is calculated from the error limits Fourier
gave. He did not report the data, and we know that he worked not with standard deviations
and standard errors but with what was later called the modulus by some authors, equal to√
2 times the estimate’s standard error.
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Using modern language, we may say that Fourier assumed that the 505 ages were
independent random variables, treated 33.31 as an estimate of their common
mean, and used the central limit theorem to obtain approximate error limits on
this estimate.

For a descriptive analysis, we do not need Fourier’s assumptions. We need
a forecasting family. Let’s use the most familiar one, the normal family with
mean µ and variance σ2. Here θ = (µ, σ2), µ is Forecaster θ’s point forecast
of each Yn, and (y, s) is the maximum-likelihood forecaster. The log relative
likelihood for Forecaster (µ, σ2) is

l(µ, σ2) = N

(
ln(s)− ln(σ)− s2 + (y − µ)2

2σ2
+

1

2

)
,

where N = 505. For fixed µ, this is maximized by setting σ2 equal to s2 + (y−
µ)2.6 So to see the best we can do with the point forecast µ, we consider the
log relative likelihood

l(µ, s2 + (y − µ)2) = N

(
ln(s)− 1

2
ln(s2 + (y − µ)2)

)
(8)

This is greater than ln(1/C) when µ is in the interval

y ± s

√
(2C)

1
N − 1. (9)

Table 2 uses (9) to calculate good, at least fair, and acceptable point-forecast
ranges. Associating each point forecast µ with the 95% probability forecast

µ± 1.96
√
s2 + (y − µ)2,

we also obtain the interval-forecast range given in the last column. The point-
forecast ranges in the table can be compared with Fourier’s 95% range of 33.31
years ±7.99 months or 0.666 years.

Perhaps other information in the data gathered by the Paris statistics bu-
reau could have allowed better forecasts. Perhaps, for example, there was a
discernible trend from the beginning to the end of the 18th century. But the
question we address here — perhaps also the question Fourier was really asking
— is which constant forecasts do a good job.

3.5 Example 2, fictional survey, continued

Here people were asked a yes-no question, and so a probability forecast is a single
number. But now a forecaster has information on which to base the probability
— which of the four groups the individual belongs to. So a forecaster is defined
by four probabilities:

θ = (pbf, pbm, pwf, pwm),

6In inferential theory, the result of maximizing a likelihood over an unwanted parameter
is sometimes called a “profile likelihood” [60, p. 158].
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Table 2: Forecast ranges, in Fourier’s study population, for the age of a father
of sons when his first son is born. For acceptable forecasters, for example, we
obtain a point-range forecast of 33.31± 0.63 years, or 32.68 to 33.94 years, and
a 95%-interval-forecast range of 33.31± 10.02 years, or 23.29 to 43.33 years.

ranges (intervals around 33.31)

K class point-forecast interval-forecast

2 good ±0.40 ±6.40

5 fair or better ±0.52 ±8.26

15 acceptable ±0.63 ±10.02

where pbf is the forecast that a BIPOC female will say yes to the survey, etc.
According to the data in Table 2.2, the maximum-likelihood forecaster is

θ̂ =

(
8

10
,
12

20
,
20

50
,
20

120

)
,

and the relative likelihood is

L(θ) =

(
pbf
4/5

)8 (
(1− pbf)

1/5

)2 (
pbm
3/5

)12 (
(1− pbm)

2/5

)8

(
pwf

2/5

)20 (
(1− pwf)

3/5

)30 (
pwm

1/6

)20 (
(1− pwm)

5/6

)100

.

We found earlier that the 20 percentage-point difference between BIPOC
males and BIPOC females is not statistically significant. In our theory of de-
scriptive probability, the question can be reframed this way: what differences
between BIPOC males and BIPOC females within the study population are
forecast by good forecasters? We can answer the question by looking at all the
θ = (pbf, pbm, pwf, pwm) that rank as good forecasters by having a value of L(θ)
greater than 1/2 and finding the range of their values for pbf − pbm. The range
is from a little more than 0 up to about 0.4.

When the individuals responding to a yes-no survey are categorized in more
than one way, or when other data is collected about them, we may prefer to use a
more sophisticated forecasting family, such as logistic regression. The logic will
remain the same. For particular interesting values of the forecasting variables,
we can give the range of probability forecasts given by good forecasters, and we
can similarly give ranges for differences in probabilities or for odds ratios. The
computations involved are not trivial, but software environments adequate to
the task would not be need to be more complex than those that now use logistic
regression for nominally inferential analyses.

The descriptive approach can be compared with the inferential approach used
in 2016 by the University of Michigan’s Diversity, Equity & Inclusion Initiative.
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Michigan sought inferential legitimacy by surveying random samples. As they
explained in their report on the faculty survey [54, p. 6],

Given the large faculty population at the University of Michigan,
this study used a sample survey approach rather than a census of
all faculty. A carefully selected sample, with randomization, allows
researchers to make scientifically based inferences to the population
as a whole.

In the case of the faculty, 1,500 out of 6,700 faculty members where chosen at
random to complete the survey. The survey results were then analyzed using
logistic regression, and a number of differences were observed to be statistically
significant. It was found, for example, that female faculty were 130% more likely
to feel discriminated against than male faculty (i.e., the odds ratio for a positive
response to the question was 2.3 and significantly different from 1).

The results of the survey were clearly meaningful, but the inferential logic is
problematic. As David A. Freedman has shown, randomization probabilities do
not justify logistic regression [35]. Our descriptive theory is not affected by this
problem and is just as applicable to a complete census as to a random sample.

3.6 Inferential likelihood

The intuition that likelihood has inferential significance goes back at least to
the late 18th century [68]. The postulate that the happening of an event sup-
ports competing causes in proportion to the probability they give to the event
was about all Laplace offered to justify his first formulation of Bayes’s rule [67].
Fisher pried the postulate out of its Bayesian frame, coined the name likeli-
hood, and eventually suggested that the numerical ranking of rival probability
distributions by their likelihood can stand on its own as a report on statistical
evidence. Some statisticians have found Fisher’s version of the postulate appeal-
ing. A. W. F. Edwards and Richard Royall wrote whole books elaborating it
[22, 60], giving many intuitively reasonable examples. But when applied gener-
ally, it can encounter fatal difficulties, which are summarized concisely by David
R. Cox and David V. Hinkley in their well known textbook [18, pp. 50–52].

One of Cox and Hinkley’s examples, particularly relevant here, calls to
mind a lottery. We will observe an integer from the set {1, . . . , 100}, and we
consider 101 probability distributions for this observation, indexed by Θ :=
{0, 1, . . . , 100}. The distribution P0 assigns equal probabilities to the 100 pos-
sibilities, while for k between 1 and 100, Pk gives probability 1 to k. When the
observation turns out to be x, say, θ = x′ has likelihood zero if x′ is not equal
to x or 0, and the likelihood of θ = x is 100 times that of θ = 0. Interpreting
this ratio as evidential support is unsatisfactory because, as Cox and Hinkley
put it, “even if in fact θ = 0, we are certain to find evidence apparently pointing
strongly against θ = 0.”

What does this example tell us about the descriptive use of likelihood? The
best answer, perhaps, is that in this case the likelihood is a valid but uninter-
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esting description. There is no reduction of the data. We are simply told that
whoever won the lottery won the lottery.

4 Probabilities as forecasts

This paper’s proposal faces two serious conceptual hurdles. The first is the
mindset that insists on interpreting probabilities as hypotheses about a hidden
reality. The second, more specific and perhaps even more entrenched, is the
notion that probabilities are ultimately and fundamentally frequencies.

As I now argue, in §4.1, the first of these hurdles is most effectively addressed
by history. “To penetrate to the reasons of things,” Marie-France Bru and
Bernard Bru have advised, “look at how they have gradually been revealed
in the course of time, in their progressions and in their ruptures. . . ” [13, pp.
301–302]. Significance testing is not a method that recently strayed after being
correctly used for centuries. It was troubled from the beginning. Recognizing
this will help legitimize trying something different.

As I argue in §4.2, escaping from the more specific muddle of frequentism
is another matter. For more than a half century, many prominent statisticians
have campaigned to replace frequency with belief. But while this campaign has
readied us to question the identification of probability with frequency, belief does
not provide a foundation for description. As I have just suggested, forecasting
does provide such a foundation. In order to overcome the hurdle of frequentism
we need a theory of probability in which frequency is replaced by forecasting.
This theory is provided by the game-theoretic framework developed in [65, 64],
in which probability forecasts are taken as hypothetical betting offers and tested
by algorithms that pretend to make some of the offered bets and discredit the
forecaster to the extent that their nominal bets succeed.

4.1 The enduring fiction of randomness

Research and teaching in mathematical statistics emphasizes independent and
identically distributed observations from probability distributions — i.e., ran-
dom samples. Yet in applications non-random samples are the rule, not the
exception. So it has always been. We have been so successful in closing our eyes
to this enduring contradiction that we must excavate its history before we can
fully appreciate the legitimacy of descriptive probability.

Eighteenth-century beginnings.

In 1703, when Jacob Bernoulli asked Gottfried Wilhelm Leibniz for help in
finding data on human mortality to which he could apply his celebrated theorem,
the first law of large numbers, Leibniz was quick to point out that such data
could not possibly satisfy the assumption of stability the theorem required:

The difficulty in it seems to me to be that contingent things or things
that depend on infinitely many circumstances cannot be determined
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by finitely many results, for nature has its habits, following from the
return of causes, but only for the most part. Who is to say that the
following result will not diverge somewhat from the law of all the
preceding ones — because of the mutability of things? New diseases
attack humankind. Therefore even if you have observed the results
for any number of deaths, you have not therefore set limits on the
nature of things so that they could not vary in the future.7

Bernoulli may have been troubled by this objection. But the posthumous book
containing his theorem and its proof, Ars conjectandi, concluded with a decla-
ration of faith in the stability of causes:

. . . if the observations of all events were continued for the whole of
eternity (with the probability finally transformed into perfect cer-
tainty) then everything in the world would be observed to happen
in fixed ratios and with a constant law of alternation.8

Thanks to his friend Edmund Halley, Abraham De Moivre had the kind of
mortality data that Bernoulli had sought. Beginning in the 1720s, he used it
profitably, fitting a mostly linear model and using this model to help British
aristocrats price life-time leases of their land to farmers [3]. It is doubtful that
he believed that Halley’s data on 17th century-mortality in Breslau applied
precisely to 18th-century British farmers. But in the 1730s, when he proved the
central limit theorem for binomial observations, he seconded Bernoulli’s vision
of eternal sampling:

. . . altho’ Chance produces Irregularities, still the Odds will be in-
finitely great, that in process of Time, those Irregularities will bear
no proportion to the recurrency of that Order which naturally re-
sults from original Design. [19, p. 243 of 2nd edition, p. 251 of 3rd
edition]

Bernoulli had imagined sampling with replacement from an urn containing
a finite number of black and white tokens in unknown proportion. Pierre Simon
Laplace, when introducing his version of Bayesian inference in 1774, imagined
sampling without replacement from an urn with “an infinity of white and black
tickets in unknown ratio”.9 This sampling metaphor has been familiar to statis-
ticians ever since. But it has seldom described the samples we actually use.

Nineteenth-century failure in France.

The general version of the central limit theorem that Laplace derived in 1810
permitted the calculation of error probabilities for averages and proportions.10

7Translation by Edith Sylla [8, p. 39].
8Translation by Edith Sylla [8, p. 339].
9Translation by Stephen Stigler [67, p. 365]. See also Laplace’s letter to Georges Louis Le

Sage in 1784 [43, vol. I, letter 72], discussed by Marie-France and Bernard Bru [13, vol. 1, p.
96].

10De Moivre had earlier derived the normal approximation for binomial probabilities. For
a comprehensive history of the central limit theorem, see [25].
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As we have noted, statisticians learned the method from Joseph Fourier in the
1820s. Its application, especially to medicine, was widely debated in France
beginning in the 1830s.

When explaining the formulas for error probabilities in his influential essays
in 1826 and 1829, Fourier explained that the main underlying principle was that

in an immense number of observations, the multiplicity of the
chances makes what is accidental and random disappear, and only
the sure effect of constant causes remains, so that there is no chance
at all in natural facts taken in a very large number.11

But the method could err:

The most common sources of error and uncertainty in the conclu-
sions that many writers deduce from statistical studies are (1) the
inexactness of observations gathered by extremely varied and in-
comparable methods, (2) too few observations, which prevents their
division into separate series and the calculation of the result of each
series, and (3) progressive or irregular changes in the causes over the
period of the observations.12

The second point in the list relates to his recommendation of a form of cross-
validation: check the consistency of data by making the same calculation on
different parts of it. The second and third together were his way of giving
empirical content to the independence or randomness assumption.

A favorite topic for statisticians in this period was variation in the ratio of
male to female births. In 1824, the prominent mathematician Siméon-Dénis
Poisson noted that the ratio was smaller for illegitimate than for legitimate
births [57]. In 1830, he applied Laplace’s theory to decide whether this and
other variations in the ratio could have happened by chance [58]. He concluded
that the difference was real, and he also found that the ratio was smaller in
Paris than in the rest of France, for both legitimate and illegitimate births.

Applications in medicine were obviously more important. In 1837 the French
Academy of Sciences debated whether observational data could be used to decide
between two methods for removing gallstones, and the physician Jules Gavarret
subsequently published a book on the use of Laplace’s method to test the dif-
ference between two proportions using such data [38, 45]. J. Rosser Matthews
has traced the debate in medicine inspired by Gavarett’s book, noting its more
positive reception in Germany [51].

It is not hard to see flaws in these early applications. We have already
seen the difficulties with Fourier’s prime example, the length of the masculine
generation. Poisson’s search for significant differences in the birth ratio looks
like p-hacking, as Augustin Antoine Cournot insinuated in 1843, after Pois-
son’s death [16]. It is very unlikely that the two treatments for gallstones were
administered to similar groups of people.

11My translation from [32, p. x].
12My translation from [32, p. xv].
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Cournot’s book was a remarkably lucid and discerning presentation of
Laplace’s theory. The book remained the high point of mathematical statis-
tics in France in the nineteenth century for an unhappy reason: neither mathe-
maticians nor the wider intellectual public found the theory’s applications very
convincing. The leading mid-century mathematical statistician, Jules-Irénée
Bienaymé, put most of his intellectual effort into discouraging erroneous appli-
cations [12]. By the end of the century, a flood of statistics had transformed
thinking about science, medicine, and society, but probability theory had been
left behind. Leading French mathematicians saw Laplace’s theory as derisory.
Lucien Le Cam, a 20th-century proponent of the central limit theorem was so
dismayed by this attitude that he once called the theorem’s most prominent
detractors “the loathsome Bertrand and Poincaré” [47, p. 96].13

Twentieth-century recapitulation.

Laplace’s infinite urn still sometimes appears in textbooks, but in the 20th cen-
tury it was largely replaced by other metaphors. Three prominent ones are in-
finite hypothetical population, superpopulation, and data-generating mechanism

Fisher popularized the term infinite hypothetical population beginning in
the 1920s, using it interchangeably with hypothetical infinite population. These
words now seem old-fashioned and perhaps even naive. The meaning they give to
“infinite” harks back to a concept of potential infinity that already puzzled some
mathematicians in the 1920s [1]. But as we have already noted, Fisher thought
about what he meant by it. Whereas some later statisticians have wanted
to see the infinite population as something real, Fisher always emphasized its
hypothetical nature, seeing it as invented by the statistician to describe his
uncertainty.

Fisher’s formulation leaves space for the statistician to judge that a sample
is not random, perhaps because it represents an entire population or perhaps
it is a convenience sample, collected in a somewhat systematic but unmodelled
way rather than randomly.14 Authors in the social science literature in the mid-
twentieth century sometimes declined to use significance tests for such samples.
According to Google’s Ngram, convenience sample increased in popularity until
about 1990, then declined sharply. Abstinence from significance testing also
declined. In a study of the use of significance testing in two prominent sociology
journals from 1935 to 2000 [48], Erin Leahey found a shift around 1975 among
authors who had data on an entire population. Before that date, some of these
authors declined to use significance tests, afterwards few did.

The term superpopulation has been used in a number of contexts. Begin-
ning at least with Fisher in the 1930s, it has been used in reference to Bayesian

13The importance of statistics in the 19th century has been emphasized by Ian Hacking and
other historians [42]. For details on the negative attitude towards Laplace at the end of the
19th century see [13].

14The term convenience sample seems to have appeared around 1960. In 1956 [53], John
Neter contrasted random selection with “selection by convenience” and called the result a
“convenient sample”. Santo Camilleri commented negatively on convenience samples, with
“convenience” in quotes, in 1962 [14]. The term was used less self-consciously by 1964 [70].
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priors [28, 29, 71, 40]. Beginning at least in the 1940s, it has been used in
industrial and agricultural contexts. In 1950 [11], Irwin Bross suggested that
groups in an analysis of variance might be considered a sample from a super-
population. In 1946 [15], William G. Cochran suggested that when sampling
from a finite population in time or space, correlations between adjacent units
might be modeled by thinking of the finite population as itself sampled from
an infinite population with those correlations. Although Cochran did not use
the term superpopulation, his work is sometimes seen as the beginning of the
standard superpopulation setup of sampling theory.

Google’s Ngram indicates that the use of superpopulation rose sharply from
about 1970 to 1990 and remained stable thereafter. The popularity of Fisher’s
infinite hypothetical population and hypothetical infinite population, on the other
hand, peaked around 1960 and declined sharply thereafter. They have been
largely replaced by data-generating mechanism, which began to become popular
in the 1960s.15

In 1976 [59], Richard Royall used superpopulation model and prediction model
as synonyms. The implication is that the study population from which we es-
timate parameters is sampled from a larger population, and that the result
will be used to predict further observations from the larger population. This
study population may be a single observation. As in Cochran’s original exam-
ple, the modeling can then account for correlations over time or space, which
are predicted to recur in the further observations. But when we see the term
data-generating mechanism instead of superpopulation, there is often neither
deliberate sampling nor any attempt to account for correlations. We may be
dealing either with an entire population that leaves nothing to predict or with
a convenience sample from which predictions are dubious.

In 1995, Richard Berk, Bruce Western, and Robert E. Weiss listed examples
of entire populations that are often studied by political scientists, sociologists,
and economists: all industrialized nations, all large cities in the United States,
etc. [6]. Studies of such apparent populations, as Berk, Western, and Weiss
called them, are predominant in some branches of social science, including fi-
nance and accounting. These studies usually claim to make inferences about
data-generating mechanisms but say little or nothing about whether and how
purported mechanisms can be used to make future predictions. Even in epi-
demiology, it is common for statistical studies of entire populations of certain
countries or regions to be silent about their generalizability [2]. Abstinence from
prediction is also the norm when data-generating mechanisms are inferred from
convenience samples [5]. See also the critiques by Freedman [34] and Berk [4].

15The earliest use of data-generating mechanism in connection with a statistical model that
I have seen is in a 1963 article on the cost of ship repair, which first identified the mechanism
as “accounting procedures and budgetary pressures” and then identified it with a statistical
model [24, p. 336]. The term appears in econometrics in the late 1960s [39, 55].
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4.2 Replacing frequency with betting success

At one time, the term frequency theory of probability referred to Richard von
Mises’s proposal for axiomatizing the notion of a random sequence in terms of
limiting frequency. When Ernest Nagel coined the term frequentist in 1936 [52],
he was still discussing von Mises’s proposal. But once Andrei Kolmogorov’s
axiomatization became the starting point, probability’s identification with fre-
quency has come to look like a misunderstanding of the law of large numbers.
As argued here, a close at the law of large numbers shows that the empiri-
cal meaning of mathematical probability rests on high-probability predictions,
which can be interpreted in terms of betting.

Frequency or high probability?

A 95%-confidence set, we know, is a method for computing a set. We fix a
class (Pθ)θ∈Θ of probability distributions, assume that there is some θ ∈ Θ such
that Pθ forecasts a certain phenomenon Y well, and set out to learn from the
observation of Y which θ this might be. We call a random subset C(Y ) of Θ a
95% confidence set if

Pθ(θ ∈ C(Y )) ≥ 0.95 (10)

for all θ ∈ Θ.
I rehearse this not as a prelude to rehashing the pros and cons of confidence

sets but to set the stage for a not-so-innocent question: Why is a confidence set
called frequentist? Where is the frequency?

Every student of statistics knows the standard answer: Were we to repeat
the experiment many times, the set C(Y ) would contain the true θ at least 95%
of the time. This is the teacher’s way of explaining the meaning and importance
of the probability 0.95 in (10). Frequency is thus the meaning of probability.

Really? The teacher relies, it seems, on the law of large numbers: In many
repeated trials of an event with probability 0.95, there is a high probability that
the event will happen about 95% of the time. But this is brazenly circular. It
explains the meaning of high probability by means of a high probability.

Fisher, often himself called a frequentist by later commentators, was scathing
about the circularity. He called it “a perpetual regression defining probabili-
ties in terms of probabilities in terms of probabilities” [31, p. 266]. Countless
other luminaries, including the probabilists Kolmogorov and Joseph Doob and
the statisticians Abraham Wald and Charles Stein, have made similar points.
Stein commented as follows on what Kolmogorov had written in 1933 about the
empirical interpretation of probability [20, p. 460]:

In his book he [Kolmogorov] mentions briefly two aspects of the in-
terpretation. The first is the traditional relative frequency of occur-
rence in the long run. And the second is that when one puts forward
a probabilistic model that is to be taken completely seriously for a
real world phenomenon, then one is asserting in principle that any
single specified event having very small probability will not occur.
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This, of course, combined with the law of large numbers, weak or
strong, really is a broader interpretation than the frequency notion.
So, in fact, the frequency interpretation in that sense is redundant.

Doob explained the role of small probabilities this way [21, pp. 201–202]:

If one starts with mathematical probability theory the obvious gen-
eral operational translation principle is that one should ignore real
events that have small probabilities. How small is “small” depends
on the context, for example, the demands of a client on a statisti-
cian. Somewhat more precisely, one first makes a judgment on the
possibility of the application of probability in a given context; if so,
one then sets up a model and comes to operational decisions based
on the principle that hypotheses must be reexamined if they ascribe
small probability to a key event that actually happens.

Even though countless authorities in probability and statistics have ex-
plained that the meaning of a probability model lies in its prediction that cer-
tain events of high probability will happen, or equivalently in its prediction that
certain events of small probability will not happen,16 frequency has remained
central to how statisticians explain themselves to their public.

Why? Probably because it goes down easily with the uninitiated. The equa-
tion between probability and frequency has been part of our culture since the
19th century. Cournot stated so clearly that probability connects with phenom-
ena only when it predicts the failure of an event with small probability that
this principle has been called Cournot’s principle [61]. But even he underlined
the probability’s identification with frequency when explaining the meaning of
a confidence probability [16, §107].

Cournot’s principle is difficult to communicate because it inevitably provokes
a seemingly conclusive objection: Doesn’t what happens always have a small
probability? There are answers. The statistician specifies her events of small
probability (her tests and confidence intervals) in advance. The test events are
simple events. The events of small probability that actually happen are not
known in advance and are too precise to be simple. Anyway, this is the way
applied statistics works, like it or not. Good answers, but not good enough to
forestall endless debate.

Small probability or high betting score?

Betting is just as anchored in our culture as frequency, and equally connected
with probability. Within probability theory, betting’s historical credentials are
even better than frequency’s, for betting provided the underpinning for prob-
ability mathematics long before Jacob Bernoulli formulated his law of large
numbers. It is easy to see, moreover, how bets can replace small probabilities
in statistical inference.

16For additional examples, see [41, 49, 61, 69, 74].
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You announce in advance that a particular event E has a small probability
5% and so will not happen. It happens. Why is this surprising, and why might it
discredit your judgement? Because when you made the announcement, I might
have insisted on betting with you at the odds your probability implied, risking
$1 on E and walking away with $20. Betting against a probability is the best
way to discredit it, and weathering such bets is the best way for a probability
or a probability forecaster to gain credit.

As Christiaan Huygens made clear in his 17th-century introduction to the
calculus of chances, a bet need not be all-or-nothing;17 if you announce a prob-
ability distribution P , I might pay $1 for any non-negative payoff S to which P
gives expected value 1. The actual payoff, say $S(y), then discredits P to the
extent that it is large — i.e., to the extent that I have multiplied the money I
risked by a large factor.

Markov’s inequality says that

P

(
S(Y ) ≥ 1

α

)
≤ α,

and so you might explain the force of a large betting score S(y) by saying that it
had small probability. But this is wrong-headed. Historically and in our wider
culture, a large betting score is more fundamental than a small probability, and
trying to explain it in terms of a small probability goes backward, introducing
complication and confusion. If S(y) = 30, what is α? For a small probability
α to have force, it must be announced in advance along with S, before I know
that S(y) = 30. But if I announced α = 0.05, say, this would reduce my 30 to
20. There is no need to do this. The number 30 is honestly come by — a fair
measure of the extent to which I have discredited your P .

5 Discussion

As a flurry of recent theoretical studies have shown, testing by betting can
play an important role in inferential statistics. Because crucial assumptions are
so often unjustified in nominal applications of inferential statistics, descriptive
probability as described here may play an equally important role in statistical
practice.

In most of the many academic disciplines that use observational data, the
misuse and abuse of inferential statistics has been the norm for half a century
or more. Thoughtful scholars have consistently criticized this misuse and abuse.
David A. Freedman, one of the most thoughtful, compiled a compendium of
such criticisms on pp. 212–217 of his posthumously published textbook [36]. But
as the sociologist William S. Mason argued in 1991, in response to Freedman’s
powerful indictment of the inferential misuse of regression analysis, practitioners

17Huygens’s second proposition, as translated from the Dutch by Hans Freudenthal [37]:
“If I have an equal chance to get a or b or c, it is worth as much to me as though I had
(a+b+c)/3.” See also [63].
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have a right to expect more than condescension from mathematical statistics
[34, 50]. They need alternatives. Descriptive probability is one such alternative.

The frequentist vocabulary for statistical analysis is supported by an im-
mense investment in research, training, and software. A comparable investment
in the betting vocabulary will require decades of effort. It may, however, be the
best contribution statisticians can make to the academic disciplines that use
observational data. It may also be the best way to secure statistical insights
within the emerging fusion of mathematical statistics with machine learning and
other cultures in engineering and computer science that put more emphasis on
prediction. The conundrums and phantasmagoria of frequentism, long tolerated
within mathematical statistics, may be less sustainable in this wider culture.
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Hachette, Paris, 1843. Reprinted in 1984 as Volume I (Bernard Bru, editor)
of [17]. 16, 20
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bre d’observations. In Joseph Fourier, editor, Recherches statistiques sur
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française à l’hégémonie allemande. Regards belges. PhD thesis, Université
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