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Abstract

The game-theoretic foundation for probability, which begins with a betting game
instead of a mere assignment of probabilities to events, can serve as the basis
for all the probability mathematics used by mathematical statistics. It can also
generalize frequentist inference so that it stands beside Bayesian inference as a
way of using betting. The generalization is vast.

When you bet on an event, the event happens or not; you win or lose. So
the frequency of the event is central. But there are more complicated bets. You
might put $10 on the table on the understanding that you will get back either
$0 or $5 or $30. This is the first step beyond frequentism. The next step is to
recognize that we can test any probability forecaster by betting against their
forecasts. It does not matter whether the forecasts are made by a statistical
model, a neural net, or a physical model.

This generalization can dissolve the illusion of competing subjective and
objective interpretations of probability. A betting game involves two players,
one who offers bets and one who selects from the offers. There may be objective
and subjective elements on both sides.
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1 Introduction

The conventional picture of the Bayesian vs. frequentist divide conflates two
distinctions. One concerns the meaning of probability — whether it is subjec-
tive or objective. The other concerns a choice between two methods of inference
— one that relies on the type of reasoning introduced by Thomas Bayes (thus
using Bayes’s theorem and conditional probability calculations), and one that
relies on the type of reasoning introduced earlier by Jacob Bernoulli (thus us-
ing significance tests, confidence intervals, etc.). Bayesians are said to believe
that probabilities are subjective and that Bayes’s theorem usually suffices for
inference. Frequentists are said to believe that probabilities are frequencies and
that this justifies Bernoullian methods.

This chapter explains how the game-theoretic foundation for probability,
which begins with a betting game instead of a mere assignment of probabilities
to events, can dissolve the conflation and transform the entire notion of fre-
quentism, generalizing Bernoullian inference so that it stands beside Bayesian
inference as a way of using betting.

The project of using betting games as the starting point for mathematical
probability dates back to Jean Ville, who used it in 1939 to generalize and
criticize Richard von Mises’s earlier project of axiomatizing probability as a
theory about frequencies. Ville’s idea was further developed by Per Martin-
Löf, Claus-Peter Schnorr, Phil Dawid, and others, including Vladimir Vovk and
myself. But it is only now being deployed in mathematical statistics.1

The simplest kind of bet is an all-or-nothing bet. It has only two outcomes:
you win or you lose. You put your money on the table, and you get back a
larger amount known in advance or you get back nothing. But there are more
complicated bets — bets with many possible outcomes. You might put $10 on
the table on the understanding that you will get back either $0 or $5 or $30.
When we make an all-or-nothing bet on an event, it is natural focus our minds
on the frequency of the event in repeated trials, even if these repeated trials
are entirely imaginary. But when we make bets that are not all-or-nothing,
we are taking a first step beyond frequentism. This step, which I discuss in
§2 and in [22], already permits a substantial generalization of the Bernoullian
methodology of significance tests and confidence intervals. And it already begins
to dissolve the illusion of competing subjective and objective interpretations of
probability.

In §3, I take the next step by pointing out the great generality of testing
by betting. We can test any probability forecaster by betting against their
forecasts. It does not matter whether the forecaster is a statistical model, a
machine-learning method, a physical model,, or a soothsayer. Neither do the
topics of the forecasts matter. The forecaster might shift capriciously from one
topic to another. So the betting generalization of Bernoullian methodology is

1For an overview of Ville’s influence, see [4]. Key milestones include [27, 17, 18, 20, 7].
For my work with Vovk, see our recent book, Game-Theoretic Foundations for Probability
and Finance [25], and the working papers posted at www.probabilityandfinance.com. For the
application to mathematical statistics, see especially [22].
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vast.
In §4, I define a formal game for testing a probability forecaster and explain

how this game can be used as a starting point for a generalization of probability
theory, thus providing for the betting method the same mathematical ground-
ing that conventional probability theory provides for the familiar Bernoullian
methods.

In §5, I discuss how the same formal game can represent Bayesian inference.
The Bayesian picture translates into ways of obtaining and using strategies
for the probability forecaster. Other ways of finding such strategies are also
available.

I conclude with two sections of a more historical nature. In §6, I document
some precedents for the way the adjective “Bernoullian” is used in this chapter.
In §7, I discuss why testing by betting, in spite of seeming so natural, has
previously been so little used in mathematical statistics.

2 Beyond all-or-nothing bets

For both testing and prediction, as Ville understood, betting generalizes rather
than displaces the frequency theory of probability. In the frequentist tradition,
we test a probabilistic hypothesis by singling out an event to which it gives
small probability; the hypothesis is discredited at least to some extent if the
event then happens.2

We can make the singling out an event of small probability p more vivid by
pretending that the statistician is betting against the event at odds p : (1−p), so
that the discredit is associated with winning (1− p)/p times as much as risked.
Once we think about testing in this way, it is natural to generalize by allowing
the statistician to buy any nonnegative payoff S for the expected value E(S) the
hypothesis assigns it. The discredit is then measured by the factor S/E(S) by
which the bet multiplies the money it risks. Prediction is similarly generalized;
once we have provisionally accepted a probabilistic hypothesis, betting against
it is associated with predicting outcomes for which the bet will not multiply by
a large factor the money risked.

Are the probabilities and expected values in this picture subjective or objec-
tive? An answer to this question must begin with the fact that a bet involves
at least two parties. Usually one party proposes or offers the bet; the other
decides whether to take it. Even when our story about betting is only imagined
by a single scientist or statistician, the story involves two parties, the one that
offers to sell any nonnegative payoff S for E(S), and the one who decides which
payoff S to buy. There may be elements of subjectivity and objectivity on both
sides. The expected values E(S) may represent the opinions of a single person,

2Readers unfamiliar with the frequentist tradition may find this historical fact puzzling or
illogical. Perhaps it is best explained as a result of wanting to use Bernoulli’s theorem as a
justification for equating probability with frequency. That theorem says that the frequency of
an event in repeated trials will be as close as desired to its probability with high probability,
and so equating probability with frequency requires ruling out events of small probability. See
[24] for further discussion.
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or they may represent the predictions of a well established theory. The test S
may be chosen on a whim, or it may be a conventional choice corresponding to
a serious alternative. In the end, neither the subjectivity or the objectivity can
be eliminated entirely from the story. Betting requires an agent, but the idea
that probabilities say something true about the world is inherent in the project
of testing them.

When statisticians test with bets that are not all-or-nothing, they have some
new and very useful tools. As explained in [23], the factor S/E(S), considered as
measure of the strength of the statistical evidence, is more easily communicated
to laypeople than a p-value. We also acquire a logic for sequential testing,
because a sequence of bets form a single test when each is allowed to use only
the capital remaining from the previous one, the final measure of the evidence
against the hypothesis then being the ratio of the final to the initial capital.3 In
this context, moreover, the choice of a test S implies an alternative hypothesis,
thus tightening the logic, linking test outcome to prior expected outcome under
an alternative in a way that the standard concepts of p-value and power are not
linked.

3 Improvisation: Bob tests Alice

For at least twenty years, since Leo Breiman famously contrasted the culture
of modeling with the culture of prediction [5], statisticians have struggled to
reconcile the free-wheeling methods of machine learning with the probabilis-
tic vision that still defines mathematical statistics. Even when the predictions
produced by dynamic neural networks, for example, take the form of probabili-
ties, these probabilities live outside R. A. Fisher’s statistical models and Andrei
Kolmogorov’s global probability measures [11, 16]. This is also true of the
probabilistic predictions made by the physical models that dominate weather
prediction. How can we test probabilistic predictions when they are not derived
from a statistical model or a probability measure?

This question is easily answered once we accept testing by betting. We
can test any probability forecaster by betting against each of its successive
predictions, no matter how these predictions are generated and no matter how
improvised they are. No model is required.

Suppose Alice announces odds for sports events. One week she looks at
the roster for a tennis tournament and assigns each player a probability of
winning. The next week she announces probabilities for the outcome of a game
between Real Madrid and Barcelona—probabilities for Real Madrid winning, for
Barcelona winning, and for a tie. Then she announces a probability distribution
for the winning point spread between the Nets and the 76ers. And so on. Bob
can challenge Alice’s prowess as a probability forecaster by betting at the odds
Alice announces. If Bob begins with $1, bets each time using only what remains

3The condition that each bet only risk the capital from the previous one is essential. If you
can draw on an unlimited line of credit, then you can always expect to multiply the capital
you actually use; see [6].
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of this initial capital together with subsequent winnings, and walks away with
$100 after a year of betting, he will have put a big dent in Alice’s reputation
as a forecaster. Alice may plead that she was merely unlucky, but she cannot
claim success as a forecaster.

We can glean some general insights from this example.

1. Bob can challenge and discredit Alice without giving alternative proba-
bilities. He does not even need to believe that there are meaningful or
reliable probabilities for the events in question.

2. Bob does not need to risk real money. He can bet with play money. His
goal is to make a point, not to get rich. When he uses play money, he does
not need a counterparty to his bets. So Alice is not risking real money
either; she is risking only her reputation as a forecaster.

3. Even if real money is risked by both parties, we can posit that the amounts
are too small to matter. At question is the factor by which Bob manages
to multiply the money he risks. If Bob risked only his initial $1 and ended
up with $100, he could have achieved the same factor of 100 by making
bets only 1% as great, risking 1 cent and ending up with $1.

4. Alice may know more about the sports and the competitors than Bob.
If Alice has a good reputation for using knowledge available to her to
forecast sports outcomes, and yet Bob succeeds in making money on her
forecasts, then we may conjecture that Alice’s additional information is
not very relevant.

5. Bob may know more about the sports and the competitors than Alice.
If Alice has a good reputation as a sports forecaster, and yet Bob makes
money on her forecasts, then we may conjecture that things known to Bob
but not to Alice are relevant.

6. If Bob does not make money betting against Alice’s probabilities—if he
begins with $1 and ends up with only 10 cents or perhaps $1.10—then
we have no evidence against Alice’s probabilities. If we know Bob to be
very clever and very knowledgeable about the events in question, then this
result may be taken as evidence that Alice is doing her job well.

Bob can also test Alice when she gives repeatedly updated probabilities for
the same outcome. Suppose, for example, that every week during the football
season in the United States she gives probabilities for which team will emerge
as the champion of the National Football League. In this case, Bob can test her
by buying and selling weekly. Every time Alice assigns a probability to each
team being the final champion, Bob buys a payoff that depends on which is the
final champion, then sells it back to her the next week at the prices she gives
then. If he uses only an initial stake and subsequent winnings for his betting
but multiplies that initial stake substantially, then Alice will be discredited.
What other way could she be discredited? What other way could any empirical
meaning be assigned to her probabilities?
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When a forecaster repeatedly changes their probabilities concerning a future
event, it may be possible to test their insight even if the event itself is aborted.
In early 2020, www.fivethirtyeight.com was regularly giving new probabilities for
the season’s championship of the National Basketball Association. The betting
by testing method might have been used to discredit (or support) this forecaster
even though the championship was never settled. The remainder of the season
was canceled on March 12 because of the COVID-19 virus.

Financial markets and the prediction markets that imitate them also provide
a setting for testing by betting. In the case of financial markets, it is the
efficiency of a market rather than the sagacity of a forecaster that is at stake.
This way of testing market efficiency has not yet been widely implemented,
but see [25, Chapter 16] and [30]. Both financial and prediction markets are
constantly being tested by the participants themselves, but the transaction costs
and the other restrictions they impose (limitations on short selling in financial
markets and limitations on the amounts bet in prediction markets) leave room
for thought experiments in the form of imagined testing by betting.

4 Strategies for Bob: Bernoullian inference via
game theory

The usual theory of significance testing and confidence intervals is justified by
results in mathematical probability — the law of large numbers, the central
limit theorem, and all their variations and generalizations. Is there analogous
justification for the expansive use of testing by betting advocated here? Yes.

Suppose Alice’s announcements always take the form of a probability dis-
tribution P on some finite nonempty set Y and that Bob bets by choosing and
buying a payoff f(y), where f is a real-valued function on Y and y ∈ Y is the
outcome of the sporting event, not yet known. He pays P ’s expected value for
this payoff, EP (f). Alice and Bob alternate moves, say for N rounds. Write
K0 for Bob’s initial capital, and Kn for his capital at the end of the nth round.
Write P(Y) for the set of all probability distributions on Y. Write N for the
natural numbers. With this notation, we can lay out the rules for play in Alice’s
and Bob’s game as follows.

Protocol 1 (Testing Alice’s probabilistic forecasts).
Parameter: N ∈ N
K0 = 1.
FOR n = 1, 2, . . . , N :

Alice announces a finite nonempty set Yn and Pn ∈ P(Yn).
Bob announces fn : Yn → [0,∞) such that EPn

(fn) = Kn−1.
Reality announces yn ∈ Yn.
Kn := fn(yn).

Here, and in the other protocols discussed in this chapter and in [25], each
player sees the other players’ moves as they are made; the game is one of perfect
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information. This does not rule out the possibility that players acquire private
information—information not available to the other players—at the outset or
as play proceeds.

The requirement that Bob’s move fn always be non-negative and have ex-
pected value equal to his current capital Kn−1 enforces the condition that he
risk no more than his initial capital K0. He is not be allowed to borrow or oth-
erwise bring more money into the game when play goes badly for him. Because
K0 = 1, his final capital KN is the amount by which he multiplies this initial
capital.

Within this setup, the mathematical results of probability theory are the-
orems of game theory — theorems about whether one or more of the players
have strategies that guarantee certain goals. Consider, for example, the goal
KN ≥ 30 for Bob. He does not have a strategy guaranteed to achieve this goal,
because Reality can keep him from ever increasing his capital. But there are
many goals he can achieve. For example, if E ⊆ Y, ε > 0, and X is the num-
ber of the outcomes y1, . . . , yN in E, then Bob has a strategy that will achieve
KN ≥ Nε2 unless the moves by Alice and Reality satisfy∣∣∣∣∣X −

∑N
n=1 Pn(E)

N

∣∣∣∣∣ < ε; (1)

see [25, Exercise 2.8]. The agreement between Alice and Reality represented by
(1) is one aspect of the game-theoretic law of large numbers. Probability’s other
classical limit theorems, the law of the iterated logarithm and the central limit
theorem in their myriad guises, also have game-theoretic formulations. We can
put these game-theoretic results in more familiar form if we set

P(A) := inf

{
α | Bob can guarantee that KN ≥

1

α
when A happens

}
(2)

for every set A of possibilities for the moves Y1, P1, y1, . . . ,YN , PN , yN by Alice
and Reality. The existence of a strategy for Bob guaranteeing KN ≥ Nε2 unless
Alice and Reality make (1) happen can then be written as

P

(∣∣∣∣∣X −
∑N
n=1 Pn(E)

N

∣∣∣∣∣ ≥ ε
)
≤ 1

Nε2
.

In [25], Vovk and I vary and generalize Protocol 1 in a great variety of ways.
We imagine that play continues indefinitely instead of ending after N rounds.
We suppose that N is a stopping time—a rule that stops play when and if moves
so far satisfy some condition. We limit the moves one of the players can make or
even replace the player with a fixed strategy. We have Reality announce other
new information on each round. We introduce other players. We allow Alice
to offer fewer bets, in the spirit of imprecise probability [1]. We allow the Yn
to be infinite. We even consider continuous time. The definition (2) can be
adapted to all these generalizations, thus providing a rigorous generalization of
probability theory and mathematical statistics.

6



5 Strategies for Alice, Bayesian and non-
Bayesian

Let us simplify Protocol 1 by fixing a finite nonempty set Y and requiring Alice
to always choose Yn equal to Y. In this case, a probability distribution P for
Reality’s moves y1, . . . , yN in Protocol 1 can serve as a strategy for Alice. Alice
simply uses P ’s conditional probability distribution P (yn|y1, . . . , yn−1) as her
nth move Pn. This is a very special kind of strategy for Alice; when choosing
Pn, it takes into account only Reality’s previous moves, ignoring Bob’s moves
and any other information Alice might have or acquire.

Strictly speaking, of course, a probability distribution P for y1, . . . , yN may
not define all the needed conditional probabilities; P (yn|y1, . . . , yn−1) is not
defined when P gives y1, . . . , yn−1 probability zero. So a more accurate for-
mulation is that a system of conditional probabilities—a family of probability
distributions—can serve as a strategy for Alice.

Write S for the set of all sequences of elements of Y of length N − 1 or less;
this includes the “empty sequence”, denoted by �. With this notation, we can
say that the strategy for Alice is a family (Ps)s∈S of probability distributions
on Y.

Suppose we announce such a strategy for Alice to all the players at the outset
and require Alice to play it. This leaves Alice with no role to play. Removing
her, we obtain the following protocol.

Protocol 2 (Testing a probability distribution).
Parameters: N ∈ N, finite nonempty set Y, family (Ps)s∈S
K0 = 1.
FOR n = 1, 2, . . . , N :

Bob announces fn : Y → [0,∞) such that EPy1,...,yn−1
(fn) = Kn−1.

Reality announces yn ∈ Y.
Kn := fn(yn).

Given the family (Ps)s∈S, we can define a global probability distribution P
for y1, . . . , yN using the usual the formula for a joint probability as a product
of conditional probabilities:

P (y1, . . . , yN ) = P (y1)P (y2|y1) . . . P (yN |y1, . . . , yN−1).

Alternatively, we can use the rule of iterated expectation to define the global
expectation operator:

E(f(y1, . . . , yN )) := EP�
(EPy1

(· · ·EPy1,...,yN−1
(f(y1, . . . , yN )) · · · )). (3)

This manner of defining P corresponds to the reasoning about the value of ex-
pectations that we find in the work of Blaise Pascal and other early probabilists
(c.f. [25, p. 36]).

Changing your predictions for future events by conditioning a probability
distribution on what has happened so far is sometimes considered the essence of
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Bayesian inference. Our formulation respects, moreover, the conditions of coher-
ence on which Bayesians insist. When Alice prices all payoffs fn : Y → [0,∞),
allowing Bob to buy or sell fn at the same price, the prices must cohere by all
being expected values with respect to a probability distribution. The analo-
gous weaker condition of coherence used in the theory of imprecise probability
is required when Alice gives separate buying and selling prices [25, Chapter 6].

Another aspect of Bayesian inference is the idea of averaging probability
distributions. Suppose Alice is uncertain about what probability distribution
on YN will resist Bob’s efforts but feels confident that one of the distributions
in a certain class (Pθ)θ∈Θ would do the job. In this case, the Bayesian method is
to average these distributions with respect to some prior distribution on Θ and
use the result as P . Under certain conditions, we know, the P thus obtained will
do asymptotically as well any Pθ. But this is not, of course, the only way Alice
might proceed. Another interesting possibility is to average possible strategies
for Bob and play against the average; see [25, Chapter 12].

6 Who said “Bernoullian and Bayesian”?

I have been using the adjective Bernoullian rather than frequentist to designate
statistical methods that follow Jacob Bernoulli’s example rather than that of
Thomas Bayes. This recognizes Bernoulli as the first to state a theory of direct
statistical estimation, just as Bayes was the first to state Bayes’s formula. It
also allows us to contrast Bernoullian and Bayesian methods without asserting
anything about how probabilities are to be interpreted.

I have borrowed this use of “Bernoullian” from some prominent predecessors.
Here are some quotations documenting their use of it.

� Francis Edgeworth used Bernoullian in this way in 1918, contrasting “the
direct problem associated with the name of Bernoulli” with “the inverse
problem associated with the name of Bayes” [10].

� Richard von Mises made a similar remark in German in 1919 ([28], page 5):
“Man kann die beiden großen Problemgruppen . . . als den Bernoullischen
und den Bayesschen Ideenkreis charakterisieren.” In English: “We can
call the two large groups of problems the Bernoullian and Bayesian circles
of ideas.”

� A. P. Dempster explicitly advocated the use of “Bernoullian” and
“Bayesian” in 1966 [8]. In 1968 [9], in a review of three volumes of
collected papers by Jerzy Neyman and E. S. Pearson, Dempster wrote

Neyman and Pearson rode roughshod over the elaborate but
shaky logical structure of Fisher, and started a movement which
pushed the Bernoullian approach to a high-water mark from
which, I believe, it is now returning to a more normal equilib-
rium with the Bayesian view.
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� Ian Hacking, probably inspired by Dempster, used Bernoullian repeat-
edly in his 1990 book, The Taming of Chance [14]. For example, when
discussing Poisson’s interest in changes in the chance of conviction by a
jury (page 97), he wrote:

Laplace had two ways in which to address such questions. One
is Bernoullian, and attends to relative frequencies; the other is
Bayesian, and is usually now interpreted in terms of degrees
of belief. Laplace almost invited his readers not to notice the
difference.

The use of “Bernoullian” by Edgeworth and von Mises predated the intro-
duction of the term “frequentist” by Ernest Nagel in 1936 [19]. It is also notable
that von Mises, generally recognized in the mid-20th century as the leading pro-
ponent of “the frequency theory of probability”, always contended that Bayes’s
formula provides the correct method of statistical inference [29].

7 Why does testing by betting seem novel?

Testing by betting is part of our culture. It is commonplace to challenge a
strongly expressed opinion by offering a contrary bet or demanding that the
opinionated party offer odds. We know, moreover, that mathematical probabil-
ity grew out of a calculus for betting. So how can testing by betting seem novel
in mathematical statistics? Surely this can only be because mathematicians
have deliberately put it out of mind. Suppressed it because it is dangerous.
Sometimes too immoral. More often, simply too subjective. We want science,
and its handmaiden statistics, to be objective.

The celebrated letters between Blaise Pascal and Pierre Fermat in 1654 was
about betting, and Christian Huygens’s pamphlet, published a few years later,
was about betting — about how stakes should be set for bets in games of chance.
Pascal’s and Huygens’s arguments, moreover, were game-theoretic [21]. Hans
Freudenthal and Stephen Stigler have emphasized Huygens’s argument for equal
chances at a and b being worth (a+b)/2 [13, 26]. To have equal chances at a and
b, Huygens explains, you may play a game in which you and an opponent both
stake (a+ b)/2, with the winner taking the whole a+ b but giving the loser back
b. Here equal chances might mean simply that the players are treated equally.
Huygens was talking about games of chance, but his reasoning could apply just
as well to a game of skill, provided that the two players have agreed to play on
even terms.

The concept of probability and even the word “probability” did not appear
in Pascal’s, Fermat’s, and Huygens’s writings about their calculus for betting.
Many authors did write about probability in the 17th century and earlier, but
their probabilities were not numerical and were not modeled on games of chance
[12, 15]. This changed only with Bernoulli’s Ars conjectandi, published in 1713
[2, 3]. In order to make Pascal’s and Huygens’s calculus into a theory of prob-
ability, Bernoulli replaced Huygens’s game theory with calculations based on
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equally possible cases. Why? One obvious motivation was to make probability
numbers appear more objective. Betting has an ineradicable subjective element.

Today, when the objectivity of science is under attack, we may feel more
tempted than ever to avoid the notion of betting in discussions of statistical
testing. But the raging controversies about the meaning of significance testing
suggest that this strategy is failing. As I argue in [23], talking about betting
may help us communicate the results of statistical tests in a way that better
enables the public to understand both their value and their limitations.
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