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Abstract

Although the names significance test, p-value, and confidence interval came
into use only in the 20th century, the methods they name were already used
and abused in the 19th century. Knowledge of this earlier history can help
us evaluate some of the ideas for improving statistical testing and estimation
currently being discussed.

This article recounts first the development of statistical testing and estima-
tion after Laplace’s discovery of the central limit theorem and then the sub-
sequent transmission of these ideas into the English-language culture of math-
ematical statistics in the early 20th century. I argue that the earlier history
casts doubt on the efficacy of many of the competing proposals for improving
on significance tests and p-values and for forestalling abuses. Rather than fur-
ther complicate the way we now teach statistics, we should leave aside most of
the 20th-century embellishments and emphasize exploratory data analysis and
the idea of testing probabilities by betting against them.
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1 Introduction

At a time when the evaluation of statistical evidence has become ever more
important, standard methods for this evaluation are under increasing scrutiny.
Some statisticians argue against the continued use of the phrase statistical sig-
nificance; others deplore the way p-values are taught and used. Numerous com-
peting proposals for improving the presentation of statistical results are being
advanced. For some observers, the entire enterprise of objective judgment based
on statistics is threatened by the practice of searching for statistical significance,
p-hacking as it is now called.

Those addressing this problem draw on experience from many domains of
application. History may also have a role to play. Marie-France Bru and Bernard
Bru have made the case for history’s role with these eloquent words:

To penetrate to the reasons of things, look at how they have gradu-
ally been revealed in the course of time, in their progression and in
their ruptures, if any.1

By studying the historical record, we may gain more understanding of how the
space of possibilities in which we are struggling was constructed and why it has
persisted through earlier crises. We may even find discarded paths of thought
that might merit renewal.

Some authors have traced current difficulties with significance testing back
to the 20th-century statisticians R. A. Fisher and Jerzy Neyman. The devel-
opment of Fisher’s and Neyman’s ideas and the conflicts between them form
a fascinating and important chapter of intellectual history,2 and more atten-
tion to that history might diminish errors and abuses resulting from university
teaching that fails to distinguish clearly between Fisher’s ideas about evidence
and Neyman’s ideas about decision-making.3 Debates about statistical infer-
ence since Fisher and Neyman, concerning objective and subjective probability
and the roles of Bayes’s rule and likelihood, are also important and in some
cases venerable enough to qualify for historical as well as philosophical study.4

For a full picture, however, we also need to reach further back in history. For
in many respects, Fisher’s and Neyman’s ideas had already been developed in
the 19th-century, in traditions launched by Laplace and Gauss.

Nineteenth-century parallels to what has happened in the 20th century and
the first two decades of the 21st give us reason to question some diagnoses
for current difficulties. Abuses being decried today—searching for significant
results, unsupported modeling assumptions for observational data, etc.—arose
in the 19th century as well. These abuses cannot be blamed on the terms
statistically significant and p-value, which were not in use in the 19th century.

1Translated from [20, pp. 301–302]: Pour pénétrer les raisons des choses, voyons comment
elles se sont dévoilées progressivement au cours du temps dans leurs enchâınements et leurs
ruptures, s’il s’en trouve.

2See especially [78].
3See for example [51].
4See [82] and its many references.
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It also becomes more difficult to hope that an emphasis on confidence intervals
can diminish abuses of significance testing when we learn that 19th-century
p-hacking grew out of the teaching of confidence intervals.

This history also shows us rupture. The Laplacean tradition was heavily
scarred by 19th-century abuses, to the extent that it was ridiculed and largely
forgotten, especially in France. Current neglect of the 19th-century history is
due in part to the fact that R. A. Fisher and many of his successors felt that
they were building on ruins. As Fisher’s daughter Joan Fisher Box said this
bluntly in 1978 [17, p. 62]:

The whole field was like an unexplored archeological site, its struc-
ture hardly perceptible above the accretions of rubble.

This enduring influence of this view is illustrated by David J. Hand’s approving
citation of Box’s words in 2015 [59, p. 2].

The historical account in this paper begins, in Section 2, by discussing
Laplace’s large-sample statistical theory in the 19th century—how it was cre-
ated, how it differed from Gauss’s theory of least squares, how it was popu-
larized, and how it was discredited. Laplace’s theory was based on the central
limit theorem, which he discovered in 1810 and vigorously promoted until his
death in 1827. From this theorem, using the method of least squares but with-
out knowing probabilities for measurement errors or prior probabilities, we can
obtain large-sample confidence limits for unknown quantities and hence signif-
icance tests for whether the quantities are zero. Gaussian least squares, which
emphasized finding the best estimates rather than practical certainty for lim-
its on errors, came to dominate work in astronomy and geodesy, but Laplace’s
large-sample theory was widely used in the human sciences once Joseph Fourier
and Siméon-Denis Poisson made it accessible to statisticians. The uses included
p-hacking and inferences based on questionable assumptions.

Although the misuse of Laplace’s theory so discredited it in France that
it was practically forgotten there by the end of the 19th century, it was still
taught and used elsewhere. Section 3 sketches its transmission into Britain and
the United States: how limits for practical certainty were variously expressed
in terms of probable errors, moduli, standard errors, and finally, in Fisher’s
Statistical Methods, tail probabilities, and how the terms significance and p-
value emerged. The use of significant as a technical term in statistics derives
from its use by Francis Edgeworth in 1885, and some of the confusion associated
with the word results from Edgeworth and Karl Pearson using it in a way that
is no longer readily understood. The term p-value appears in statistics in the
1920s, deriving from the much older “value of P”.

Section 4 looks at lessons we might draw from this history. One lesson is
that p-hacking and other abuses of statistical testing need not be blamed on
20th-century innovations; the same abuses arose already in the 19th century.
The difficulties go deeper, and remedies must go deeper. I argue that we should
simplify, not complicate, our teaching of error limits, that we should acknowl-
edge and even emphasize pitfalls, and that we should teach statistical testing
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in betting terms, reviving a fundamental aspect of probabilistic reasoning that
has been progressively minimized for three centuries.

Appendix A documents the history set out here with quotations from 19th-
and early 20th-century authors. Those quoted are only a few of the many who
wrote on statistical estimation and testing during this period, and only a few of
their words are quoted, but these words may help readers judge for themselves
how the logic and the pitfalls of statistical testing did and did not change over
the period.

Appendix B quotes some authors who have distinguished between Bernoul-
lian and Bayesian statistical methods.

2 Laplace’s theorem

The sum of a large number of independent random variables is approximately
normal. This theorem, with any of various regularity conditions that would
make it true, is now called the central limit theorem, but there is justice in
calling it Laplace’s theorem. Pierre Simon Laplace proved it in 1810, with his
characteristic neglect of regularity conditions, and fully recognized its impor-
tance. It was named the central limit theorem (zentraler Grenzwertsatz der
Wahrscheinliehkeitsrechnung) by Georg Pólya in 1920.

2.1 Laplace’s discovery

The integral of e−t
2

appeared in probability theory beginning in 1733, with
Abraham De Moivre’s asymptotic approximation for the sum of an interval
of binomial probabilities. But the notion of a probability distribution with a
density of the form

f(y) =
h√
π
e−h

2y2 (1)

appeared only in 1809, when Carl Friedrich Gauss advanced it as a hypothetical
distribution for errors of measurement, awkwardly justifying it by the fact that
it makes the arithmetic average of the measurements the mode of the posterior
probabilities for the quantity measured. Perhaps partly inspired by Gauss’s
insight, but certainly also inspired by Fourier’s emerging theory of the heat
equation, Laplace soon afterwards arrived at his theorem, which gave (1) as
the distribution of the arithmetic average of a large number of independent
variables, regardless of their individual distribution.5

Laplace first applied his theorem to a problem that had long concerned him,
that of testing the hypothesis that planetary orbits were distributed randomly.
But he quickly realized that he could also use it to justify estimation by least
squares. This inspired both his monumental Théorie analytique des probabilités
(1812) and his more verbal Essai philosophique sur les probabilités (1814). He

5Many authors have detailed the interplay between Laplace and Gauss: [20, 38, 39, 52, 58,
108, 109, 110, 112].
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also wrote to colleagues throughout Europe to explain the importance of his
theorem, illustrating its power with examples.6

2.2 Direct and inverse probability

In the 1770s and 1780s, Laplace had developed Bayes’s rule, which Thomas
Bayes and his friend Richard Price had formulated only for the elementary case
of independent trials of an event with constant probability. In the 1780s, Laplace
had tried to base a theory of errors on his generalization of Bayes’s rule, but
he had been stymied by an inability to calculate the distribution of averages or
other functions of more than a few observations.

Laplace’s 1810 theorem solved this problem of calculation in a spectacular
way. Not only could Laplace now calculate probabilities for the average of many
independent quantities; he could do so without even knowing probabilities for
the individual quantities. Bayes’s rule also now seemed less interesting. The
very concentrated normal distribution of the average would dominate any prior
probabilities, so that Bayes’s rule would give the same result as a direct argu-
ment in the style of Jacob Bernoulli, like the arguments Thomas Simpson and
Daniel Bernoulli had earlier proposed for a theory of errors.7 Laplace did not
disown Bayes’s rule, but he de-emphasized it in his Théorie analytique, and in
the applications of his theorem he usually just stated the Bernoullian argument
[58, 20]. This inattention to the difference between Bayesian and Bernoullian
arguments continued in the Laplacean tradition throughout the 19th century
and into the time of Karl Pearson. It allowed mathematical statisticians to
communicate with each other easily, regardless of whether (like Antoine Au-
gustin Cournot) they rejected Bayesian arguments or whether (like Edgeworth
and Pearson) they saw a Bernoullian argument as a shortcut to a Bayesian
answer with roughly uniform prior probabilities.

Laplace did not give names to the two modes of argument that I am calling
Bernoullian and Bayesian. In 1838 the British mathematician Augustus De
Morgan called them direct probability and inverse probability, respectively [28,
128],8 and these terms were widely used in English for over a century. Since
the 1970s, the two modes have been called frequentist and Bayesian. Because
frequentism also names a view about the meaning of probability, clarity may be
served if, as I have done here, we use Bernoullian instead of frequentist for the
non-Bayesian mode of argument.9

The 19th-century Bernoullian arguments produced what we now call con-
fidence intervals and two-sided significance tests. The widespread belief that
these concepts were invented only in the 20th century may be due in part to

6The scale of this correspondence has only recently become known, with Roger Hahn’s
publication of Laplace’s surviving correspondence by [57]; for a summary, see [20, vol. 2,
pp. 455ff].

7This was explained very clearly by Cournot in the binomial case; see §A.6. Bienaymé also
discussed aspects of this picture; see [61, p. 102].

8Fourier had apparently used the corresponding French terms earlier in his teaching [26].
9Authors who have used Bernoullian in this way include Edgeworth [36], Richard von

Mises [123, p. 5], A. P. Dempster [30], and Ian Hacking [56]. See Appendix B.
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some authors’ reluctance to recognize the merit and coherence of statistical
theory not based on 20th-century foundations for probability theory; see §A.23.

2.3 Laplacean and Gaussian least squares

Gauss appreciated Laplace’s theorem, but he and those who continued his work
on least squares tempered their interest in it with a concern about systematic
errors, computational accuracy and efficiency, and other practical problems.
Moreover, Gauss eventually gave an alternative justification of least squares
that applies when samples are small. This we now call the Gauss-Markov the-
orem: least-squares estimators have the least variance among unbiased linear
estimators when individual errors are unbiased and independent.

The result was two interacting but distinct schools of thought, one Gaus-
sian, the other Laplacean. The Gaussian school soon dominated astronomy and
geodesy.10 The Laplacean school, which sought practical certainty from large
samples, continued to find adherents in the human sciences.

We can gain insight into how the two schools differed by looking at two
tables of tail probabilities for the normal distribution, one published in 1816
by Gauss’s disciple Friedrich Wilhelm Bessel, the second published in 1826 by
Joseph Fourier, in an exposition of Laplace’s theory. Although Christian Kramp
had published a table of values of the integral of e−t

2

in 1799 [74], Bessel’s and
Fourier’s tables appear to be the first published tables of the normal distribu-
tion.11

Bessel’s table appears in an article on the orbit of Olber’s comet, in a passage
translated in §A.3. In this passage Bessel explained why the different equations
of condition in a least-squares computation should be weighted differently. To
this end, he introduced the probable error of a continuous variable, which had
not been previously defined and used. As the reader may recall, this is the
number r such that P (|X − µ| < r) = P (|X − µ| > r), where X is the variable
and µ is X’s mean. When X is normal, r ≈ 0.6745σ, where σ is the standard
deviation. For seven different values of α, Bessel’s table gives the odds that a

10The story of the triumph of the Gaussian theory in geodesy has been told in an enlight-
ening dissertation by Marie-Françoise Jozeau [66].

11In 1783, in the course of a Bayesian analysis of Bernoulli’s binomial problem, Laplace

gave a method for calculating values of the incomplete integral of e−t
2

and mentioned that

a table of these values would be useful [52, p. 79]. Kramp’s table gave values of
∫∞
τ e−t

2
dt

for τ from 0.00 to 3.00, in intervals of 0.01. Kramp calculated his table to facilitate the study

of refraction, not to facilitate the calculation of probabilities, and because
∫∞
−∞ e−t

2
dt =

√
π,

the entries in his table are not probabilities. But we obtain probabilities simply by dividing
by
√
π. Bessel used Kramp’s table to calculate his.
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normally distributed variable falls more than α probable errors from its mean:

α = 1 · · · · · · 1 : 1
α = 1.25 · · · · · · 1 : 1.505
α = 1.5 · · · · · · 1 : 2.209
α = 1.75 · · · · · · 1 : 3.204
α = 2 · · · · · · 1 : 4.638
α = 3 · · · · · · 1 : 30.51
α = 4 · · · · · · 1 : 142.36

The probability of the variable being more than 4 probable errors from its mean,
for example, is approximately 1/(1 + 142.36) or 0.007.

Fourier’s table appeared in a memoir on the use of probability that he in-
cluded in the 1826 report of the statistics bureau of Paris and its surrounding
region. Instead of the probable error, Fourier used as his measure of dispersion
the quantity

√
2σ, which I will call the modulus, following later authors. The

modulus is a natural choice because the density for a normal variable with mean
0 and modulus 1 is proportional to e−t

2

. One modulus is approximately two
probable errors. For each of 5 small probabilities (we might call them signif-
icance levels today), Fourier gave the number ∂ such that a normal random
variable will be more than ∂ moduli from its mean with that probability.

∂ P

0.47708 1
2

1.38591 1
20

1.98495 1
200

2.46130 1
2000

2.86783 1
20000

There is only a probability of 1 in 20,000, for example, that a normal variable
will be more than about 2.86783 moduli (or about 4.0557 standard deviations)
from its mean.

Fourier’s table differs from Bessel’s in two important ways. First, it uses
round numbers for the probabilities rather than for the distance from the mean.
It gives the distance from the mean corresponding to a significance level the
reader might have in mind. Second, it includes much more extreme values.
Whereas Bessel’s table extends to only 4 probable errors, Fourier’s extends to
2.87 moduli, equivalent to about 6 probable errors and corresponding to a prob-
ability two orders of magnitude smaller. Fourier was interested in identifying
limits within which we can be practically certain the deviation from the mean
will fall.

Fourier decided that 3 moduli is enough for practical certainty. His example
was followed by a number of other 19th-century authors.
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2.4 Seeing p-hacking in France

The word “statistics” (Statistik in German and Statistique in French) was coined
to refer to information monarchs might want to know about their kingdoms’
population and wealth. The theory of errors, conceived as a tool for astronomy
and geodesy, did not fall under this rubric at the beginning of the 19th century.
But Fourier, in his reports for the Paris statistics bureau, applied the Laplacean
theory of errors to statistics. In his 1829 report, for example, he gave estimates
and error limits for the average age, in Paris during the 18th century, of men
and women when they married and when their first son was born [46, Table 64].

Such applications soon made what we now call significance testing popular.12

In 1824, Siméon-Dénis Poisson, who became the leading expert on Laplace’s
theory after Laplace’s death in 1827 and Fourier’s in 1830, published a note
observing that the ratio of boys to girls was smaller for illegitimate births than
for legitimate births [97]. In 1830, he applied Laplace’s theory to decide whether
this and other variations in the ratio of boys to girls could have happened by
chance [98]. He concluded that the difference was real, and he also found that
the ratio was smaller in Paris than in the rest of France, for both legitimate and
illegitimate births.

Were Fourier’s and Poisson’s arguments valid? Were the 505 men and 486
women for whom Fourier was able to find the needed data a random sample?
In what sense were the approximately ten million births in France in the decade
from 1817 to 1826, which Poisson studied, a random sample from a larger pop-
ulation? Some French statisticians thought Fourier’s and Poisson’s calculations
were ridiculous. Among them was André-Michel Guerry, the statistician whose
brilliant study of crime in France was commissioned by the Academy of Sciences
in 1833 [55, 48].

Cournot, twenty years younger than Poisson, was himself a proponent and
brilliant expositor of the Bernoullian version of Laplace’s theory, but he per-
ceived another problem with its application to the census by Fourier, Poisson,
and statisticians who had imitated them. The problem is what we now call p-
hacking. In 1843, safely after Poisson’s death, Cournot published his own book
on probability, Exposition de la théorie des chances et des probabilités [24]. In a
passage reproduced in translation in §A.6, Cournot observed that statisticians
had been searching for differences in the sex ratio for all sorts of ways of divid-
ing the population: legitimate and illegitimate, by season, by birth order, etc.
As the public could not see the extent of the search, they could not evaluate
whether a particular apparently remarkable difference might arise by chance.

12As we know, such tests were already being published and debated in the 18th century. The
first example usually cited is John Arbuthnot’s argument, from boy births outnumbering girl
births in London 82 years running, that the ratio must be governed by divine providence rather
than chance. A good account of this and subsequent significant tests by Daniel Bernoulli,
John Michell, and Laplace is provided by Anders Hald [58]. Barry Gower has provided more
philosophical reviews [53, 54].
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2.5 The disappearance of Laplace’s theorem in France

Uncertainty measured by a p-value is often the least of our uncertainties when
we are working with data. One of Laplace’s favorite examples of the power of his
theorem was his estimation of Jupiter’s mass relative to the Sun. Combining all
relevant measurements made by that time, he announced bounds on this ratio,
bounds on which he claimed one could bet a million to one. Five years after
Laplace’s death, the British astronomer George Biddell Airy showed that the
true ratio lay well outside these bounds. Laplace’s supreme confidence, whether
in his model, his data, or his calculations, had been misplaced [20, p. 492].

This was only one reason for the discredit into which Laplace’s theory fell.
Though a champion of Laplace’s theorem, Cournot ridiculed Laplace’s Bayesian
argument, emphasizing that for many questions it is only possible to justify
non-numerical “philosophical probabilities” [24]. Cournot’s friend Jules-Irénée
Bienaymé further developed Laplace’s theory but spent most of his energies
combating faulty applications [19, notes 27, 29, 62],[13, 61]. The nineteenth
century saw an unprecedented flood of data, and many of its collectors and
users concluded that it could speak for itself; probability was not needed [56].
By the middle of the century, geodesy, a field dominated by the French before
and during Laplace’s heyday, had abandoned Laplace’s methods, turning instead
to the methods developed by Gauss and his followers [66]. Mathematicians and
philosophers found many other problems in the Laplacean theory [67, 102]. By
the end of the century, the most prominent mathematician in France, Joseph
Bertrand, would ridicule Laplace’s entire undertaking as a delusion [10]. Its dis-
appearance from French mathematics was so thorough that the leading French
mathematicians who worked on the central limit theorem in the early 20th cen-
tury, Borel, Fréchet, and Lévy, were unaware that Laplace had first proven the
theorem until this was brought to their attention by foreign colleagues.

3 Practical certainty

Now we look at how Laplace’s theory and Fourier’s criterion for practical cer-
tainty evolved in the 19th and into the 20th century. Throughout this period,
authors on the theory of errors, practically without exception, can be classified
as either Gaussian or Laplacean. Both schools taught the use of least squares
to obtain estimates and used the normal distribution to compute probabilities
of error. But the Gaussian authors, considering their models and Laplace’s
asymptotics too approximate for extreme conclusions, did not talk about prac-
tical certainty, whereas the Laplacean authors usually tried to specify, in one
way or another, an interval around the least-squares estimate that is practically
certain to include the true value of the quantity being estimated.

Today we measure a variable’s distance from its mean in terms of its standard
deviation, and we sometimes call the standard deviation of an estimator its
standard error. But these English terms appeared only at the end of the 19th
century; Karl Pearson introduced standard deviation in 1894 [95], and George
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Table 1: Geroge Biddell Airy’s table relating different measures of dispersion for
the normal distribution [1, p. 24]. Airy’s error of mean square is the standard
deviation. His mean error is the mean of the absolute deviation.

Modulus.
Mean
Error.

Error of
Mean

Square.

Probable
Error.

In terms of Modulus 1.000000 0.564189 0.707107 0:476948

In terms of Mean Error 1.7724.54 1.000000 1.253314 0.845369

In terms of Error of
Mean Square

1.414214 0.797885 1.000000 0.674506

In terms of Probable
Error

2.096665 1.182916 1.482567 1.000000

Udny Yule introduced standard error in 1897 [133]. Earlier writers had other
names for the standard deviation, but they more often used the modulus or the
probable error; see Table 1. The probable error was still widely used in the first
decades of the 20th century.13

3.1 La limite de l’écart

Equating very high probability with moral certainty is an ancient idea. The
16th-century Jesuit Luis Molina even applied it to games of chance [71, pp. 402–
403]. But Molina and his fellow scholastics did not gauge degrees of probability
numerically. It was Jacob Bernoulli’s Ars conjectandi, published in 1713, that
brought moral certainty into the context of a mathematical theory of probability
modeled after calculations of chances for dice. Bernoulli did not settle on a
particular level of probability that would suffice for moral certainty; he thought
0.99 or 0.999 might do but suggested that the level be set by magistrates.14 So
far as I know, Laplace also never specified a level of probability that would suffice
for certainty. Fourier may have been the first to do so. As we have seen, Fourier
considered a statement certain if the probability of its being wrong is only 1 in
20,000, and for an interval based on Laplace’s theorem, this corresponds to 2.87
moduli, a number that Fourier rounded to 3.

Later authors sometimes set exigent standards for certainty in theoretical
discussions but then relaxed them in applications. Siméon-Denis Poisson, in
his 1837 book on probability, first mentioned 4 or 5 moduli but relaxed this

13Helen Walker’s history, written in 1929 [128], is still a good reference for how various
authors used and named the various measures.

14For Molina and Bernoulli, a morally certain thing was one sufficiently probable that it
should, by custom or some other norm, be treated as fully certain. For the purposes of this
paper we may equate their concept of moral certainty with the later concept of practical
certainty.
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to 2 moduli when he turned to examples, even writing at one point that the
probability of an estimate being within 2 moduli, 0.9953, is very close to cer-
tainty; see §A.2. Jules Gavarret, in his 1840 book on medical statistics, cited
Poisson’s authority in deciding that 2 moduli gives “a probability after which
any therapeutic fact can and should be accepted without dispute”; see §A.7.

Laplace’s theory was brought into English in the 1830s by Augustus De Mor-
gan and Thomas Galloway, both of whom published books containing proofs of
Laplace’s theorem. De Morgan’s book appeared in 1837 [27] and Galloway’s in
1839 [49]. Galloway’s may have been more influential among mathematicians,
because whereas De Morgan followed Laplace directly, Galloway followed Pois-
son’s simplified and clearer proof. Both used the modulus. So far as I know,
De Morgan did not single out a particular number of moduli, but Galloway did
mention 3 moduli; see §A.4.

Cournot, in his 1843 book [24], followed Fourier in treating the probability
of 1 in 20,000, corresponding to ±2.87 moduli, as practical certainty. He did
not round 2.87 to 3. In §35 of the book, he recommended that the limit 2.87 be
held in mind not only because it corresponds to a value of P equal to 1 in 20,000
but also because it comes very close to 6 probable errors. In §69, he called 2.87
moduli the “limite extrême de l’écart”—the extreme limit of deviation.15 Unlike
Poisson and most of the earlier authors, Cournot explicitly rejected Laplace’s
Bayesian theory, accepting only a Bernoullian interpretation of the bounds given
by Laplace’s mathematics. This makes his 1843 book very close to mathematical
statistics as it was taught in the middle of the 20th century; the basic concepts
are all there. Cournot’s “limite de l’écart” was used in 20th-century French
teaching of statistics until after World War II.

Although they used the modulus, Laplace, Fourier, Poisson, Gavarret, Gal-
loway and Cournot did not use the name modulus for it. This usage apparently
first appeared in English, in George Biddell Airy’s 1861 book on the theory of
errors [1]; see §A.5.

Wilhelm Lexis, a prominent economist and statistician, kept the Laplacean
tradition alive in Germany. Although he taught and wrote in German, Lexis
had studied for ten years in France, and the Laplacean aspiration to find prac-
tical certainty by multiplying observations was natural to his area of study.
In his introduction to population statistics, Einleitung in die Theorie der
Bevölkerungsstatistik [79], published in 1875, Lexis repeatedly used 3 moduli
as his level for practical certainty; see §A.8.

3.2 Tables of the normal distribution

As mentioned in §2.3, Bessel had calculated his small table of normal probabil-
ities using Kramp’s table of the incomplete integral of e−t

2

. By the 1830s, it
became common for books on probability to provide much more extensive tables
of normal probabilities. The first such table, also calculated from Kramp’s, was

15This terminology may have already been established in the 1820s. In his 1826 report,
Fourier mentions that the difference between an observed and a true mean is called the “erreur
ou écart” [45, p. 3].
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given by the German astronomer Johann Franz Encke, a follower of Gauss, in
an 1832 article on least squares [37]. Encke tabulated the values of

2√
π

∫ τ

0

e−t
2

dt (2)

to seven decimal places for values of τ (the number of moduli) from 0.00 to
2.00, in intervals of 0.01. He also gave a similar table in terms of the probable
error. Encke’s article was translated into English and printed with its tables
in Taylor’s Scientific Memoirs, 1841, Vol. II, pp. 317–669 [84, p. 180]. In 1838
[28], De Morgan extended Encke’s tables from 2 to 3 moduli. Galloway, in his
1939 book, also gave a table going up to 3 moduli.

In his 1843 book [24], Cournot gave a table of (2) for values of τ from 0.00
to 3.00, with a variable number of decimal places. He also gave the value for
τ = 3.00 to 10 places, for τ = 4.00 to 13 places, and for τ = 5.00 to 17 places.

3.3 Outlying observations

In the late 19th-century, United States scholars looked to Germany for intel-
lectual leadership, and many of those interested in probability enlisted in the
Gaussian school of least squares.16 On one topic to which they made origi-
nal contributions, however, the Americans brought Gaussian least squares into
closer contact with Laplacean practical certainty. This topic was the rejection
of discordant or outlying observations.

The best known suggestions were made by Charles Sanders Peirce in 1852
and William Chauvenet in 1863 [111]. Chauvenet suggested that the observa-
tion that deviates most from the average of m observations be rejected if the
probability of any particular observation deviating as much is less than 1/2m.
Peirce’s and Chauvenet’s proposals were strongly criticized by Airy and other
European experts on least squares. In 1917, David Brunt reported that their
criteria for rejection had not been widely used. (Brunt’s assessment is quoted
more fully in §A.21.) Consideration of the problem of outliers forces us, how-
ever, to think about about how the probability of extreme or otherwise unlikely
values increases as we look for them, and this was one of the ways the statistical
literature in English began to acknowledge the problem of p-hacking.

3.4 Edgeworthian significance

A British economist and statistician, Edgeworth was by all accounts the first
to use the English word significant in connection with statistical testing. He
did this in a paper he read at the Jubilee meeting of the Statistical Society of
London in 1885 [33]. The substance of the paper, as Edgeworth conceded in the
discussion after the reading, was largely borrowed from Lexis.17 Edgeworth’s

16See, for example, the quotation by Mansfield Merriman in §A.10.
17Had Edgeworth studied mathematics at university, as Karl Pearson did, he might have

learned the Laplacean theory from Galloway’s book. But as he had been trained as a classicist
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originality lie in translation; where Lexis discerned a real difference being prak-
tisch gewiss (practically certain), Edgeworth discerned an apparent difference
signifying a real difference; see §A.9.

An observed difference is significant in the sense of signifying if and only if
two conditions are satisfied: there is a real difference, and the observed difference
is large enough to suggest it. Either both conditions are satisfied, or not. We
may not be sure. So when using the word in this sense, we may say that a
difference is “perhaps significant”, “likely significant”, “probably significant”,
“definitely significant”, or “certainly significant”. We may also say flatly that
a difference is “not significant”; if it is less than a probable error from zero,
then it does not signify a real difference even if there is one. We will not say
that a difference is “barely significant” or “just significant”, because if it does
not definitely signify, then it may not signify at all. Nor will we use phrases
like “highly significant”, “very significant”, and “more significant”. It is the
likelihood of signifying, not signifying itself, that is a matter of degree.

Edgeworth was anything but consistent, and as his paper rambled on, we do
find one occasion where he writes “highly significant”. But for the most part
he used “significant” to mean “signifying” something causal and not accidental
dominated. This usage seems odd to this speaker of American English in 2020.
Perhaps it was natural for Edgeworth’s social class in his time and place, or per-
haps it was merely one of his quirky turns of phrase.18 But Karl Pearson and his
disciples understood it and adopted it. They used it for thirty years or more. As
documented in §A.12, it persisted into the 1920s in Pearson’s Biometrika. The
United States biometrician Raymond Pearl, a student of Pearson’s, explained it
very clearly in a book he published in 1923; see §A.18.

Pearson diverged from Edgeworth in an important respect; he measured the
deviation of an estimate from the quantity estimated using the probable error
rather than the modulus. The most common formulation among the biome-
tricians, reported by Pearl and followed by Biometrika, was that a deviation
of 3 probable errors (about two standard deviations) was likely significant and
a deviation of 6 probable errors (about 4 standard deviations) was definitely
significant.

3.5 Enter the American psychologists

Edgeworthian significance disappeared in the 1920s. The word remained, but
the meaning shifted. This seems to have been a gradual process, unnoticed by
many. It seems that many statisticians outside Pearson’s international circle of
biometricians picked up the word significance without grasping its Edgeworthian
interpretation, which must have been as unexpected for many ears then as it is
for mine now.

One field where we can see this happening is psychology. As Steve Stigler has
noted [113], psychologists had begun using mathematical statistics in the 1860s

and was self-taught in mathematics, it would have been natural for him to seek the latest
wisdom from a German authority.

18Steve Stigler discusses Edgeworth’s odd style on pp. 95–97 of [114].
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and had developed their own methods long before Pearson created biometry. In
the late 1910s and late 1920s, we see young United States psychologists using
significant and significance in relatively vague and certainly non-Edgeworthian
ways. In 1922, for example, we find Morris Viteles, who later became very
prominent in industrial and organizational psychology, writing that test results
were “greatly significant” and “highly significant”. He may also have been the
first to use level of significance in connection with statistical testing; see §A.25.

The first use of the non-Edgeworthian term statistical significance in its
modern sense that I have found is in a 1916 article by another young and even-
tually very prominent U.S. psychologist, Edwin Boring [14, p. 315]. Boring
understood the vocabulary of the British biometricians reasonably well, but he
soon concluded that the assumptions underlying the Laplacean method (e.g.,
independence of observations and a common meaning for a parameter in dif-
ferent individuals or groups) were usually not satisfied in his work. His most
often cited criticism of the method was a 1919 article entitled “Mathematical
vs. scientific significance” [15]. He carried on a years-long debate on the use
of statistics in psychology with Truman Kelley, at the time one of psychology’s
most prominent experts on statistical methods [116].

In his 1923 textbook Statistical Method [68] Kelley wrote, “If these two
relationships do not exactly hold, the significance of the discrepancy can be
determined by formulas giving probable errors. . . ” (p. 99). This vague assertion
is not quite Edgeworthian, for the comparison of an estimate with its probable
errors often leaves us uncertain whether it signifies in the Edgeworthian sense.
On page 102, at the beginning of a lengthy passage quoted in §A.20, Kelley
made a similar statement: “The significance of any measure is to be judged by
comparison with its probable error.” This passage is also of interest because
it shows how Kelley was shifting his readers from the probable error to the
standard deviation, and because it shows how to perform a one-sided test.

Shortly before Kelley competed his book, he had spent a sabbatical year
in London with Pearson.19 Perhaps he also met Fisher at that time. When
he sent Fisher a copy of the text, Fisher responded that it was “quite the most
useful and comprehensive book of the kind yet written” (1924, January 12) [116,
p. 560].

3.6 Fisher’s Statistical Methods for Research Workers

In 1925, Fisher published his own statistics manual, his celebrated Statistical
Methods for Research Workers [42]. The words significant and significance are
prominent in this book, but their Edgeworthian meaning has slipped away in
favor of a meaning that allows degrees of significance. Probable error has given
way completely to standard deviation.

The main purpose of the book was to provide tables for the many distribu-
tions that Fisher had studied, including Student’s t and the distribution of the

19Personal communication from Lawrence Hubert, who has examined the Kelley archive at
Harvard. See also [7].
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correlation coefficient, and to teach research workers how to use these tables.
Because these distributions were not normal and sometimes not symmetric, “sig-
nificance” could not be defined in terms of standard deviations. Fisher instead
defined it directly in terms of tail probabilities. Two standard deviations was
replaced by 5% [115].

None of these features was unprecedented. Edgeworth’s significance was
already fading in some quarters. Yule had emphasized standard errors in his
popular 1911 textbook (see §A.15). We saw Fourier mentioning odds of 19 to
1 in 1826, and in 1919 David Brunt used these odds in another context where
practical certainty could not be measured in terms of probable errors (see §A.21).

Fisher’s tone does not suggest that he had deliberated about rejecting the
Edgeworthian meaning of significant. He was never part of Pearson’s circle, and
by 1925 he was certainly not looking to Pearson’s work for guidance. It seems
likely that he drew his vocabulary less from Biometrika than from the U.S.
psychologists or others distant from Pearson. Perhaps this included “research
workers” at the agricultural experiment station at Rothamsted, where he had
already been working for five years.

3.7 Seeing p-hacking in Britain

As soon as we have significance testing, we have p-hacking. We can find Laplace
himself varying his method of testing in search of a small p-value. Poisson
searched across categories to find apparently significant ratios of male to female
births. In the early volumes of Biometrika, we can find authors giving lists of
estimated differences and their probable errors and then calling attention to
one or two cases where the ratio of the estimated difference to its probable error
appears to signify. But what makes this p-hacking visible to statisticians? Do
we need a mathematical philosopher like Cournot to see it?

If you begin, as many 19th- and early 20th-century British mathematicians
did, by assuming that probability is a relation between proposition and evidence,
then you may find it paradoxical that the search producing the evidence should
matter, and this may make it difficult to see p-hacking. But the historical record
reveals at least two cases where the search was too obvious for some British
mathematicians to ignore. The first was the problem of rejecting discordant
observations (outliers); the second was the search for cycles in time series using
harmonic analysis.

Discordant observations. The erudite Edgeworth knew Cournot’s work.
When he addressed the problem of discordant observations (outliers) in 1887,
Edgeworth drew on Cournot’s insights to understand the need to take account
of the number of observations in deciding whether extreme observations should
be considered discordant. Cournot’s view was paradoxical, Edgeworth thought,
but right ([34, pp. 369–370] quoted in §A.9). The next year, John Venn, in his
Logic of Chance, acknowledged Cournot’s and Edgeworth’s point in the course of
a discussion of fallacies in probability judgement [120, 3rd edition, pp. 338–339].
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I have not found found examples before the 1920s in which Pearson or his
disciples cited Cournot’s insights concerning p-hacking or Edgeworth’s related
insights concerning discordant observations. Perhaps they were unaware of these
insights and unaware in general of the hazards of p-hacking. But Pearson cer-
tainly knew Edgeworth’s work, and silence in print about a problem that one
cannot solve is not quite evidence of lack of awareness. The alternative hypoth-
esis, that Pearson’s circle did talk about p-values being invalidated by search or
selection, is supported by a passing reference to the problem by Pearson’s son,
Egon S. Pearson, in 1925: Egon called it“the old difficulty”. A decade later,
when Egon and Chidambara Chandrasekaran noted the illegitimacy of choosing
a test after seeing the data, the context was precisely Edgeworth’s: the rejection
of outliers. (See §A.24 for references and fuller quotations.)

Searching for cycles. In the case of cycles, it was the meteorologists who
instructed the biometricians.

The notion that cycles in time series might be discovered and used for predic-
tion was very popular at the end of the 19th and beginning of the 20th centuries,
when William Stanley Jevons and other respected scholars even conjectured a
causal chain from sunspots to business cycles: cycles in sunspots might cause cy-
cles in the weather, hence cycles in agricultural production and other economic
activity [85, 70, 47]. A statistical test for whether an apparent cycle in a time
series is real was suggested in 1898 by the British physicist Arthur Schuster, in
the article in which he introduced the name periodogram for a graph showing
the estimated intensity of different frequencies in the series’ Fourier transform
[103]. Schuster eventually explained his test in a very simple way: the probabil-
ity that a particular estimated intensity will be h or more times as large as its
expected value is e−h. (Being the sum of the squares of two normally distributed
variables, it will have an exponential distribution; see [104] and §A.11.)

Looking for cycles in a time series is a way of searching through the data
for something remarkable. One of the first, perhaps the very first, to point out
how misleading this particular type of search can be was Gilbert T. Walker, a
physicist working as a meteorologist in India; see §A.13. Walker’s first critique
was published in India, in 1914 [125]. The same point was made in 1919 by
the physicist F. J. W. Whipple in the discussion of a paper on cycles in the
Greenwich temperature records, read to Royal Meteorological Society by David
Brunt [22]; see §§A.21 and A.16.

The British biometricians may have overlooked Walker’s 1914 critique and
Whipple’s 1919 comments. But there is no doubt that the p-hacking issue raised
by Schuster’s test came to their attention in 1922, after the prominent civil ser-
vant and scholar William Beveridge read a paper to the Royal Statistical Society
on cycles in rainfall and wheat prices. Beveridge read his paper, in which he
more or less used Schuster’s test, on April 25 of that year [12]. Yule was one
of the discussants. None of the Society members who commented on the paper
were fully convinced by Beveridge’s conclusions, but he stirred their interest.
In its issues for August 19 and August 26, (vol. 110, pp. 265, 289), Nature re-
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ported that the fall meeting of the British Association at Hull would include
a special session on “Weather Cycles in Relation to Agriculture and Industrial
Fluctuations”, to be held on September 7. The session was to be sponsored
jointly by three sections of the association, Economic Sciences and Statistics,
Mathematics and Physics, and Agriculture, and it was to feature discussion by
Beveridge, Fisher, and Yule. In its December 30 issue (vol. 110, pp. 889–890),
Nature summarized the discussion. Beveridge made his case for relating period-
icities in the weather to those of wheat prices. Yule mildly defended Beveridge
against those who found his case entirely implausible. Fisher questioned how
strongly periodicities in the weather could be related to periodicities in produc-
tion, reporting that the total rainfall at Rothamsted accounted for a relatively
small amount of the variation in production.

Walker re-entered the story before December 30. In its October 14 issue
(vol. 110, pp. 511–512), Nature published a letter to the editor from Walker,
along with a response by Beveridge [126]; see §§A.13 and A.17. Walker made
the point that he had made already in 1914: if a statistician is going to test the
largest estimated intensity from a periodogram that shows estimated intensities
for k different frequencies, the probability of this greatest estimated intensity
being h or more times as large as the expected value for any given intensity is
e−h/k rather than e−h. With this adjustment, Walker did not find Beveridge’s
cycles to be convincing. Beveridge conceded the conceptual point but adjusted
the assumptions in Walker’s analysis so that his own conclusions emerged intact.

What was Fisher to say about this? The whole periodogram story being a
mess, he probably did not have much to contribute, and nothing would have been
gained by entering a controversy between two such powerful individuals. In due
time, however, Fisher did address the problem of selecting the most significant
test. In 1925, when he finally published his thoughts on the Rothamsted data on
rainfall and crop production [41, p. 94–95], he derived the adjustment required
when one variable is chosen from several for a regression. In 1929, he showed
how Schuster’s and Walker’s criteria for testing intensities in a periodogram can
be adjusted to account for the fact that the variance must be calculated from
the data [43].

There are, however, no cautions about p-hacking in Fisher’s first edition of
Statistical Methods. Why did he omit the topic? The obvious answer is that the
topic is impossibly difficult for a book that offers research workers with limited
mathematical training recipes for statistical testing. Perhaps too difficult for
anyone. As Beveridge’s response to Walker’s 1922 letter suggests, adjusting
p-values for selection is often topic for debate, not for recipes.

In the preface to the sixth edition of Statistical Methods, published in 1936
(p. xii), we finally see a recipe of sorts for dealing with selection, gingerly offered:
perhaps a very high level of significance, such as 0.1 per cent, should be used;
see §A.22. In this same preface, Fisher refutes critics who had asked why he did
not provide mathematical derivations for his recipes in the book. The book, he
explains, is for research workers, not people doing mathematical theory.20

20I am indebted to John Aldrich for calling my attention to Fisher’s 1925 article and this
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3.8 Who invented the name p-value?

No one. The term simply evolved from the use of the letter P to denote the
probability that an estimated quantity or difference will fall inside or outside
given limits.

We already see this use of P, in Roman upper case, in Fourier, Poisson,
Gavarret, and Cournot. Beginning at least in his 1900 article on χ2 [96], Karl
Pearson similarly wrote P for the probability of a result more extreme than the
observed value of a test statistic and referred to it as “the value of P”. Yule and
Fisher followed Pearson’s example throughout their careers [134, 40, 44].

By the 1920s, some authors outside Britain had occasionally and casually
turned value of P into P value. The earliest examples I have seen are in articles
by the North American geneticist John W. MacArthur in 1926 [80, pp. 397, 400],
the United States biostatistician Persis Putnam in 1927 [100, pp. 672–673], and
the Chinese statistician C. P. Sun in 1928 [117, p. 67].21 Later authors who
used P value or P-value casually include John Wishart [131, p. 304] and his
associate H. O. Hirschfeld in 1937 [62, p. 68]22 and W. Edwards Deming in 1943
[29, p. 30]. None of these authors gave any indication that they thought they
were coining a novel usage. I have not yet seen any use of P value in the social
sciences before 1970; we do not see it in any of the articles in [86].

Today the use of P-value is widespread, but there is no consensus on the
font for the letter P. We see lower and upper case, italics and roman, text and
mathematical font, with and without the hyphen.

4 Conclusion

In 1949 [132, p. 90], the accomplished British statistician John Wishart wrote,

If one were asked to say what has been the distinctively British con-
tribution to the theories of probability and mathematical statistics
during the present century, the answer, I fancy, would be found, not
so much in the formulation of a satisfactory theory of probability,
including the nature of inference, as in the fashioning of significance
test tools to guide the practical experimenter.

The history reviewed in this paper confirms Wishart’s judgement. The notions
of testing and estimation used in mathematical statistics even today were in
place already in the 19th century.

There is also a parallel with respect to the misuse and abuse of these basic
concepts. The inappropriate models and inferences that led to the collapse
of the Laplacean tradition in France in the second half of the 19th century
are rampant today, inspiring loss of confidence and hand-wringing. We see a
blizzard of proposals to correct these problems. Some propose to shift the level

preface.
21I am indebted to Sander Greenland for calling my attention to these articles.
22Hirschfeld later anglicized his name to H. O. Hartley.
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required for calling attention to a p-value (replace Fisher’s 0.05 with Poisson’s
and Gavarret’s 0.005); some propose to change the words we use (eliminate p-
value or statistical significance); others propose various more or less complicated
ways of complementing the statement of a p-value.

What lessons should we draw from the durability of these basic ideas and
of their abuses? Everyone will answer this question for themselves, but the
durability does suggest that superficial changes in terminology will not be help-
ful. The quick emergence of significance testing and p-values from Laplace’s
19th-century confidence intervals further suggests that urging people to return
to confidence intervals and stay there may be equally futile.

The failure of 20th-century embellishments to forestall misunderstanding
and abuses also suggests that we might well simplify our elementary teaching
by emphasizing Fourier’s and Cournot’s Bernoullian calculation of limits on
error based on the central limit theorem, treating p-values for other tests as an
intuitive extension of this basic example. This simplification would allow space
in the curriculum to emphasize the inevitability of p-hacking and the necessity
of treating some calculations as merely exploratory analysis. It would also allow
some space to teach about testing by betting.

4.1 Can we return to practical certainty?

In March 2019, hundreds of statisticians lent their support to a commentary
in Nature entitled “Retire statistical significance” [2]. What should replace it?
How is a scientist or journalist inexpert in statistical mathematics to interpret
a p-value?

Here is a fanciful thought experiment. Suppose we all (all the teachers and
textbook writers in statistics) reach a consensus to return to Edgeworthian
significance. And suppose we signal this change by replacing significant with
signifying. When a test is fully planned in advance,

� a p-value of 0.05 (about three probable errors or two standard deviations)
is likely to signify;

� a p-value of 0.005 (about four probable errors or two moduli) is practically
certain to signify;

� a p-value of 0.00006 (about six probable errors or four standard deviations)
definitely signifies.

What problems would this pose? The obvious problem is the “likely” in “likely
to signify”. Shall we give it a Bayesian interpretation with a uniform prior, as
Edgeworth did? A Bernoullian interpretation as Cournot and Jerzy Neyman
would? Here the fancied consensus splinters.

In my view, we do not particularly need Edgeworth’s significant or signify in
the teaching of elementary statistics, but there is much to be said for returning to
the simple language of Bernoullian practical certainty as it was used by Cournot
in 1843. Leaving aside any appeal to an axiomatic theory of probability, we
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could teach students how to find reasonable limits on error, and then use these
limits to obtain confidence intervals, just as Cournot, Neyman, and countless
statisticians between them did. Then, following Gavarret, we could translate
this into a two-sided test for a difference between two treatments: one treatment
is practically certain to be better than the other when its observed advantage
is greater than the limit of possible error; otherwise we are not authorized to
pronounce in favor of either treatment; see A.7.

When Jacob Bernoulli first undertook to base judgements of probability in
civic, moral, and business matters on calculations like those in games of chance,
he did not envision counting chances for and against every civil, moral, and
business question. He certainly did not suppose that every proposition would
have probabilities for and against adding to one. On the contrary, he thought
chances could be counted only for some propositions, and he hoped that argu-
ments that compared and combined these counts could then cast light on other
propositions. This might not produce probabilities that follow Kolmogorov’s
axioms, but it might sometimes lead to practical certainty [105]. Gavarret’s
explanation of how to use a “limit of possible errors” stands squarely in this
Bernoullian tradition, which may allow us to conclude that a proposition is
practically certain without assigning it a numerical probability.

Critics of the current pedagogy of elementary mathematical statistics have
complained that it has become a confusing mixture of competing theories and
ideas, mixing Fisherian, Bayesian, and decision-theoretic viewpoints [32, 51, 63].
To a large extent, these competing theories are different ways of forcing the
judgements of practical certainty taught by Laplace, Fourier, and their 19th-
century successors into the 20th-century’s measure-theoretic framework for
mathematical probability. Must we do this?

4.2 Can we return to exploratory data analysis?

Beginning in the late 1940s, when the center of research in mathematical statis-
tics had shifted to the United States, there was a great deal of work on formal
methods for multiple comparisons—a name appropriate when a plan is made in
advance to test many different hypotheses and significance levels are adjusted
accordingly [107, 82]. John Tukey, one of the leaders in this work [9], was acutely
aware that it was not always relevant to practice. In practice, scientists often
cannot plan in advance what they will think of doing later. One way of dealing
with this problem is to drop the ambition of arriving at practical certainties in
a particular study, treating the study as purely exploratory. With this in mind,
Tukey coined the term exploratory data analysis, to be distinguished from con-
firmatory data analysis. Promising results from an exploratory study were not
to be taken seriously as science until they were confirmed by later studies.

The sociological realities of academia have not been kind to exploratory
data analysis. It has not proven to be a path to publication and prestige, and
it is now often thought of as merely a collection of techniques for the visual
and tabular presentation of data. Some contributors to recent discussions of
significance testing in The American Statistician have suggested putting new
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emphasis on the exploratory/confirmatory contrast [129]. If we were to simplify
the discussion of testing by returning to Gavarret’s simple framework, there
might be room for this in elementary statistics instruction.

4.3 Can we return to betting?

At its core, probability theory is a calculus of betting, but in the three centuries
since Bernoulli, mathematical statistics has been increasingly formalized and
taught in ways that hide this fact. My own proposal for fundamental change in
statistical testing is to bring betting back to the center of the picture.

To do this, we must shift from the Bayesian statement that

assuming model B, the observations make hypothesis A unlikely

and the Bernoullian statement that

assuming B, the observations are unlikely if A is true

to a statement about a bet:

a bet that was fair according to B has paid off handsomely (multi-
plied the money it risked by a large factor) if A is true.

When we do this, we may say that we are testing the hypothesis A by betting
against it. This has two obvious advantages. First, it makes very salient the
need to state the bet in advance; no one is impressed when you identify after
the fact a bet that would have been successful. Second, it makes very salient the
remaining uncertainty; no one forgets that success in betting, no matter how
striking, may have been accidental.

As I argue in [106], testing by betting can also help us give more honest ac-
counts of opportunistic searches for significance. A honest Bayesian or Bernoul-
lian account of such a search requires the specification of a complete strategy for
the search. What would you have done if the first test had come out differently,
etc.? If the search is opportunistic, such a plan can only be conjectured after
the fact and can hardly ever be convincing. When we test by trying to multi-
ply the money we risk, no grand strategy is required; we can change direction
opportunistically so long as each successive bet is honest (made before we look)
and risks only the net capital resulting from the preceding bet.

5 Acknowledgements

This paper would not have been possible without insights freely shared by John
Aldrich and Bernard Bru. I have also benefited from conversations with many
other colleagues, especially Michel Armatte, Hans Fischer, Steve Goodman,
Prakash Gorroochurn, Sander Greenland, Deborah Mayo, Aris Spanos, Steve
Stigler, Volodya Vovk, and Sandy Zabell.

20



Appendices

Appendix A What they said

In this section, I provide more detail about how a number of 19th and early
20th century authors wrote about Laplace’s theorem, error limits, and practical
certainty. Most of these authors worked in the Laplacean tradition. I consider
them in order of their birth.

I have chosen these authors, somewhat arbitrarily, to illustrate how the
Laplacean tradition evolved as it was transmitted into English. A more compre-
hensive review would include authors working in a wider variety of applications
and in other European countries, including Italy, Belgium, and Denmark.

In translations, I have sometimes shifted the authors’ notation to current
practice in American English, italicizing symbols, indicating limits of integra-
tion with subscript and superscript, writing 0.9953 instead of 0,9953 or 0·9953,
writing h2 instead of hh, etc.

A.1 Joseph Fourier, 1768–1830

Joseph Fourier is most renowned for his mathematical analysis of the diffusion
of heat, but he was also a revolutionary and a politician, an impassioned par-
ticipant in the French revolution and an administrator under Napoleon. After
Napoleon’s final defeat and the return of a royalist regime in 1815, Fourier was
briefly left with neither a position nor a pension, but the royalist Chabrol de
Volvic, who had been his student, rescued him from impoverishment with an
appointment to the census bureau of the Paris region [90]. The appointment
left him time for his mathematical research, but he faithfully attended to his
duties at the census, issuing masterful reports in 1821, 1823, 1826, and 1829.
Fourier’s name was not included in the reports, but there is no doubt that he
edited them and wrote the mathematical memoirs that appear at the beginning
of the 1826 and 1829 ones [19, p. 198].

Given independent observations y1, . . . , ym and their average y, Fourier es-
timated what I am calling the modulus by

g :=

√
2

m

(∑m
i=1 y

2
i

m
− y2

)
This is consistent with modern practice; the modulus is

√
2 times y’s standard

deviation, and g is
√

2 times the maximum likelihood estimate of this standard
deviation.

The passage from Fourier’s 1826 memoir translated here includes a table of
significance levels, which may look more familiar when we add a third column
translating units of g into units of y’s standard error g/

√
2:
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units of g P units of g/
√

2

0.47708 1
2 0.67

1.38591 1
20 1.96

1.98495 1
200 2.81

2.46130 1
2000 3.48

2.86783 1
20000 4.06

Fourier wrote that it is “a 19 out of 20 bet” that the error will not exceed
1.38591g. This is the familiar 95% confidence interval obtained using 1.96 stan-
dard errors. He also concludes that the error certainly will not exceed 3g.

The following passage constitutes §XI of the 1826 memoir [45, pp. xxi–xxii].

Fourier in English

To complete this discussion, we must find the probability that H, the quantity
sought, is between proposed limits A + D and A − D. Here A is the average
result we have found, H is the fixed value that an infinite number of observations
would give, and D is a proposed quantity that we add to or subtract from the
value A. The following table gives the probability P of a positive or negative
error greater than D; this quantity D is the product of g and a proposed factor
∂.

∂ P

0.47708 1
2

1.38591 1
20

1.98495 1
200

2.46130 1
2000

2.86783 1
20000

Each number in the P column tells the probability that the exact value H,
the object of the research, is between A + g∂ and A− g∂. Here A is the average
result of a large number m of particular values a, b, c, d, . . . , n; ∂ is a given factor;
g is the square root of the quotient found by dividing by m twice the difference
between the average of the squares a2, b2, c2, d2, . . . , n2 and the square A2 of the
average result. We see from the table that the probability of an error greater
than the product of g and 0.47708, i.e. greater than about half of g, is 1

2 . It is
a 50–50 or 1 out of 2 bet that the error committed will not exceed the product
of g and 0.47708, and we can bet just as much that the error will exceed this
product.

The probability of an error greater than the product of g and 1.38591 is
much less; it is only 1

20 . It is a 19 out of 20 bet that the error of the average
result will not exceed this second product.

The probability of an even greater error becomes extremely small as the
factor ∂ increases. It is only 1

200 when ∂ approaches 2. The probability then
falls below 1

2000 . Finally one can bet much more than twenty thousand to one

22



that the error of the average result will be less than triple the value found for
g. So in the example cited in Article VI, where the average result was 6, we can
consider it certain that the value 6 is not wrong by a quantity three times the
fraction 0.082 that the rule gave for the value of g.

The quantity sought, H, is therefore between 6− 0.246 and 6 + 0.246.

The French original

Pour compléter cette discussion , il faut déterminer quelle probabilité il y a que
la quantité cherchée H est comprise entre des limites proposées A + D et A−D.
A est le résultat moyen que l’on a trouvé, H est la valeur fixe que donnerait un
nombre infini d’observations , et D est une quantité proposée que l’on ajoute à la
valeur A ou que l’on en retranche. La table suivante fait connâıtre la probabilité
P d’une erreur positive ou négative plus grande que D; et cette quantité D est
le produit de g par un facteur proposé ∂.

∂ P

0,47708 1
2

1,38591 1
20

1,98495 1
200

2,46130 1
2000

2,86783 1
20000

Chacun des nombres de la colonne P fait connâıtre quelle probabilité il y
a que la valeur exacte H, qui est l’objet de la recherche , est comprise entre
les limites A + g∂ et A− g∂. A est le résultat moyen d’un grand nombre m de
valeurs particulières a, b, c, d, . . . , n; ∂ est un facteur donné; g est la racine carrée
du quotient que l’on trouve en divisant par m le double de la différence de la
valeur moyenne des carrés a2, b2, c2, d2, . . . , n2 au carré A2 du résultat moyen.
On voit par cette table que la probabilité d’une erreur plus grande que le produit
de g et 0,47708, c’est-à-dire, plus grande qu’environ la moitié de g, est 1

2 . II y a
1 contre 1 ou 1 sur 2 à parier que l’erreur commise ne surpassera pas le produit
de g par 0,47708, et il y a autant à parier que l’erreur surpassera ce produit.

La probabilité d’une erreur plus grande que le produit de g par 1,38591 est
beaucoup plus petite que la précédente; elle n’est que 1

20 . II y a 19 sur 20 à
parier que l’erreur du résultat moyen ne surpassera pas ce second produit.

La probabilité d’une erreur plus grande que la précédente devient
extrêmement petite, à mesure que le facteur ∂ augmente. Elle n’est plus
que 1

200 lorsque ∂ approche de 2. La probabilité tombe ensuite en dessous de
1

2000 . Enfin, il y a beaucoup plus de vingt mille à parier contre 1 que l’erreur
du résultat moyen sera au-dessous du triple de la valeur trouvée pour g. Ainsi ,
dans l’exemple cité art. VI, où l’on a 6 pour le résultat moyen, on peut regarder
comme certain que cette valeur 6 n’est pas en défaut d’une quantité triple de la
fraction 0,082 que la règle a donnée pour la valeur de g.

La grandeur cherchée H est donc comprise entre 6− 0, 246 et 6 + 0, 246.
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A.2 Siméon-Denis Poisson, 1781–1840

Poisson advanced Laplace’s theory substantially. Beginning in the 1820s, he
simplified the proof of Laplace’s theorem, making it accessible to many more
mathematicians [58, §17.3]. In 1830, he gave straightforward instructions for
calculating limits of practical certainty for the difference between two propor-
tions [98].23 Finally, in 1837, he pulled together his theoretical and applied
results on probability in an impressive treatise, Recherches sur la probabilité des
jugements [99].

Like Fourier, Poisson discussed limits in terms of numbers of moduli. When
writing theory, he required 3, 4, or even 5 moduli for practical certainty [99,
§§80, 87, and 96]. But when analyzing data, he used less exigent limits. In §89,
when dealing with Buffon’s data, he gave limits and odds corresponding to 2
moduli. In §111, he reduced this to 1.92 moduli, corresponding to a bet at odds
150 to 1.

An example of a theoretical discussion is found in §87, where Poisson con-
sidered the problem of testing whether the unknown probability of an event E
has changed between the times two samples are taken. There are µ observations
in the first sample; E happens in n of them, and its opposite F = Ec happens in
m = µ − n of them. For the second sample, he uses analogous symbols µ′, n′,
and m′. He gives formulas, under the assumption that the unknown probability
has not changed, for the estimated modulus of the difference m′

µ′ − m
µ and for the

probability that this difference will be within u moduli of 0. Then he writes,

So if we had chosen a number like three or four for u, making the
probability ω̃ very close to certainty (no 80), and yet observation

gives values for m′

µ′ − m
µ or n′

µ′ − n
µ that are substantially outside these

limits, we will have grounds to conclude, with very high probability,
that the unknown probabilities of the events E and F have changed
in the interval between the two series of trials, or even during the
trials.

Si donc on a pris pour u un nombre tel que trois ou quatre, qui
rende la probabilit’e ω̃ très approchante de la certitude (no 80),

et si, néamoins, l’observation donne pour m′

µ′ − m
µ ou n′

µ′ − n
µ des

valeurs qui s’écartent notablement de ces limites,on sera fondé à en
conclure, avec une très grande probabilité, que les chances inconnu
des évévements E et F ont changé, dans l’intervalle des deux séries
d’épreuves, ou même pendant ces épreuves.

The closest Poisson came to identifying ±2 moduli with practical certainty
may have been in §135 of the book, where he considered the 42,300 criminal trials

23In his second memoir on mathematical statistics, in 1829 [46], Fourier had explained how
to calculate limits on a function of several estimated quantities, but he had not spelled out
how his formulas specialize to the case where this function is simply the difference between
two proportions.
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in France during the years 1825 through 1830. The defendant was convicted in
25,777 of these trials. So his estimate of the average probability of conviction,
which he called R5, was (42300/25777) ≈ 0.6094. His estimate of its modulus
was 0.00335. He states that if we use 2 moduli,

. . . we will also have
P = 0.9953,

for the probability, very close to certainty, that the unknown R5

and the fraction 0.6094 will not differ from each other by more than
0.0067.

. . . on aura aussi
P = 0.9953,

pour la probabilité, très approchante de la certitude, que l’inconnue
R5 et la fraction 0,6094 ne diffèrent pas de 0,0067, i’une de l’autre.

A.3 Friedrich Wilhelm Bessel, 1784–1846

Having determined the position of over 50,000 stars, Friedrich Wilhelm Bessel
was renowned as an astronomer. In the course of his work, he developed and
popularized Gauss’s theory of errors. He believed that systematic errors are
often more important than random errors, and his influence helped establish
the emphasis on perfecting instruments and computational methods that pushed
the Germans ahead of the French in astronomy and geodesy by the middle of
the 19th century.

The passage translated here is §10 (pp. 141–142) of Bessel’s study of the orbit
of Olber’s comet [11]. Published in 1816, it includes the first known tabulation
of significance levels for the normal distribution. The table shows the odds that
an error will fall within ±α× (probable error) for values of α up to 4. The odds
are more than 140 to 1 that it fall within ±4× (probable error). (Four probable
errors is about two moduli or 2.8 standard deviations.) But Bessel does not
pause over whether this should be regarded as practical certainty. The point
of the table is not to show what is required for practical certainty but to show
why different observations (or equations) must be weighted differently in order
to arrive at the best estimates of unknowns.

Bessel is credited with inventing the notion of a probable error. In the
translated passage he recommends estimating the probable error from the ob-
servations, taking it to be the median of the observed absolute errors.

Bessel in English

Success in determining the final values of quantities from these equations of
condition, and even more so the estimation of their likely uncertainty arising
from errors in the observations, depends principally on the proper weighting of
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the equations of condition. It was, therefore, necessary to make a study of this
question, the result of which I have already used with advantage for some years.

According to Gauss’s least-squares theory, the probability of making an error
∆ is

φ(∆) =
h√
π
e−h

2∆2

(Theoria mot. corp. coel. P. 212.), where h depends on the precision of the
observations. By means of this expression one can easily determine the proba-
ble error of a single observation from an actual set of observations, under the
assumption that the errors that actually occur are free from all systematic in-
fluences, and are produced only by the imperfections of the instruments and
senses. Indeed, the greater the number of observations, the closer we come to
the arithmetic mean of all errors, taken together with the same sign, which we
shall call ε,

= 2

∫ ∞
0

φ(∆)∆d∆ =
1

h
√
π

;

and also to the square root of the arithmetic mean of the squares of the errors,
which we will denote by ε, from the equation

ε′2 = 2

∫ ∞
0

φ(∆)∆2d∆ =
1

2h2
.

The greater the number of actual observations, the more we are entitled to
assume that these errors occur as the Gaussian theory requires, so that from the
coincidence of the ε and ε′ obtained from a very large number of observations
with the best possible corresponding values from the theory, we now obtain the
probable error of an observation, which we will denote ε′′. This designates the
boundary drawn between a number of smaller errors and an equal number of
larger ones, so that it is more likely that an observation falls within any wider
limit as outside it.

Solving the equation ∫ x

0

d−t
2

dt =

∫ ∞
x

e−t
2

dt,

we find that x = 0, 4769364 = hε′′, so that

ε′′ = α× 0.8453ε′ = 0.6745ε.

The probability of an error smaller than αε′′ is to the probability of one
larger as the value of the integral

∫
e−t

2

dt from t = 0 to t = α × 0.4769364 is
the the value of the same integral from t = α× 0, 4769364 to t =∞. From the
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known table of this integral we find the following for several values of α:

α = 1 · · · · · · 1 : 1
α = 1.25 · · · · · · 1 : 1.505
α = 1.5 · · · · · · 1 : 2.209
α = 1.75 · · · · · · 1 : 3.204
α = 2 · · · · · · 1 : 4.638
α = 3 · · · · · · 1 : 30.51
α = 4 · · · · · · 1 : 142.36

The German original

Der Erfolg der Bestimmung der endlichen Elemente aus diesen Bedingungs-
gleichungen, noch mehr aber die Schätzung ihrer wahrscheinlichen, aus den
Beobachtungsfehlern entstehenden Unsicherheit, hängt hauptsächlich von der
richtigen Würdigung der Bedingungsgleichungen ab. Es war daher nothwendig,
über diesen Gegenstand eine eigene Untersuchung anzustellen, deren Resultat
ich bereits seit einigen Jahren mit Vortheil benutzt habe.

Nach der von Gauss gegebenen Theorie der kleinsten Quadrate ist die
Wahrscheinlichkeit, einen Fehler ∆ zu begehen,

φ(∆) =
h√
π
e−h

2∆2

(Theoria mot. corp. coel. P. 212.), wo h von der Genauigkeit der Beobachtun-
gen abhängt. Mittelst dieses Ausdrucks kann man leicht aus einer vorhandenen
Reihe von Beobachtungen den wahrscheinlichen Fehler einer einzelnen bestim-
men, unter der Voraussetzung, dass die wirklich vorkommenden Fehler von allen
beständigen Einwirkungen frei, und nur durch die Unvollkommenheiten der In-
strumente und Sinne erzeugt sind. Man hat nämlich, desto näher, je grösser
die Anzahl der Beobachtungen ist, das arithmetische Mittel aus allen Fehlern,
sämmtlich mit gleichem Zeichen genommen, welches wir ε nennen wollen,

= 2

∫ ∞
0

φ(∆)∆d∆ =
1

h
√
π

;

und auch die Quadratwurzel aus dem arithmetischen Mittel der Quadrate der
Fehler, welche wir durch ε′ bezeichnen wollen, aus der Gleichung

ε′2 = 2

∫ ∞
0

φ(∆)∆2d∆ =
1

2h2
.

Je zahlreicher nämlich eine vorhandene Beobachtungsreihe ist, mit desto
mehr Rechte wird man annehmen können, dass die Fehler darin so vorkom-
men, wie es die Gausssche Theorie erfordert; das aus der Vergleichung einer
sehr zahlreichen Reihe mit einer ihr so gut als möglich entsprechenden Theorie
folgende ε oder ε′, wird nun den wahrscheinlichen Fehler einer Beobachtung,
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den ich durch ε′′ bezeichnen werde, geben. Ich verstehe unter dieser Benennung
die Grenze, die eine Anzahl kleinerer Fehler von einer gleichen Anzahl grösserer
trennt, so dass es wahrscheinlicher ist, eine Beobachtung innerhalb jeder weit-
eren Grenze von der Wahrheit abirren zu sehen, als ausserhalb derselben.

Durch die Auflösung der Gleichung∫ x

0

d−t
2

dt =

∫ ∞
x

e−t
2

dt

findet man x = 0, 4769364 = hε′′, so dass man hat

ε′′ = α× 0.8453ε′ = 0.6745ε.

Die Wahrscheinlichkeit eines Fehlers, kleiner als αε′′, verhält sich zu der eines
grössern, wie der Werth des Integrals

∫
e−t

2

dt von t = 0 bis t = α× 0.4769364,
zu dem Werthe desselben Integrals von t = α×0, 4769364 bis t =∞ genommen.
Für einige Werthe von α findet man, aus den bekannten Tafeln dieses Integrals:

α = 1 · · · · · · 1 : 1
α = 1.25 · · · · · · 1 : 1.505
α = 1.5 · · · · · · 1 : 2.209
α = 1.75 · · · · · · 1 : 3.204
α = 2 · · · · · · 1 : 4.638
α = 3 · · · · · · 1 : 30.51
α = 4 · · · · · · 1 : 142.36

A.4 Thomas Galloway, 1796–1851

The British mathematician Thomas Galloway wrote on astronomy but worked as
an actuary beginning in 1833. His Treatise on Probability [49, p. 144], published
as a book in 1839, first appeared as the article on probability in the 7th edition
of the Encyclopedia Britannica.

In the preface of his Treatise (page xi), Galloway explained that, “In the
investigation of the most probable mean value of a quantity, to be determined
in magnitude or position, from a series of observations liable to error, and the
determination of the limits of probable uncertainty, I have followed the very
general and elegant analysis of Poisson.” Because Poisson was much clearer
than Laplace, Galloway played an important role in making the mathematics
of Laplace’s asymptotic theory understood in Britain. One indication of the
influence of Galloway’s Treatise is that Karl Pearson recommended it to his
readers in the book on the philosophy of science that he published in 1892,
before he began his research in statistics [94, pp. 177, 180].

When tabulating normal probabilities, Galloway wrote τ for the number of
moduli and Θ for the corresponding probability—the probability that a quantity
following the error law is within τ moduli. His table stopped at τ = 3; and he
seems to have agreed with Fourier that this was the limit of practical certainty.
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In his discussion of Bernoulli’s theorem on page 144, for example, he pointed
out that Θ “approaches nearer and nearer to certainty” as τ increases, adding
that “it may be seen, by referring to the table, that it is only necessary to have
τ = 3 in order to have Θ = ·9999779”.

A.5 George Biddell Airy, 1801–1892

A prolific mathematician, Airy was the British Astronomer Royal from 1835 to
1881. His book on the theory of errors, entitled On the Algebraical and Nu-
merical Theory of Errors of Observation and the Combination of Observations
and first published in 1861, might be considered the first manual on the Gaus-
sian theory of errors published in English. Curiously, however, he relied on
Laplace for this basic theory and did not mention Gauss’s name. He included
this statement in the preface to the first edition (p. vi):

No novelty, I believe, of fundamental character, will be found in
these pages. At the same time I may state that the work has been
written without reference to or distinct recollection of any other
treatise (excepting only Laplace’s Théorie des Probabilités); and the
methods of treating the different problems may therefore differ in
some small degrees from those commonly employed.

Further editions appeared in 1875 and 1879.
On p. 15 of the book, Airy introduced the name modulus for the constant c

in the expression
1

c
√
π
.e−

x2

c2 .δx

for the probability that an error falls between x and x+ δx.
As customary in the Gaussian tradition, Airy did not discuss practical cer-

tainty. When discussing the law of error, on p. 17, he did observe that “after the
Magnitude of Error amounts to 2.0×Modulus, the Frequency of Error becomes
practically insensible”, but here he was referring to the density of the normal
distribution, not to its tail probabilities.

A.6 Augustin Cournot, 1801–1877

In 1833, Cournot published a translation into French of John Herschel’s Treatise
on Astronomy, which had appeared in English that same year. In an appendix
to the translation, he discussed the application of probability to astronomical
observations [81]. Here we find this statement about practical certainty [25,
vol. XI.2, p. 686].

A probability of 1000 to 1 is almost considered equivalent to cer-
tainty, and one can hardly make the same judgement about a prob-
ability of 12 to 1.
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Already in 1828, Cournot had already began working on the ideas that be-
came his Exposition de la théorie des chances et des probabilités, but he finally
completed and published the book only in 1843.24 Below I translate two pas-
sages from the Exposition, a brief passage from §95 discussing the agreement
between Bernoullian and Bayesian methods, and an extended passage from §111
criticizing the p-hacking of the census. Cournot discussed p-hacking further
in §§102 and 112–114, concluding that judgement about the meaningfulness of
such observed differences is ultimately a matter of philosophical (non-numerical)
probability. His critique of p-hacking has been discussed by Bernard Bru [18]
and Michel Armatte [3, 4].

Cournot on Bayes, from [24, §95]

When the numbers . . . are very large, . . . , the result from Bayes’s rule no longer
differs noticeably from the calculation that Bernoulli’s theorem would give. This
is the way it should be, because the truth of Bernoulli’s theorem is independent
of any hypothesis concerning the initial choice of the urn. In this case it is not
(as many authors seem to have imagined) Bernoulli’s rule that becomes exact by
approximating Bayes’s rule; it is Bayes’s rule that becomes exact, or acquires an
objective value that it did not have before, by coming together with Bernoulli’s
rule.

The French original. Quand les nombres . . . sont très grands, . . . le résultat
trouvé par la régle de Bayes ne diffère plus sensiblement de calcul que donnerait
le théorème de Bernoulli. Il faut bien qu’il en sont ainsi, puisque la vérité
du théorème de Bernoulli est indépendante de toute hypothèse sur le tirage
préalable de l’urne. Ce n’est point dans ce cas (comme beaucoup d’auteurs ont
paru se le figurer) la régle de Bernoulli qui devient exacte en se rapprochant de
la règle de Bayes; c’est la règle de Bayes qui devient exacte, ou acquiert une
valeur objective qu’elle n’avait pas; en se confondant avec la règle de Bernoulli.

Cournot on p-hacking, from [24, §111]

. . . Clearly nothing limits the number of the aspects under which we can consider
the natural and social facts to which statistical research is applied nor, conse-
quently, the number of variables according to which we can distribute them into
different groups or distinct categories. Suppose, for example, that we want to
determine, on the basis of a large number of observations collected in a country
like France, the chance of a masculine birth. We know that in general it ex-
ceeds 1/2. We can first distinguish between legitimate births and those outside

24For Cournot 1828 article on probability, together with commentary by Bernard Bru and
Thierry Martin, see pp. 442–453 of Volume XI-1 of Cournot’s complete works [25]. See also
the edition of the Exposition that appeared in 1984, with introduction and notes by Bru, as
Volume I of the complete works.

30



marriage, and as we will find, with large numbers of observations, a very ap-
preciable difference between the values of the ratio of masculine births to total
births, depending on whether the births are legitimate or illegitimate, we will
conclude with very high probability that the chance of a masculine birth in the
category of legitimate births is appreciably higher than the chance of the event
in the category of births outside marriage. We can further distinguish between
births in the countryside and births in the city, and we will arrive at a similar
conclusion. These two classifications come to mind so naturally that they have
been an object for examination for all statisticians.

Now it is clear that we could also classify births according to their order in the
family, according to the age, profession, wealth, and religion of the parents; that
we could distinguish first marriages from second marriages, births in one season
of the year from those in another; in a word, that we could draw from a host of
circumstances incidental to the fact of the birth, of which there are indefinitely
many, producing just as many groupings into categories. It is likewise obvious
that as the number of groupings thus grows without limit, it is more and more
likely a priori that merely as a result of chance at least one of the groupings will
produce, for the ratio of the number of masculine births to the total number of
births, values appreciably different in the two distinct categories. Consequently,
as we have already explained, for a statistician who undertakes a thorough
investigation, the probability of a deviation of given size not being attributable
to chance will have very different values depending on whether he has tried more
or fewer groupings before coming upon the observed deviation. As we are always
assuming that he is using a large number of observations, this probability will
nevertheless have an objective value in each system of groupings tried, inasmuch
as it will be proportional to the number of bets that the experimenter would
surely win if he repeated the same bet many times, always after trying just
as many perfectly similar groupings, providing also that we had an infallible
criterium for distinguishing the cases where he is wrong from those where he is
right.

But usually the groupings that the experimenter went through leave no trace;
the public only sees the result that seemed to merit being brought to its atten-
tion. Consequently, an individual unacquainted with the system of groupings
that preceded the result will have absolutely no fixed rule for betting on whether
the result can be attributed to chance. There is no way to give an approximate
value to the ratio of erroneous to total judgments a rule would produce, even
supposing that a very large number of similar judgments were made in identical
circumstances. In a word, for an individual unacquainted with the groupings
tried before the deviation δ was obtained, the probability corresponding to that
deviation, which we have called Π, loses all objective substance and will necessar-
ily carry varying significance for a given magnitude of the deviation, depending
on what notion the individual has about the intrinsic importance of the variable
that served as the basis for the corresponding grouping into categories.
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The French original

. . . Il est clair que rien ne limite le nombre des faces sous lesquelles on peut
considérer les événements naturels ou les faits sociaux auxquels s’appliquent
les recherches de statistique, ni, par suite, le nombre des caractères d’après
lesquels on peut les distribuer en plusieurs groupes ou catégories distinctes.
Supposons, pour prendre un exemple, qu’il s’agisse de déterminer, d’après un
grand nombre d’observations recueillies dans un pays tel que la France, la chance
d’une naissance masculine qui, en général, comme on le sait, surpass 1/2: on
pourra distinguer d’abord les naissances légitimes des naissances hors mariage;
et comme on trouvera, en opérant sur de grands nombres, une différence très-
sensible entre les valeurs du rapport du nombre des naissance masculines au
nombre total des naissances, selon qu’il agit d’enfants légitimes ou naturels,
on en conclura avec une probabilité très-grande que la chance d’une naissance
masculine, dans la catégoire des naissances légitime, surpasse sensiblement la
chance du même événement, dans la catégoire des naissances hors mariage. On
pourra distinguer encore les naissances dans les campagnes des naissances dans
les villes, et l’on arrivera à une conclusion analogue. Ces deux classifications
s’offrent si naturellement à l’esprit, qu’elles ont été un objet d’épreuve pour tous
les statisticiens.

Maintenant il est clair qu’on pourrait aussi classer les naissances d’après
l’ordre de primogéniture, d’après l’âge, la profession, la fortune, la religion des
parents; qu’on pourrait distinguer les premières noces des secondes, les nais-
sances survenues dans telle saison de l’année, des naissances survenues dans
une autre saison; en un mot, qu’on pourrait tirer d’une foule de circonstances
accessoires au fait même de la naissance, des caractères, en nombre indéfini,
qui serviraient de base à autant de systèmes de distribution catégorique. Il est
pareillement évident que, tandis que le nombre des coupes augmente ainsi sans
limite, il est à priori de plus en plus probable que, par le seul effet du hasard,
l’une des coupes au moins offrira, pour le rapport du nombre des naissances
masculines au nombre total des naissancees, dans les deux catégories opposées,
des valueurs sensiblement différentes. En conséquence, ainsi que nous l’avons
déjà expliqué, pour le statisticien qui se livre à un travail de dépouillement et de
comparaison, la probabilité qu’un écart de grandeur donnée n’est pas imputable
aux anomalies du hasard, prendra des valeurs très-différentes, selon qu’il aura
essayé un plus ou moins grand nombre de coupes avant de tomber sur l’écart
observé. Comme on suppose toujours qu’il a opéré sur de grands nombres,
cette probabilité . . . n’en aura pas moins, dans chaque système d’essais, une
valeur objective, en ce sens qu’elle sera proportionnelle au nombre de paris que
l’expérimentateur gagnerait effectivement, s’il répétait un grand nombre de fois
le même pari, toujours à la suite d’autant d’essais parfaitement semblables, et
si l’on possédait d’ailleurs un criterium certain pour distinguer les cas où il se
trompe des cas où il rencontre juste.

Mais ordinairement ces essais par lesquels l’expérimentateur a passé ne lais-
sent pas de traces; le public ne connâıt que le résultat qui a paru mériter de lui
être signalé; et en conséquence, une personne étrangère au travail d’essais qui a
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mis ce résultat en évidence, manquera absolument de règle fixe pour parier que
le résultat est ou non imputable aux anomalies du hasard. On ne saurait as-
signer approximativement la valeur du rapport du nombre des jugements erronés
qu’elle portera, au nombre des jugements portés, même en supposant très-grand
le nombre des jugements semblables, portés dans des circonstances identiques.
En un mot, la probabilité que nous avons appelée Π, et qui correspond à l’écart
δ, perdra, pour la personne étrangère aux essais qui ont manifesté cet écart,
toute consistance objective; et, selon l’idée que cette personne se fera de la
valueur intrinsèque du caractère qui a servi de base à la division catégorique
correspondante, elle devra porter des jugements différents, la grandeur de l’écart
signalé restant la même.

A.7 Jules Gavarret, 1809–1890

In 1840, Jules Gavarret published Principes généraux de statistique médicale,
the first book on the use of probability to evaluate medical therapies [50, 64]. For
Gavarret, introducing probability into medicine was a way of bringing medicine
up to the level of the most exact sciences, which also, according to Laplace and
Poisson, rested ultimately only on probabilities (p. 39). On page 257, Gavarret
appealed to Poisson’s authority to support the choice of 2 moduli as the level
of probability sufficient for practical certainty:

But to make these formulas immediately applicable to the ques-
tions we are concerned with, we must transform them in a very
simple way. To this end, recall the general principle established on
page 39, namely that once an observer has arrived at a high degree
of probability for the existence of a fact, he may use the fact as if he
were absolutely certain of it. Let us therefore agree on a probability
after which any therapeutic fact can and should be accepted with-
out dispute. This probability must satisfy two important conditions:
one, to be sufficiently high to leave no doubt in people’s minds; the
other, not to require too large a number of observations in order for
the ratios provided by the statistics we have collected to properly
approximate the average chance we are estimating. The choice of
such a probability, one that can and should satisfy us, would have
been very delicate; but fortunately we can rely in this matter on
an authority whose importance no one, surely, will try to dispute.
When M. Poisson set out in his book the rules which should gov-
ern the search for possible errors in the judgements of juries,25 the
highest probability that he would give to his propositions, in order
to consider himself justified in considering them as free from any
reasonable objection, is:

P = 0.9953; that is to say, betting odds of 212 to 1.

25This is a reference to §135 of Poisson’s book.
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Mais pour rendre ces formules immédiatement applicable aux
questions dont nous nous occupens, nous devons leur faire subir une
transformation très simple. A cet effect, rappelons nous le principe
général établi (pag. 39), à savoir que: du moment ou un observateur
est arrivé à un haut degré de probabilité relativement à l’existence
d’un fait, il peut l’employer comme s’il était absolument certain.
Convenons donc d’une probabilité à partir de laquelle tout fait
thérapeutique puisse et doive être admis sans contestation. Cette
probabilité doit satisfaire à deux conditions importantes: l’une,
d’être assez élevée pour ne laisser aucun doute doute dans les es-
prits; l’autre, de ne pas exiger un nombre trop grand d’observations,
pour que les rapports fournis par la statistique recueillie se rap-
prochent convenablement de la chance moyenne cherchée. Le choix
de cette probabilité, dont on puisse se contenter, eut été fort délicat
à faire; mais heureusement nou pouvons nous appuyer à cet égard
sur une autorité dont personne sans doute n’essayera de contester
l’importance. Quand M. Poisson a exposé dans son ouvrages les
règles qui devaient présider à la recherche des erreurs possibles dans
les jugements du jury, la probabilité la plus élevée qu’il ait donné à
ses propositions, pour se croire fondé à les considérer comme à l’abri
de toute objection raisonnable, est:

P = 0.9953; c’est à dire 212 à parier contre 1.

Today we teach students to estimate the standard error for the difference
between two estimated proportions p̂1 and p̂2 by the formula

standard error (p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
− p̂2(1− p̂2)

n2
,

where ni, for i = 1, 2, is the number of individuals from which the proportion p̂i
is estimated. Gavarett used the same formula, with the additional factor

√
2, to

estimate the modulus. He calculated 2 moduli using this formula for a number
of examples. Here are two examples he gave on pp. 157–158:

� If one treatment results in 100 deaths out of 500 patients, while a sec-
ond results in 150 deaths out of 500 patients, then we have an observed
difference of 0.1, with a limit of possible errors 0.07694. Here Gavarret
concludes:

The difference in calculated death rates is greater than this
limit of possible errors in the a posteriori conclusion. So we
must recognize that the first treatment really is better than the
second.

La difference entre les mortalités obtenues est supérieure à
cette limite des erreurs possibles dans la conclusion à poste-
riori, nous devons donc reconnâıtre qu’en réalité la première
médication est supérieure à la seconde.
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� If one treatment results in 100 deaths out of 500 patients, while a sec-
ond results in 130 deaths out of 500 patients, then we have an observed
difference of 0.06, with a limit of possible errors 0.07508. Here Gavarret
concludes:

Evidently, because the difference between the two death
rates is less than this limit of possible errors in the a posteriori
conclusion, we must recognize that this variation in the results
tells us nothing, and that we are not authorized to prefer one of
the two methods to the other.

Évidemment, puisque la différence entre les deux mortalités
moyennes est inférieure à cette limite des erreurs possible dans la
conclusion à posteriori, nous devons reconnâıtre, que cette varia-
tion dans les résultats ne nous enseigne rien, que nous ne sommes
pas autorisés à préférer une des deux méthodes à l’autre..

A.8 Wilhelm Lexis, 1837–1914

A prominent German economist and statistician, Lexis published his introduc-
tion to population statistics Einleitung in die Theorie der Bevölkerungsstatistik
[79], in 1875.

On p. 98, he gave this small table for normal probabilities, Fu being the
probability of a quantity estimated being within u moduli of the estimate.

u Fu u Fu
0,10 0,11246 1,50 0,966105
0,20 0,22270 2,00 0,995322
0,30 0,32863 2,50 0,999593
0,40 0,42839 3,00 0,999977909
0,50 0,52050 4,00 0,999999985
1,00 0,84270 5,00 0,999999999998

Lexis consistently used Fourier’s criterion of three moduli for practical cer-
tainty. This passage, from p. 100, is typical of the explanations he gives for
choosing u to be 3:

For the purposes of statistics it should however be more appropriate
to take u so large that Fu comes very near to one and therefore
expresses a probability that can be considered in practice equal to
certainty. It suffices, as before, to set u equal to 3, and we then
obtain the probability F3 = 0, 999978 for the limit equation . . . .

In the original:

Für die Zwecke der Statistik dürfte es jedoch geeigneter sein, für
u eine so grosse Zahl zu nehmen, dass Fu der Einheit sehr nahe
kommt, also eine Wahrscheinlicbkeit ausdrückt, die in der Praxis
der Gewissheit gleich geachtet werden kann. Es genügt, wie oben,
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u gleich 3 zu setzen, und man erhalt alsdann die Wahrscheinlichkeit
F3 = 0, 999978 für die Grenzgleichung . . . .)

A.9 Francis Edgeworth, 1845–1926

As noted in §3.4, Edgeworth introduced the English word significant into sta-
tistical testing in a paper read at the Jubilee meeting of the Statistical Society
of London in 1885 [33]. In this paper, Edgeworth refers the reader to Quetelet,
Galton, and Jevons for details on the law of error, but he uses the modulus and
Fourier’s criterion, repeated by Lexis, of thrice the modulus. Here are a few key
quotations.

From p. 182: The science of Means comprises two main problems:
1. To find how far the difference between any proposed Means is
accidental or indicative of a law? 2. To find what is the best kind of
Mean; whether for the purpose contemplated by the first problem,
the elimination of chance, or other purposes? . . . The first problem
investigates how far the difference between the average above stated
and the results usually obtained in similar experience where pure
chance reigns is a significant difference; indicative of the working of
a law other than chance, or merely accidental. . . .

. . . out of a set of (say) N statistical numbers which fulfil the law
of error, we take one at random, it is exceedingly improbable that
it will differ from the Mean to the extent of twice, and à fortiori
thrice, the modulus.

From p. 188: . . . we shall find that the observed difference between
the proposed Means, namely about 2 (inches) far exceeds thrice the
modulus of that curve, namely 0*2. The difference therefore “comes
by cause.”

In his report on the discussion of the paper (p. 217), the president of the session
reported that when pressed by the Italian statistician Luigi Perozzo on whether
his paper contained anything new, Edgeworth had said that “he did not know
that he had offered any new remarks, but perhaps they would be new to some
readers. He had borrowed a great deal from Professor Lexis.”

Edgeworth again used significant in his article on probability in the 11th
edition of the Encyclopedia Britannica [35, §137]. There he explained that the
method discussed in his 1885 paper was a way of deciding whether a difference
is real without resorting to a complete inverse (Bayesian) analysis.

This application of probabilities not to the actual data but to a se-
lected part thereof, this economy of the inverse method, is widely
practised in miscellaneous statistics, where the object is to deter-
mine whether the discrepancy between two sets of observation is
accidental or significant of a real difference.
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The following passage appears in Edgeworth’s 1887 article on the rejection
of discordant observations [34, pp. 369–370]:

There is something paradoxical in Cournot’s proposition that a cer-
tain deviation from the Mean in the case of Departmental returns
of the proportion between male and female births is significant and
indicative of a difference in kind, provided that we select at random
a single French Department; but that the same deviation may be
accidental if it is the maximum of the respective returns for several
Departments. There is something plausible in De Morgan’s implied
assertion that the deficiency of seven in the first 608 digits of the
constant π is theoretically not accidental; because the deviation from
the Mean 61 amounts to twice the Modulus of that probability curve
which represents the frequency of deviation for any assigned digit. I
submit, however, that Cournot is right, and that De Morgan, if he
is serious in the passage referred to, has committed a slight inadver-
tence. When we select out of the ten digits the one whose deviation
from the Mean is greatest, we ought to estimate the improbabil-
ity of this deviation occurring by accident, not with De Morgan as
1 − θ(1 · 63), corresponding to odds of about 45 to 1 against the
observed event having occurred by accident; but as 1 − θ10(1 · 63),
corresponding to odds of about 5 to 1 against an accidental origina-
tion.

A.10 Mansfield Merriman, 1848–1925

A prominent American mathematician and engineer, Merriman taught at Yale
and Lehigh and worked at different times in his country’s Corps of Engineers
and Coast and Geodetic Survey. He enters our story as an authority on Gauss’s
theory of least squares. In one of his earliest publications on the subject, he
wrote [83, p. 195]:

To Gauss is also due the development of the algorithm of the method,
the formulae for probable error, the determination of weights, the
method of correlatives, and many other features of the subject,
as well as numerous practical applications with which his writings
abound. Very few branches. of science owe so large a proportion of
subject matter to the labours of one man.

A.11 Arthur Schuster, 1851–1934

Schuster was born in Germany but in 1870 he followed his parents to England,
where he became a prominent physicist. He is best remembered for coining the
term the term periodogram and analyzing it statistically.

Schuster introduced the word periodogram in an 1898 article on the evidence
for a 26-day cycle in the weather. In this article [103, p. 18], he described
an intensity that would be exceeded only one time in 23 as one that would
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not “justify us . . . to consider a real periodicity as proved, although we might
be encouraged to continue the investigation by taking an increased number of
events into account.” In a 1906 article on the periodicity of sunspots [104, p. 79],
he was more exigent:

. . . The probability of an intensity greater than h times the average
value is eh, and we may perhaps begin to suspect a real periodicity
when this value is 1 in 200. This gives 5·3 as the value of h and
80,000 as the smallest value of the intensity which invites further
discussion. When h has the value 8, the probability of an intensity
greater than h times the expectancy is 1 in 3,000 and we may begin
to be more confident that there is some definite cause at work to
bring up the periodogram to that value. The intensity in that case
is 120,000. When h is 16, the chances of being misled by accident is
only one in a million.

A.12 Karl Pearson, 1857–1936

Karl Pearson is remembered as the driving force behind the British school of
biometry at the beginning of the 20th century. One of his roles was editor, from
its founding in 1901 until his death in 1936, of the journal Biometrika. The
early issues of the journal provide a convenient view on how he and his followers
talked about statistical testing at the beginning of the century.26

In Biometrika’s first volume, we find “perhaps significant”, “more probably
significant”, and “certainly significant”. Here are some additional instances of
the Edgeworthian “significant”:

� In the very first issue, from Pearson’s close collaborator W. F. R. Weldon
[130, p. 119]: “With probable errors of the order indicated by Tables I.
and II., it is unlikely that any of these differences are significant. Even in
the case of the last pair of entries the difference, although it is considerable
(0 ·0229 mm.), is less than twice the probable error of the determination.”

� In the second issue, from Oswald H. Latter [76, p. 167]: “To test whether
any deviation is significant, Mr is taken as the mean of the whole race
of Cuckoos and Ms the mean of Cuckoo’s eggs found in the nest of any
one species of foster-parent: the standard deviation (σs) of such eggs is
also ascertainied. The value of Mr −Ms is then compared with that of

0 · 67449
√

σ2
r

n1
+

σ2
s

n2
, where n1 = total number of Cuckoo’s eggs and n2 =

the number of Cuckoo’s eggs in the nests of the species in question, which
is the probable error of Mr −Ms due to random sampling. If the value of
Mr −Ms be not at least 1.5 to 3 times as great as the value of the other
expression the difference of Mr and Ms is not definitely significant.”

� In volume 7, for 1909/1910, the American James Arthur Harris (1880–
1930) wrote “. . . I follow the rather common example of statisticians in

26The early decades of Biometrika can be searched conveniently at the Biodiversity Library.
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regarding differences of at least 2 · 5 times their probable errors as signifi-
cant” [60, p. 458].

� In a 1912 article co-authored by Pearson himself [8, p. 301]: “Hence the
difference is more than three times the probable error and likely to be
significant.”

These quotations indicate that Pearson and his school consistently used signif-
icant in the Edgeworthian sense, and that they still measured the likelihood of
significance with the probable error rather than the standard error. A difference
of more than three probable errors was judged definitely significant, a difference
of less than two was thought unlikely to be significant.

In later years, however, we see some non-Edgeworthian uses of significance
creep into Biometrika. Here are some examples.

� In the volume for 1908/1909, J. F. Tocher [119, p. 163], writes “it is
possible that a locality may exhibit a difference or differences almost or
just significant for one or more colour classes. . . ”.

� In the volume for 1914/1915, in an article on the variate difference method
co-authored by Pearson himself [23, p. 347]: “Stripped therefore of the
common time factor the Synthetic Index will be seen to be no very ap-
propriate measure of trade, business activity, and spare money for savings
and luxuries. With Post, Stamp Duties and Savings, it has probably only
a spurious relationship, expenditure on railways has little influence, that
on luxuries is very slightly significant, or indeed in the case of tobacco
negative.”

� In the volume for 1918/1919, in an article on psychophysics Godfrey H.
Thomson [118, p. 219]: “The difference is therefore three times its probable
error and is just significant.”

The subtle nuances of Edgeworth’s significant were definitively lost in the
1920s. Perhaps they were too subtle to survive. But they did survive long
enough for the word to become embedded in mathematical statistics, with all
its confusing awkwardness and stubborn permanence.

A.13 Gilbert Walker, 1868–1958

Walker was already an accomplished applied mathematician when he accepted
an appointment to the British meteorological office in India. By 1914 [125], he
had published a memoir under that office’s auspices deploring multiple testing
in the statistical interpretation of Schuster’s periodograms. This publication
may have escaped the notice of his colleagues back in Britain, but he made his
point well known in a letter to the editor of Nature in 1922 [126, p. 511] and in
an article in the Quarterly Journal of the Royal Meteorological Society in 1925
[127].
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Walker’s 1922 letter to the Editor of Nature, entitled “On period-
icities”: THE recent paper by Sir William Beveridge on “Wheat Prices and
Rainfall” (Journal of the Royal Statistical Society, vol. 85, pp. 412–478, 1922)
raises a rather important question of principle which is involved not only in dis-
cussions over the existence of periodicities, but also over relationships between
different variables.

Before Schuster’s papers on the periodogram it was customary for a period
to be accepted as real provided that it had an amplitude comparable with that
of the original figures under analysis; and he revolutionised the treatment of the
subject by showing that if the squares of the intensities of the various periodic
terms are plotted in a periodogram, and if the data are those of an entirely
chance distribution, then the average value of an ordinate being a, the prob-
ability that a particular ordinate will equal or exceed ka is e−k. Sir William
Beveridge is accordingly perfectly justified in taking Schuster’s sunspot period
of 11·125 years, or Brückner’s 34·8 year period, and deciding that these peri-
ods probably occur in his wheat prices if the corresponding intensities are three
or four times the average. But he, like many other investigators, goes a stage
further, and after picking out the largest from a large number of intensities he
applies the same criterion as if no selection had occurred. It is, how ever, clear
that if we have a hundred intensities the average of which, a, is derived from a
number of random figures, then the probable value of the largest of these chance
intensities will not be a but will be considerably greater, and it is only when
the largest amplitude actually derived materially exceeds the theoretical chance
value thus obtained that reality can be inferred.

Taking the periodicities of wheat prices on pp. 457–459 between 5 years and
40 years,27 I estimate that the “width of a line” ranges from 0·1 year for a 5
years’ period, through 0·5 at 12 years to 4 years at 33 years; and accordingly
that the number of independent periods between 5 years and 40 is in this case
about 51. The value of a, the average intensity, being 5·898, it is easily seen that
the chance of all the 51 random intensities being less than 3a is (1− e−3)51, or
0·074, so that the chance of at least one intensity greater than 3a is 0·926, not
e−3 or 0.050, as is habitually assumed. Instead of the chance of an occurrence
of 3a “making a prima facie case for enquiry” (p. 424), the odds are 12 to 1 in
favour of its production by mere chance. The chance of at least two intensities
above 3a is 0·728, of three it is 0·470, of four 0·248, of five 0·109, of six 0·0403,
of seven 0·0127, of nine 0·00085, and of eleven 0·00003. Thus it is not until six
intensities over 3a are found that the chance of production by pure luck is less
than 1 in 20. It is also easily found that if the chance of all the 51 intensities
being less than na is to be 19/20, n is 6·9; i.e. the greatest intensity for wheat
price fluctuations must be 41, not 18, before the probability of its being due
to luck is reduced to 1/20; and if the likelihood is to be 1/100 we must have
n = 8·5, the corresponding wheat-price intensity being 50. Of intensities greater

27Footnote by Walker: Sir William Beveridge points out on pp. 423–424 that amplitudes for
periods of less than 5 years are inevitably diminished, while those above 31 are diminished by
the process employed for eliminating secular trend: I calculate that the intensity at 35 years
should be multiplied by (0 · 87)−2 or 1·3, and that at 54 by 3·8.
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than 41 Sir William Beveridge found four, and greater than 50 only two.
At first sight it might seem that the agreement between Sir William Bev-

eridge’s forecasted synthesis rainfall curve and the actual rainfall was too great
to be explained by a few harmonic terms; but the correlation co-efficient of 0 ·38
(see p. 475) indicates that while 0 · 38 of the rainfall variations are accounted
for, only (0 · 38)2, or about a seventh, of the independent factors which control
these variations have been ascertained.

As pointed out in a paper “On the Criterion for the Reality of Relationships
or Periodicities,” in the Indian Meteorological Memoirs (vol. 21, No. 9, 1914),
the same principle is valid when discussing relationships. If we are examining
the effect of rainfall on temperature and ascertain that the correlation coeffi-
cient between the rainfall and temperature of the same month in a particular
English county is four times the probable error, we may infer that the effect is
highly probable. But if we work out the co-efficients of that temperature with
a hundred factors taken at random, e.g. with the monthly rainfall of Tashkend
5·8 years previously, and pick out the largest co-efficient, it would be wrong to
compare it with the average co-efficient produced by mere chance; as shown in
the paper referred to, the probable value of the largest of 100 co-efficients is
4 · 01 times as great as the probable value of one taken at random.

GILBERT T. WALKER.
Meteorological Office, Simla, August 24.

A.14 Arthur Bowley, 1869–1957

Bowley was a professor of economics at the London School of Economics. Like
his fellow economist Edgeworth, he was not part of Pearson’s biometric circle.
He published several textbooks on statistics, beginning with the first edition
of his Elements of Statistics in 1901 [16], where he acknowledged a debt to
Edgeworth, both for Edgeworth’s publications and for personal instruction. As
we see on page 6 of the book, he adopted Edgeworth’s criterion of 3 moduli for
practical certainty:

Without the aid of statistical method, the averages obtained show
mere numbers from which no logical deductions can be made. With
the help of this knowledge, it can be seen whether the change from
year to year is significant or accidental; whether the figures show a
progressive or periodic change; whether they obey any law or not.

On page 313, he cites Edgeworth [33] as authority for the proposition that an
apparent difference of 3 moduli signifies a real difference.

. . . the modulus of a difference is most useful in comparing two groups
selected as having certain qualities. Thus Professor Edgeworth dis-
cusses whether an ascertained difference of 2 inches between the
average heights of a large number of criminals and that of the gen-
eral population is significant; and finding that the modulus for the
difference between two random groups is only 0.08, holds that there

41



is a cause of the difference in the method of selection; that is, that
criminality and low stature are found together. We might apply the
same principle to the investigation of the existence of a period in any
figures; for if the modulus of the figures was c, the modulus for the
difference between the averages of two random samples of 20 months

each would be c
√

1
20 + 1

20 ; if the difference between the averages of

the figures for 20 Decembers and 20 Junes was 3 times this quantity
the existence of a period would be established.

A.15 George Udny Yule, 1871–1951

After studying mathematical physics, Yule became a statistician as an assistant
to Pearson. He later quarreled with Pearson and went his own way on a number
of points. In 1897 [133], he introduced the name standard error for the standard
deviation of an estimate. The first edition of his Theory of Statistics [134]
appeared in 1911.

On page 262 of the first edition, we find this nod to Edgeworth’s significant :

. . . if we observe a different proportion in one sample from that which
we have observed in another, the question again arises whether this
difference may be due to fluctuations of simple sampling alone, or
whether it indicates a difference between the conditions subsisting in
the universes from which the two samples were drawn: in the latter
case the difference is often said to be significant. These questions
can be answered, though only more or less roughly at present, by
comparing the observed difference with the standard-deviation of
simple sampling. We know roughly that the great bulk at least of
the fluctuations of sampling lie within a range of ± three times the
standard-deviation; and if an observed difference from a theoretical
result greatly exceeds these limits it cannot be ascribed to a fluc-
tuation of “simple sampling” as defined in §8: it may therefore be
significant. The “standard-deviation of simple sampling” being the
basis of all such work, it is convenient to refer to it by a shorter name.
The observed proportions of A’s in given samples being regarded as
differing by larger or smaller errors from the true proportion in a
very large sample from the same material, the “standard-deviation
of simple sampling” may be regarded as a measure of the magnitude
of such errors, and may be called accordingly the standard error.

Yule never or hardly ever used the Edgeworthian significant, however. We find
the word repeatedly in the book, but usually merely to mean “important”.

A.16 Francis J. W. Whipple, 1876–1943

The following passage appears on p. 336 of the discussion of Brunt’s paper on
the Greenwich temperature records.
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Mr. F. J. W. WHIPPLE called attention to a difficulty which was
not always faced when the “reality” of periods was under discussion.
In CaptḂrunt’s paper it was stated that if the amplitude of one of
the harmonic components was as great as 06◦·4 F, the odds were “19
to 1 in favour of the reality” of the corresponding period, and yet the
author arrived at the conclusion that such periods had little physical
significance. The difficulty lay in the enunciation of the statement
with regard to the probability of the occurrence of an amplitude of
a specified magnitude. It might be illustrated by an example from
the card-table: the chances of three aces occurring in a particular
hand was very small, but the chance of three aces occurring in some
hand in the course of an evening’s play was very high. In the case
under consideration, if a particular period was named in advance
and the corresponding amplitude turned out to be large, then the
probability that this was not merely casual would be high; but if
all possible periods were investigated then there was good reason to
expect that some of the computed amplitudes would be large. It was
stated that the standard (root-mean-square) value of the amplitudes
computed from the author’s data, regarded as distributed by chance,
would be 2 · 3 units, and as a matter of fact the sum of the squares
of the amplitudes of the first forty-nine harmonics was given as 380,
so that the root-mean-square was 2 · 8, not much in excess of the
2 ·3. Accordingly there was little reason to suppose that the periods
were significant. Any agreement between the periods found for one
element and another, for example. for temperatures at different
places, would indicate a correlation between the elements and would
merit further investigation. Periodogram analysis might prove a
useful though laborious method for discovering such correlations.

A.17 William Beveridge, 1879–1963

When Beveridge published his harmonic analysis of hundreds of years of wheat
prices in 1922, he was already well known because of his work in the British
civil service before and during the First World War. In 1919, he had become
director of the London School of Economics. During the Second World War, he
led a committee that produced the Beveridge Report, which became a blueprint
for Britain’s postwar welfare system.

Beveridge’s response to Gilbert Walker’s 1922 letter to the Editor of Nature
was printed by the journal immediately after the letter.

Beveridge’s response. DR. WALKER’s note contains, I think, a valid and
valuable criticism of the procedure commonly adopted hitherto in comparing
individual intensities with the average intensity in harmonic analysis. It would
lead me, now to modify in several ways my general discussion of the “test of
intensity” (pp. 412–424 of my paper in the Journal of the Royal Statistical
Society). I was particularly careful, however, in that paper to avoid laying
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stress on intensity as such. The net result of Dr. Walker’s calculations is not to
weaken but to confirm my main thesis: that a number of real periodicities exist
in European wheat prices from 1550 to 1850.

According to these calculations, the chance of my getting by pure luck be-
tween five and forty years one intensity as great as 3a is 0 · 926, but the chance
of my getting seven such intensities is 0 · 0127, and that of getting eleven is
0 · 00003. Actually I have, between five and forty years, fifteen intensities above
3a(= 17·69); the odds are therefore 80 to 1 that at least nine of these intensities,
and 33, 000 to 1 that at least five of them, are not due to luck. Obviously every
such intensity does, in the circumstances, present a prima facie case for further
inquiry, the object of the inquiry being to determine which of the 15 intensities
have the strongest probabilities of being due to real periods.

In that inquiry the actual height of the intensity in any case (the “test of
intensity”) is only one and not necessarily the most important point for con-
sideration. As Dr. Walker shows, an intensity in my periodogram of nearly
seven times the average might well be due to pure luck (the odds being only
20 to 1 against it). On the other hand, a much lower intensity might represent
a true and perfectly regular but weak periodicity, just as a quite small corre-
lation co-efficient may prove a real though weak connexion, if the number of
cases compared is very large. Indication of the same period in each half of a se-
quence when analysed separately (the “test of continuity”) and in independent
sequences (the “test of agreement with other records”) are often more important
criteria of reality than is the height of the intensity itself. The former test, at
least, should never be neglected; it has led me to relegate to my fourth class
as merely “possible,” several periods, such as those near 11, 17, and 24 years,
indicated by high intensities in the whole sequence, but failing in either the first
or the second half.

Ultimately, of my fifteen intensities between 5 and 40 years, I have treated
only nine (at 5 · 100, 5 · 671, 5 · 960, 8 · 050, 9 · 750, 12 · 840, 15 · 225, 19 · 900,
and 35 ·500 years respectively) as certainly or probably due to real periodicities,
because they show in all cases perfect or fair continuity and in most an agreement
with other records. The smallest of these fifteen intensities (21·72 at 7·417 years)
in fact equals not 3a but 3 · 683a. If with this revised figure, the probabilities
are calculated in the way suggested by Dr. Walker, the odds that at least nine
of the fifteen intensities are not due to luck work out at more than 2000 to 1,
while the odds in favour of seven at least are 14 · 000 to 1.

This remarkable result, which seems to establish beyond all reasonable doubt
the reign of periodicities in wheat prices, is not affected by the fact that of the
fifteen intensities only four are so high that any one of the four, if it occurred
alone and had to be judged by height alone, would have odds of more than 20
to 1 in its favour. Each intensity does not occur alone. Every period, moreover,
to which I attach importance rests on more evidence than mere height in my
periodogram.

With reference to the last paragraph but one of Dr. Walker’s note, on the
relation of my synthetic curve and the rainfall, I should like to emphasise the
point made in my paper (pp. 449–450) that the synthetic curve as now drawn
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represents only a first approximation of the roughest possible character; the
correlation co-efficient of 0 · 38 between it and the rainfall from 1850 to 1921 is
sufficient to demonstrate some connexion between the wheat price cycles and the
rainfall, but is in no sense to be treated as a measure of the degree of connexion.
In constructing the synthetic curve, for instance, the periodicities have all been
treated as of equal importance; inspection shows that weighting according to
the intensities would almost certainly give a better fit and so a higher co-efficient
of correlation. In many other ways a more accurate determination of the cycles
is required. How high a correlation might ultimately be obtained as the result
of this, it is impossible now to say, but it might easily prove to be very high
indeed. Unfortunately, I have no resources for carrying my own investigations
further for the present; I can only hope that others may be better placed.

W. H. BEVERIDGE.

Aftermath. By the 1940s, British mathematicians had reached a consensus
that the cycles detected by harmonic analysis of time series had little meaning
or value for prediction. An important marker was an extensive paper read to
the Royal Statistical Society in 1945 by Maurice G. Kendall. Kendall concluded
the discussion of his paper by saying that, “the reason why people continually
discover cycles in all kinds of time series, is that they are looking for them” [69,
pp.140–141]. In another discussion of cycles at the Royal Statistical Society in
1946, we see this report on a comment by Harold Jeffreys (Supplement to the
Journal of the Royal Statistical Society, Vol. 8, No. 1, p. 90): “DR. HAROLD
JEFFREYS said that he had no experience in detecting empirical periodicities
in geophysical data. He had a good deal of experience of failing to find evidence
for them.”

A.18 Raymond Pearl, 1879–1940

The American biologist Raymond Pearl, who spent most of his career at Johns
Hopkins, studied with Karl Pearson for a year in 1906. Like Yule and many
other of Pearson’s disciples, he eventually quarreled with the master, but he
fondly acknowledged Pearson in the preface to the textbook he published 1923,
Introduction to Medical Biometry and Statistics [91].

Perusing the occurrences of significant in this textbook, we might conclude
that Pearl has studied and learned the Edgeworthian way of using the word but
does not quite find it natural. It is, he tells us a conventional way of talking:

On page 214:

. . . Is a difference six times its probable error likely to arise from
chance alone, or does it represent a really significant difference?

There has grown up a certain conventional way of interpreting
probable errors, which is accepted by many workers. It has been
practically a universal custom among biometric workers to say that
a difference (or a constant) which is smaller than twice its probable
error is probably not significant, whereas a difference (or constant)
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which is three or more times its probable error is either ”certainly,”
or at least ”almost certainly,” significant.

On page 217:

From this table it is seen that a deviation of four times the proba-
ble error will arise by chance less often than once in a hundred trials.
When one gets a difference as great or greater than this he may con-
clude with reasonable certainty that it did not arise by chance alone,
but has significant meaning.

If we want to quibble, we can argue that Pearl has not mastered the jargon
perfectly. The antecedent of “it” in the first quoted sentence is the difference
six times its probable error. Edgeworth would say that this observed difference
probably is a significant difference, not that it represents one.

A.19 Sergei Bernstein, 1880–1968

Born in Odessa, Bernstein28 studied in Paris and Göttingen. His dissertation,
submitted to the Sorbonne in Paris in 1904, solved Hilbert’s 19th problem. He
taught at the university at Kharkov from 1907 until 1932, when he moved to
the Academy of Sciences in Leningrad; later he taught in Moscow.

In 1927, Bernstein published his course on probability as a book [5]. We can
call the book Laplacean tradition, for it discusses practical certainty, and it often
appeals to Laplace’s theorem. Bernstein mentions Lexis, Charlier, and Bowley
but relies heavily on the authority of Andrei Markov, whose own probability
course was published in Russian in 1900, with further Russian editions in 1908,
1913, and 1924 and a German edition in 1912.

Bernstein’s terminology for practical certainty influenced later developments.
The Russian word óâåðåííûé can be translated into English as confident or sure,
and Bernstein frequently uses ïðàêòè÷åñêè óâåðåííûé for practically certain.
On the first page of his book, he contrasts óâåðåííîñòü (confidence) based on
probabilities with àáñîëþòíàÿ äîñòîâåðíîñòü (absolute certainty). On p. 233, he
gives a prediction interval for a binomial outcome as follows:

. . . óæå ïðè t = 4, 2Φ(t) = 0.999936, è ñîîòâåòñòâóþùåå

íåðàâåíñòâî ∣∣∣∣m− np√
npq

∣∣∣∣ < 4

îáû÷íî ñ÷èòàþò ïðàêòè÷åñêè äîñòîâåðíûì. Îòñþäà ñëåäóåò, íàïðè-

ìåð, ÷òî, åñëè ìû ïðîèçâåäåì 2 500 áðîñàíèé ìîíåòû, òî ìîæíî

áûòü ïðàêòè÷åñêè óâåðåííûì, ÷òî ÷èñëî ò ïîÿâëåíèé ½îðëà" áóäåò

óäîâëåòâîðÿòü íåðàâåíñòâó

|m− 1250| < 4× 25,

28In Russian, Ñ. Í. Áåðíøòåéí. Modern transliterations render Áåðíøòåéí as Bern-
shtein. But he is usually Bernstein in the mathematical literature.
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ò.-å.

1150 < m < 1350;

In English:

. . . already for t = 4, 2Φ(t) = 0.999936, and the corresponding
inequality ∣∣∣∣m− np√

npq

∣∣∣∣ < 4

is usually considered practically certain. It follows, for example, that
if we make 2,500 coin tosses, then we can be almost sure that the
number m of heads will satisfy the inequality

|m− 1250| < 4× 25,

or
1150 < m < 1350;

Here I have translated ïðàêòè÷åñêè óâåðåííûì as almost sure.
On p. 274, we find similar language in the description of what we now call a

confidence interval:

. . . áëàãîäàðÿ òîìó, ÷òî p − p′ ñëåäóåò çàêîíó Ãàóññà, ïîñëå

îïðåäåëåíèÿ p′ = m
n ìîæíî áûòü ïðàêòè÷åñêè óâåðåííûì, ÷òî

p′ − 4σ < p < p′ + 4σ;

In English

. . . because p − p′ follows Gauss’s law, after observing p′ = m
n you

can be practically certain that

p′ − 4σ < p < p′ + 4σ;

Here, for the sake of variety, I have translated ïðàêòè÷åñêè óâåðåííûì as prac-
tically certain.

Bernstein was Bayesian, but he does not draw the Bayesian/Bernoullian
contrast in this elementary book, and he sounds Bernollian when using Laplace’s
theorem. Jerzy Neyman attended Bernstein’s probability course at Kharkov in
1915–1916, and as this was his main training in probability as a student, it
may be unsurprising that he was somewhat uncertain about the role of prior
probabilities when he began working in theoretical statistics and that he used the
Polish ufnośń and the English confidence when he began calculating intervals
in applied statistics; see [78, p. 43] and §A.23.

A.20 Truman L. Kelley, 1884–1961

The following passage is drawn from pp. 102–103 of Kelley’s 1924 book Statistical
Method [68].
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Kelley’s words

The normal curve assists in establishing the degree of confidence which may be
placed in statistical findings. The significance of any measure is to be judged
by comparison with its probable error. If a child makes a score of 80 on a
certain test and if the probable error of the score is 5, we may estimate the
chances of the child’s true ability being as much as 100. We assume that the
distribution of the child’s performances would follow a normal curve. Note that
the assumption is not that the talents of children in general follow a normal
distribution. This latter might be less reasonable than the one we are called
upon to make. Moreover, so little difference in probabilities, except for extreme
deviates, is ordinarily consequent to differences in forms of distribution, that the
assumption of normality is little likely to result in serious error for such problems
as the present one. For extreme deviates it generally does not matter so far as
any practical deductions are concerned whether the chances are 1 in 1000 or ten
times as great. Nor for smaller deviates does it make any particular difference
whether the chances are 400 in 1000 or 410 in 1000. Should such differences as
mentioned be significant in any particular problem, no assumption should be
made, but the type of the curve should be experimentally determined.

For the problem in hand: If the P. E . is 5 the standard error is
(

5
.6745

)
=

7.413. The difference between the scores that we are concerned with is (100 −
80) = 20, which is

(
20

7.413

)
= 2.698 standard errors. The K-W Table, or more

conveniently for this problem Sheppard’s Tables, may be used to find the area
in the tail below the point which is 2.698 standard deviations below the mean.
The tables give .0035. To interpret this we should postulate the person’s true
ability as being 100 and his various performances distributing themselves in a
normal distribution, with standard deviation equal to 7.413 around this mean.
Then .0035 of the area of the curve will lie below the point 80. Accordingly if
his true ability is 100, only 35 times in 10000, or 3.5 times in 1000, would a score
as low or lower than 80 be expected. With such figures a person could accept
the proposition that the child’s ability was not as great as 100 with about as
much certainty as he can start across a business street expecting not to be hit
by an automobile. It is, in other words, just such a conclusion as one is justified
in acting upon.

A.21 David Brunt, 1886–1965

In 1917, the Welsh meteorologist David Brunt published a book on the theory
of errors, The Combination of Observations [21], which included a chapter on
the periodogram. The book was squarely in the Gaussian tradition, the book
did not mention Laplace and did not set a standard for practical certainty.

Brunt explained Schuster’s probabilistic treatment of the Fourier coefficient,
giving the following table and explanation on p. 200:
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κ e−κ κ e−κ

1 ·3679 6 2 · 4× 10−3

2 ·1353 8 3 · 35× 10−4

3 ·0498 10 4 · 54× 10−5

4 ·0183 12 6 · 14× 10−6

5 ·00674 16 1 · 13× 10−7

This table may be interpreted thus:—The chance of obtaining for
the square of a Fourier coefficient a value greater than three times
its expectancy or mean value is ·0498, or about 1 in 20. So that, if
on analysing a series of observations we obtain a coefficient whose
square is more than three times the expectancy, we can state that
the probability that it is produced by a chance distribution of the
quantities analysed is 1

20 . If the square of the Fourier coefficient
be 12 times its expectancy, the probability that it is produced by a
chance distribution is 1 in 160,000.

But, as noted in §3.7, Brunt set 19 to 1 as the odds for practical certainty in
his periodogram analysis of Greenwich temperature records in 1919 [22, p. 328].

On pp. 131–132 of his book, Brunt summarized the controversy concerning
the rejection of observations as follows:

The whole question of the possibility of rejecting observations on the
ground of theoretical discussion based on residuals only, has given
rise to a considerable amount of controversy. Bessel opposed the
rejection of any observation unless the observer was satisfied that
the external conditions produced some unusual source of error not
present in the other observations of the series. Peirce’s criterion was
at an early date subjected to very severe criticism. Airy claimed
that it was defective in foundation, and illusive in its results. He
maintained that, so long as the observer was satisfied that the same
sources of error were at work, though in varying degrees, throughout
a series of observations, the computer should have no right to reject
any observation by a discussion based solely on antecedent prob-
ability. An observation should be rejected only when a thorough
examination showed that the causes of error normally at work were
not sufficient to produce the error in the doubtful observation. Airy
also cited a case where the rejection of the observations having large
residuals led to poor results. . . .

Though many of the arguments of Airy and others against the
use of mathematical criteria such as Peirce’s have been shown to be
based on faulty premises, the fact remains that none of these criteria
have ever come into general use.

Brunt concludes, however, by subscribing to a simple rule for “a moderate num-
ber of observations”: reject observations for which the residual exceeds five
probable errors and take a close look at any others whose residual exceeds 3.5
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probable errors. This may have been influential; in 1931, Harold Jeffreys re-
ported that rejecting observations with residuals greater five probable errors
was “a common astronomical practice” [65, p. 83].

A.22 Ronald A. Fisher, 1890–1962

Fisher is celebrated as the most accomplished mathematical statistician of the
20th century. He laid out his understanding of “tests of significance”, by no
means his most important contribution, in his monograph Statistical Methods
for Research Workers [42], published in 1925 and in many subsequent editions.

Shelving the probable error

As we saw in §3.6, the most novel aspect of the 1925 book was that it tabulated
values of the tail probability P not only for the normal distribution and Pear-
son’s χ2 but also for a number of other distributions that can be used when the
assumption that individual observations have a normal distribution is taken se-
riously, including Student’s t and the distribution of the correlation coefficient.
As Fisher explains in the following passage, this led him to abandon measure-
ment in terms of the probable error in favor of measurement in terms of tail
probabilities, and in particular to replace the criterion of two probable errors
by the criterion of 5%.

Pp. 47–48: “The value of the deviation beyond which half the obser-
vations lie is called the quartile distance, and bears to the standard
deviation the ratio ·67449. It is therefore a common practice to cal-
culate the standard error and then, multiplying it by this factor, to
obtain the probable error. The probable error is thus about two-
thirds of the standard error, and as a test of significance a deviation
of three times the probable error is effectively equivalent to one of
twice the standard error. The common use of the probable error
is its only recommendation; when any critical test is required the
deviation must be expressed in terms of the standard error in using
the probability integral table.”

The end of Edgeworthian signifying

Here are some examples the book’s non-Edgeworthian use of “significant”.

� P. 21: “The table illustrates the general fact that the significance in the
normal distribution of deviations exceeding four times the standard devi-
ation is extremely pronounced.”

� P. 123: “This suggests the possibility that if we had fitted a more complex
regression line to the data the probable errors would be further reduced
to an extent which would put the significance of b beyond doubt.”
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� Pp. 158–159: “Taking the four definite levels of significance, represented
by P = ·10, ·05, ·02, and ·01, the table shows for each value of n, from 1
to 20, and thence by larger intervals to 100, the corresponding values of
r.”

� P. 90: “the significance will become more and more pronounced as the
sample is increased in size. . . ”

� P. 47, with reference to the table for the normal distribution: “The value
for which P = ·05, or 1 in 20, is 1 · 96 or nearly 2; it is convenient to take
this point as a limit in judging whether a deviation is to be considered
significant or not. Deviations exceeding twice the standard deviation are
thus formally regarded as significant. Using this criterion, we should be led
to follow up a false indication only once in 22 trials, even if the statistics
were the only guide available.

� Pp. 81–82: “The expected values are calculated from the observed total, so
that the four classes must agree in their sum, and if three classes are filled
in arbitrarily the fourth is therefore determinate, hence n = 3, χ2 = 10.87,
the chance of exceeding which value is between .01 and .02; if we take
P = .05 as the limit of significant deviation, we shall say that in this case
the deviations from expectation are clearly significant.”

� Pp. 102–102: “If, therefore, we know the standard deviation of a popu-
lation, we can calculate the standard deviation of the mean of a random
sample of any size, and so test whether or not it differs significantly from
any fixed value. If the difference is many times greater than the stan-
dard error, it is certainly significant, and it is a convenient convention to
take twice the standard error as the limit of significance; this is roughly
equivalent to the corresponding limit P = ·05, already used for the χ2

distribution.”

� P. 158: “very much exaggerating the significance.”

� P. 161: “The values given in Table V. (A) for n = 25, and n = 30, give a
sufficient indication of the level of significance attained by this observation.

It is also notable that we find the term “statistical significance” (page 218).

Preface to the 6th edition (1936). As John Aldrich has pointed out to me,
Fisher discusses the nature of his book and touches on the issue of p-hacking
in the preface to the 6th edition of Statistical Methods for Research Workers,
published in 1936. We find this argument on pp. ix–x:

Those critics who would like to have seen the inclusion of mathe-
matical proofs of the more important propositions of the underlying
theory, must still be referred to the technical publications given in
the list of sources. There they will encounter exactly those difficulties
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which it would be undesirable to import into the present work; and
will perceive that modern statistics could not have been developed
without the elaboration of a system of ideas, logical and mathemat-
ical, which, however fascinating in themselves, cannot be regarded
as a necessary part of the equipment of every research worker.

To present “elementary proofs,” of the kind which do not involve
these ideas, would be really to justify the censure of a second school
of critics, who, rightly feeling that a fallacious proof is worse than
none, are eager to decry any attempt to “teach people to run be-
fore they can walk.” The actual scope of the present volume really
exempts it from this criticism, which, besides, in an age of techni-
cal co-operation, has seldom much force. The practical application
of general theorems is a different art from their establishment by
mathematical proof. It requires fully as deep an understanding of
their meaning, and is, moreover, useful to many to whom the other
is unnecessary.

And then we find this paragraph on p. xii:

I am indebted to Dr W. E. Deming for the extension of the table
of z to the 0.1 per cent. level of significance. Such high levels of
significance are especially useful when the test we make is the most
favourable out of a number which a priori might equally well have
been chosen. Colcord and L. S. Deming have published a slightly
fuller Table in the Indian Journal of Statistics (1936).

A.23 Jerzy Neyman, 1894–1981

As mentioned in §4.1, Cournot defined what we now call a confidence interval in
his 1843 Exposition, and such intervals were widely used in the 19th century. Yet
the notion of a confidence interval is now widely attributed to Jerzy Neyman.
How did this come about?

Neyman introduced the terms confidence coefficient and confidence interval
in English, in 1934 [87]. Already, beginning in 1930, Fisher had published
examples of probability intervals for parameters obtained without the use of
prior probabilities. Fisher called his intervals fiducial, and few of his readers,
then or now, have been able to find a discern a consistent theory behind them.
Confronted with this reality and Fisher’s stature, Neyman tried to credit Fisher
with priority while presenting his own definition as a clarification; he explained
that Fisher’s papers. . .

. . . have been misunderstood and the validity of statements they con-
tain formally questioned. This I think is due largely to the very con-
densed form of explaining ideas used by R. A. Fisher, and perhaps
also to a somewhat difficult method of attacking the problem.

He also credited Markov with having considered, in the context of least squares,
the problem of finding the narrowest confidence intervals for a given confidence
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coefficient. This is a evidently a reference to Gauss’s theorem, according to
which the arithmetic mean has the smallest variance among linear unbiased
estimators. We may conjecture that Neyman learned the erroneous attribution
to Markov from Bernstein; as a result, the theorem is now called the Gauss-
Markov theorem.

Beyond granting credit to Fisher and Markov, Neyman also pointed out that
confidence intervals were already widely used in practice. He wrote (p. 562),

. . . the methods of estimating, particularly in the case of large sam-
ples, resulting from the work of Fisher, are often precisely the same
as those which are already in common use. Thus the new solution
of the problems of estimation consists mainly in a rigorous justifica-
tion of what has been generally considered correct more or less on
intuitive grounds.

Neyman was evidently unaware that Laplace, Cournot, and Bienaymé had ex-
plained the large-sample agreement between the inverse and direct methods for
obtaining probability intervals. Perhaps he was still unaware of this 19th cen-
tury work in the 1950s, but by that time he had discovered the theorem in an
article by von Mises in 1919 [122] and had also discerned it, perhaps between
the lines, in Bernstein’s 1927 book. He and his student Lucien Le Cam then
dubbed the theorem the Bernstein-von Mises theorem [77].

Fisher was not happy with Neyman’s appreciation of his work, and Neyman
was forced to present his theory as different from Fisher’s; see [78, Chapter 6]. In
1941 [89], Neyman explained that he had in fact been using confidence intervals
in Poland beginning in 1930, before he had known about Fisher’s work. His
Polish name for them had been przedzia l ufności. Both the English confidence
and the Polish ufność refer to the attitude of a person who is sure of something.
Neyman’s teacher Bernstein may also have had some influence here; ufność is a
reasonable translation into Polish of Bernstein’s Russian óâåðåííîñòü.

In 1937, Neyman encountered difficulties when he tried to publish a more
extensive theoretical study of confidence intervals in the Journal of the Royal
Statistical Society. As he explained many years later to his biographer Constance
Reid [101, p. 139], one referee (later known to be Yule, who could scarcely have
seen anything novel in the notion of a confidence interval) was unfavorable, the
other (later known to be A. C. Aitken) was favorable. Aitken advised the ed-
itor that the paper might benefit from using the foundation for mathematical
probability recently published by Kolmogorov [73]. Neyman had not previously
known about Kolmogorov’s measure-theoretic axiomatization for probability,
but he made it central to a successful revision [88]. Now there was prestigious
mathematical backing for Neyman’s contention that he was providing a previ-
ously absent theoretical basis for an established practice. He made the point
this way, on pp. 346–347 of the 1937 article:

If we look through a number of recent statistical publications,
we shall find that it is exceedingly rare that the values of unique
estimates are given without the ±ST. We shall find also that the
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comments on the values of T are largely dependent on those of ST.
This shows that what the statisticians have really in mind in prob-
lems of estimation is not the idea of a unique estimate but that of
two estimates having the form, say

θ − k1ST and θ + k2ST,

where k1 and k2 are certain constants, indicating the limits between
which the true value of θ presumably falls.

In this way the practical work, which is frequently in advance of
the theory, brings us to consider the theoretical problem of estimat-
ing the parameter θ by means of the interval (θ, θ), extending from
θ to θ. These limits will be called the lower and upper estimates of
θ respectively. . . .

When Russian mathematicians later discussed Fisher’s work, they translated
fiducial limits as äîâåðèòåëüíûå ãðàíèöû; like fiducial, the adjective äîâåðèòåëü-
íûé evokes the notion of trust. Bernstein rejected Fisher’s reasoning in favor of
the classical (Bayesian) argument [6], whereas Kolmogorov favored Neyman’s
theory [72]. Kolmogorov’s view carried the day, but the Russians retained the
Fisherian adjective; a confidence interval is now a äîâåðèòåëüíûé èíòåðâàë in
Russian. Perhaps confidence could not be translated back into óâåðåííîñòü,
because that word was already taken by the classical theory; see §A.19.

A.24 Egon S. Pearson, 1895–1980

When Pearson, Karl Pearson’s son, joined his father’s department at the Uni-
versity of London in 1921, he had already encountered the theory of errors and
statistical methods at Cambridge, where he had interacted with Eddington and
Yule. Passing comments in his early articles suggest that by the early 1920s he
and his fellow British statisticians were all too aware that p-values are invali-
dated when tests are selected on the basis of data.

In 1925, for example, we find the following comments in an article in which
Pearson tried to evaluate Bayes’s theorem empirically [93, p. 435]:

. . . If, to take a different example, in our statistical experience, we
only apply the χ2 Test for Goodness of Fit to cases where from
inspection the fit looks unsatisfactory, then clearly we must be very
careful what deductions we draw. For we might obtain in nearly
100% of tests, fits with P (χ2) less than 0 · 1, where yet in every case
the sample had been drawn from the supposed population.

It is of course the old difficulty; once or twice in a thousand times
an event will occur against which the odds are 999 to 1, but when it
does occur we are inclined to think that something is wrong, focusing
our attention on the single event and forgetting the 999 times when
we have observed that it did not happen.
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A decade later, in 1936, we find this passage in Pearson’s article with Chan-
dra Sekar on the rejection of outliers [92, p. 317]:

. . . In conclusion, since it is sometimes held that the appropriate
test can be chosen after examining the data in the sample, a final
word of caution is necessary. To base the choice of the test of a
statistical hypothesis upon an inspection of the observations is a
dangerous practice; a study of the configuration of a sample is almost
certain to reveal some feature, or features, which are exceptional if
the hypothesis is true.

A.25 Morris Viteles, 1898–1996

In a brief article on intelligence testing published by Viteles in 1922 [121], we
find “greatly significant”, “particularly significant”, and “high enough to be of
considerable significance”. We also see the first use of “level of significance”
that I have found. Viteles states

. . . reduces the co-efficient of correlation . . . to plus .21± .091, much
below the level of significance.

and

. . . reduces the co-efficient of correlation of these two tests to plus
0.37± .080, also below the level of significance.

Here the level of significance is evidently six probable errors. Viteles, who
spent most of his career at the University of Pennsylvania, had not benefited
from a year with Pearson, but he became a prominent figure in industrial and
organizational psychology.

Appendix B Bernoullian and Bayesian

On p. 4, I cited some authors who have used the adjective Bernoullian rather
than frequentist to designate statistical methods that follow Jacob Bernoulli’s
example rather than that of Thomas Bayes. Here are some quotations from
those authors.

� Francis Edgeworth used Bernoullian in this way in 1918, contrasting “the
direct problem associated with the name of Bernoulli” with “the inverse
problem associated with the name of Bayes” [36].

� Richard von Mises made a similar remark in German in 1919 ([123], page
5): “Man kann die beiden großen Problemgruppen . . . als den Bernoullis-
chen und den Bayesschen Ideenkreis charakterisieren.” In English: “We
can call the two large groups of problems the Bernoullian and Bayesian
circles of ideas.”

55



� A. P. Dempster advocated the usage in 1966 [30]. In 1968 [31], in a review
of three volumes of collected papers by Jerzy Neyman and E. S. Pearson,
Dempster wrote

Neyman and Pearson rode roughshod over the elaborate but
shaky logical structure of Fisher, and started a movement which
pushed the Bernoullian approach to a high-water mark from
which, I believe, it is now returning to a more normal equilib-
rium with the Bayesian view.

� Ian Hacking used Bernoullian repeatedly in his 1990 book, The Taming
of Chance [56]. Writing about Poisson’s interest in changes in the chance
of conviction by a jury, he wrote (page 97):

Laplace had two ways in which to address such questions. One
is Bernoullian, and attends to relative frequencies; the other is
Bayesian, and is usually now interpreted in terms of degrees
of belief. Laplace almost invited his readers not to notice the
difference.

This usage would recognize Bernoulli as the first to state a theory of direct
statistical estimation, just as Bayes was the first to state Bayes’s formula. It
would also allow us to contrast Bernoullian and Bayesian methods without as-
serting anything about how probabilities are to be interpreted. Using frequentist
for both an interpretation of probability and a method of inference is a source
of conceptual and historical confusion. It obscures, for example, the fact that
von Mises, long recognized as the leading proponent of “the frequency theory
of probability”, always contended that Bayes’s formula provides the correct
method of statistical inference [124].
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observations; démonstration directe de la règle de Laplace [présenté le
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Médicale. Journal of the Royal Society of Medicine, 101:205–212, 2008.
33

[65] Harold Jeffreys. Scientific Inference. Cambridge, London, 1931. 50
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