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Abstract

We demonstrate, on the example of Wigner’s quasiprobability distribution, how
negative probabilities can be treated and taken advantage of in the framework
of game-theoretic probability.
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1 Introduction

Negative probabilities may appear devoid of any empirical meaning. The fre-
quentist semantics does not apply to them. “It is absurd to talk about an urn
containing −17 red balls” [7, page 148]. Yet negative probabilities are usefully
employed in quantum physics. The situation reminds us of the introduction of
imaginary numbers in the theory of algebraic equations, even though the stan-
dard semantics, according to which numbers are quantities, does not apply to
imaginary numbers.

In this note we illustrate that negative probabilities may be usefully em-
ployed in the game-theoretic approach to probabilities [9, 10].

2 Quantummeasurement: statistical testing view

We work in the framework of the most standard formalization of (non-relativistic)
quantum mechanics. It was originally proposed by John von Neumann [5, 6].
A modern, mathematically rigorous exposition is found in the book [4].

Like any physical system, a quantum system Q has a state space. The state
space of Q is a Hilbert space H. The states of Q are represented by unit vectors
in H.

For simplicity of exposition, we consider a quantum system Q of one particle
Π moving in one dimension, though all of our results generalize to more (but
finitely many) particles1 moving in more (but finitely many) dimensions. The
state space of our quantum system Q is the Hilbert space L2(R) of square
integrable functions f : R → C with the inner product of f, g ∈ L2(R) given

by the Lebesgue integral

∫
f∗(t)g(t)dt. Here f∗(t) is the complex conjugate of

f∗(t), and, by default, the integrals are from −∞ to +∞.
Consider physical properties of Q, such as the position of particle Π, which

take real values and can be measured. Such a physical property is represented by
a self-adjoint operator A over L2(R). It is common to speak about measuring
A itself and to call A an observable. The result of the measurement of (the
physical property represented by) A in a given state ψ of Q is determined
probabilistically. The probability that the result lies in a real interval (u, v] is
given by formula

ProbA(u, v] = ‖(Ev − Eu)ψ‖2 (1)

where {Er : r ∈ R} is the spectral resolution of the identity for A, whose
existence follows from the spectral theorem for linear operators in Hilbert spaces
proved originally by von Neumann [5]; a modern treatment is found in [4, §10].

We represent quantum measurement as the following perfect-information
protocol of interaction (or game, except that we do not specify winning condi-

1TheWigner distribution (and the marginals that determine it) are about the instantaneous
position and momentum of the (distinguishable, non-relativistic) particle(s). There is no time
variable, no Hamiltonian. We don’t have to worry about anything “happening”, such as a
collision.
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tions) between four players, Experimenter, Quantum Mechanics, Skeptic, and
Reality. (The identities of Experimenter and Reality are not essential to us; we
could combine them in one super player, World.)

Protocol 1 (Quantum measurement).

K0 := 1.

FOR n = 1, 2, . . . ,

1. Experimenter prepares a state ψn of system Q
and chooses an observable An to be measured in state ψn.

2. Quantum Mechanics provides a probability distribution µn on R.

3. Skeptic chooses a measurable function fn ∈ [0,∞]R

such that
∫
fndµn = 1.

4. Reality produces the result rn ∈ R of the measurement of observable
An in state ψn.

5. Kn := Kn−1fn(rn).

Here Experimenter and Reality are free agents, who do not have to follow any
strategy, deterministic or probabilistic. The strategy of Quantum Mechanics is
given by formula (1), namely µn = ProbAn

at stage n. The goal of Skeptic is
to test Quantum Mechanics, and we will be interested in strategies for testing
available to Skeptic.

In Protocol 1, Skeptic tests Quantum Mechanics by gambling against its
predictions. He starts from capital K0 = 1, and at time n his capital is Kn. The
condition

∫
fndµn = 1 means that the game of testing is fair (from the point

of view of Quantum Mechanics), and fn ≥ 0 means that Skeptic’s capital is
not allowed to become negative. Our interpretation is that Kn is the amount
of evidence found by Skeptic against Quantum Mechanics (in general, against
the null hypothesis). For further details of this style of testing, see [8] and [10,
Chapter 1].

Protocol 1 is a simplified version of the protocols given in [10, §10.6] and [9,
§8.4], which also involve the deterministic development of state ψ governed by
the Schrödinger equation. Here is one corollary of game-theoretic limit theo-
rems.

Corollary 1. Let F : R → R be a bounded measurable function. Skeptic can
force the event

lim
N→∞

1

N

N∑
n=1

(
F (rn)−

∫
Fdµn

)
= 0,

in the sense of having a strategy ensuring Kn →∞ whenever the equality fails.
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Proof. This corollary, similarly to Corollary 10.14 in [10], can be deduced from
Proposition 1.2 in [10]. Proposition 1.2 of [10] is a statement about Protocol 1.1
of [10], in which the restriction of Forecaster’s and Reality’s moves to [−1, 1]
can be relaxed to requiring those moves to be bounded in absolute value by a
given constant [10, p. 7]. A strategy for Skeptic whose existence is asserted in
Corollary 1 can be obtained from any strategy Σ for Skeptic whose existence is
asserted in Proposition 1.2 in [10] as follows:

� When playing in Protocol 1, feed Protocol 1.1 of [10] with Forecaster’s
moves mn :=

∫
Fdµn, Skeptic’s moves recommended by Σ, and Reality’s

moves yn := F (rn).

� When it is Skeptic’s turn to make his move fn in Protocol 1, he should
set

fn(r) := 1 +
Mn

Kn−1
(F (r)−mn) (2)

(and set, e.g., fn := 0 if Kn−1 = 0), where mn is defined as above, and
Mn is the move recommended by Σ in response to the moves made so far
in Protocol 1.1 of [10].

This will make sure that Skeptic’s capital changes in the same way in Protocol 1
and in Protocol 1.1 of [10]: Kn := Kn−1fn(rn) is equivalent to

Kn := Kn−1 +Mn(yn −mn).

Corollary 1 (a law of large numbers) is unusual in that it lies outside Kol-
mogorov’s framework for probability. The reason for that phenomenon is that
Experimenter does not have to follow any strategy. Of course, real-world ex-
perimenters may follow deterministic or probabilistic testing strategies, which
brings us into Kolmogorov’s framework.

3 Wigner’s quasiprobability distribution

Recall that our quantum system Q is a particle Π moving in one dimension.
For technical reasons, we assume that Experimenter only prepares Q in states
ψ which are smooth and compactly supported on R; such states ψ will be called
nice. Nice states are everywhere dense in L2(R). Below, by default, states of Q
are nice.

Two important physical properties of Q are the position x and momentum
p of particle Π. According to quantum mechanics, they are represented by
self-adjoint operators

(Xψ)(x) := xψ(x) and (Pψ)(x) := −i~dψ
dx

(x)

respectively where ~ is a real constant, the so-called reduced Planck constant.
The uncertainty principle of quantum mechanics asserts a limit to the preci-

sion with which position x and momentum p can be determined simultaneously
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in a given state ψ, even if ψ is nice. You can know the distribution of x and
that of p, but there is no joint probability distribution of x, p with the correct
marginal distributions of x and p.

The situation changes if one allows negative probabilities. To address the
issue, we need the following definitions. A quasiprobability distribution µ on
a measurable space (Ω,Σ) is a real-valued, countably additive function on the
measurable sets such that µ(Ω) = 1. A quasiprobability density function for a
given quasiprobability distribution is the obvious generalization of a probability
density function for a given probability distribution.

Remark 1. Quasiprobability distributions are special signed probability mea-
sures and are also known as signed probability distributions. One may worry
whether countable additivity makes sense in signed probability spaces, but it
does [3, §2.1].

In a 1932 paper [12], Eugene Wigner exhibited a function

Wψ(x, p) :=
1

2π

∫
ψ∗
(
x+

β~
2

)
ψ

(
x− β~

2

)
eiβpdβ

where ψ is an arbitrary unit vector in L2(R). It is easy to check that all values
of Wigner’s function Wψ(x, p) are real, but some values may be negative. In
any nice state ψ, Wψ gives rise to a unique quasiprobability distribution Wψ,
Wigner’s quasiprobability distribution, for which it is a quasiprobability density
function.

Remark 2. The Wigner functionWψ is also known as the Wigner-Ville function
because it was introduced in 1948 by Jean-André Ville in the context of signal
processing [2, 11]. Signal processing is beyond the scope of this paper.

For any real numbers a, b, the physical property z = ax + bp of Q is rep-
resented by the self-adjoint operator Z = aX + bP . In any nice state ψ of
the quantum system Q, let wa,bψ be the probability distribution ProbZ given by
formula (1) with A = Z.

The following proposition was presented in [1] and rigorously proved in [3].

Proposition 1. In every nice state ψ, Wigner’s quasiprobability distribution
Wψ is the unique quasiprobability distribution on R2 whose image, under any

linear mapping (x, p) 7→ ax+ bp, is exactly wa,bψ .

Although Wψ often has negative values, its images wa,bψ are genuine nonneg-
ative probability distributions. The proposition allows us to refine Protocol 1
to the following perfect-information protocol.

Protocol 2 (Wigner-style quantum measurement).

K0 := 1.

FOR n = 1, 2, . . . ,
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1. Experimenter prepares a nice state ψn.

2. Quantum Mechanics provides a quasiprobability distribution,
namely Wψn .

3. Experimenter chooses a pair (an, bn) of real numbers and thus the
observable Zn = anX + bnP .

4. Skeptic chooses a measurable function fn ∈ [0,∞]R

such that
∫
fn dw

an,bn
ψn

= 1.

5. Reality produces the result rn ∈ R of the measurement of observable
Zn in state ψn.

6. Kn := Kn−1fn(rn).

Protocol 2 shows how we can test Wigner’s quasiprobability distribution.
Notice that Skeptic gambles only against nonnegative probability distributions
wan,bnψn

. This is a coherent testing protocol in the sense of [9, 10]. Recall that each

probability distribution wan,bnψn
is an image of the quasiprobability distribution

Wψn
; negative probabilities are used only to generate nonnegative probabilities

which are tested as usual.

Corollary 2. Let F : R → R be a bounded measurable function. Skeptic can
force the event

lim
N→∞

1

N

N∑
n=1

(
F (rn)−

∫ ∫
F (anx+ bnp)Wψn

(x, p)dx dp

)
= 0

in the sense of having a strategy ensuring Kn →∞ whenever the equality fails.

Proof. Similarly to Corollary 1, this corollary will be also deduced from Proposi-
tion 1.2 of [10]. A strategy for Skeptic whose existence is asserted in Corollary 2
can be obtained from any strategy Σ for Skeptic whose existence is asserted in
Proposition 1.2 in [10] as follows:

� When playing in Protocol 2, feed Protocol 1.1 of [10] with Forecaster’s
moves

mn :=

∫ ∫
F (anx+ bnp)Wψn

(x, p)dx dp, (3)

Skeptic’s moves recommended by Σ, and Reality’s moves yn := F (rn).

� When it is Skeptic’s turn to make his move fn in Protocol 1, he should set
(2), where mn is now defined as (3), and Mn is still the move recommended
by Σ in response to the moves made so far in Protocol 1.1 of [10].

The same argument as in the proof of Corollary 1 shows that Skeptic’s capital
changes in the same way in Protocol 1 and in Protocol 1.1 of [10].

It remains to show that fn, as defined by (2), is a valid move for Skeptic,

i.e., that
∫
fn dw

an,bn
ψn

= 1. This follows from Proposition 1.

Corollary 2 is stronger than Corollary 1 in the sense that, in Protocol 2,
Quantum Mechanics makes its move before Experimenter chooses an observable.
By Proposition 1, this is impossible to achieve without negative probabilities.
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4 Conclusion

Wigner’s function is a simple and concise description of probabilistic predic-
tions for a wide range of observables. It can be tested using the usual approach
of game-theoretic probability. The function has found useful applications in
physics [3] and signal processing [2], and we expect that the role of quasiprob-
ability distributions will only grow both in practice and in the foundations of
probability and statistics.
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lytique,” Câbles et Transmission 2A (1948) 61–74. English translation:
“Theory and Applications of the Notion of Complex Signal,” RAND
Corporation, Santa Monica, CA, 1958, https://www.rand.org/pubs/

translations/T92.html.

[12] Eugene P. Wigner, “On the quantum correction for thermodynamic equi-
librium,” Physical Review 40 (1932) 749–759.

7

https://www.rand.org/pubs/translations/T92.html
https://www.rand.org/pubs/translations/T92.html

	Introduction
	Quantum measurement: statistical testing view
	Wigner's quasiprobability distribution
	Conclusion
	References

