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Abstract

This paper advances three historically rooted principles for the use of mathe-
matical probability: the fiducial principle, Poisson’s principle, and Cournot’s
principle. Taken together, they can help us understand the common ground
shared by Bernoullians, Bayesians, and proponents of other types of probabilis-
tic arguments. The paper also sketches developments in statistical theory that
have led to a renewed interest in fiducial and Dempster-Shafer arguments.
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1 Introduction

This paper is inspired by the recent emergence of a movement in theoretical
statistics that seeks to understand and expand the common ground shared
by Bernoullians and Bayesians and to reconcile their philosophies with R. A.
Fisher’s fiducial argument and its descendants, including the Dempster-Shafer
theory of belief functions.a

I argue for three principles for the use of mathematical probability, principles
that I believe will advance this search for common ground.

� The fiducial principle: All use of mathematical probability is fiducial. It
requires, that it is to say, a decision to trust particular probabilities in a
particular situation, even though these probabilities are initially purely hy-
pothetical, theoretical, subjective, or derived from other situations, which
can never be identical to the situation at hand in all respects.

� Poisson’s principle: Even varying probabilities allow probabilistic predic-
tion. The law of large numbers, for example, does not require independent
identically distributed trials. Moreover, the predictions may concern av-
erages or other statistics rather than the frequencies of particular events.
An interpretation of probability that emphasizes its predictions should
not, therefore, be called frequentist.

� Cournot’s principle: Probability acquires objective content only by its
predictions. To predict using probability, you single out an event that has
high probability and predict it will happen. Or, equivalently, you single
out an event that has small probability and predict it will not happen.

Each of these principles has venerable historical roots. Each is, in some sense,
a truism. But the three principles are generally left in the background in philo-
sophical discussions of statistical testing, estimation, and prediction. By making
them explicit and salient, we can dispel some of the misunderstandings that have
kept Bernoullian and Bayesian statisticians and other philosophers of probabil-
ity talking past each other.

The fiducial principle identifies a feature common to fiducial and Bernoul-
lian statistical practice that even Bayesians cannot completely escape. Fisher’s
fiducial argument singles out particular probability statements about the rela-
tion between two unknown quantities before either is known and continues to
consider them valid after one of the quantities is observed. Bernoullians find a
different way to have continued confidence in such probability statements after
one of the quantities is observed. Bayesians recoil at this, but they too single
out particular probability statements to continue to trust, and they too can
never take account of all the evidence they observe.

aNon-Bayesian methods of statistical estimation and testing are now often called frequen-
tist. Following Francis Edgeworth, Richard von Mises, Arthur Dempster, and Ian Hacking, I
am calling them instead Bernoullian, in honor of Jacob Bernoulli.
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Poisson’s principle helps us see past the widely held but fallacious thesis
that Bernoullian statistical theory equates probability with frequency. Stochas-
tic processes, used as models by both Bernoullians and Bayesians, can be far
removed from the picture of repeated trials under constant conditions, and an
individual probability in a stochastic process may have nothing to do with the
frequency of any event.

Cournot’s principle is integral to Bernoullian statistics, where it is used for
prediction (we single out events with high probability and predict that they will
happen) and testing (the model or theory is discredited when such a prediction
fails). But many statisticians who call themselves Bayesian also rely on this
logic of testing.

In the next section I review the historical context and recent developments.
In subsequent sections (Sections 3, 4, and 5), I discuss the three principles in
turn. I conclude with a brief summary (Section 6). Throughout, I try to keep
the mathematical exposition as elementary as possible

There are two appendices. Appendix I reviews the history of the adjectives
Bayesian, Bernoullian, and fiducial and related terms. Appendix II briefly
discusses the game-theoretic understanding of mathematical probability that
informs some of the ideas presented here.

There are two groups of notes. Footnotes, identified with Latin letters,
provide information that may help some readers follow the text. Endnotes,
numbered with Arabic numerals, provide supplementary information, mostly
historical, and appear at the end of the paper, before the references.

2 Context

In this section, I review Fisher’s framework for theoretical statistics, his fiducial
argument, its principal difficulties, the Dempster-Shafer generalization, and the
crisis of Bayesian practice that has led to renewed interest in fiducial arguments.

2.1 Fisher’s framework

When R. A. Fisher’s work began to attract widespread attention in the 1920s,
the British biometric school, led by Karl Pearson and collaborators such as
William S. Gosset and George Udny Yule, had already established international
leadership in mathematical statistics. Their contributions included new models
and methods of estimation and testing, as well as the introduction of correlation
and regression and new methods for analyzing time series. Fisher’s further
contributions included distribution theory for numerous small-sample statistics,
the theory of maximum likelihood, and methods for designing experiments and
analyzing variance. One of Fisher’s most influential contributions was his 1922
article “On the mathematical foundations of theoretical statistics” [90]. This
article is most often remembered for its theory of maximum likelihood and the
concepts of consistency, efficiency, and sufficiency, but its most deeply influential
contribution may have been its doctrine that theoretical statistics begins with
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a parametric statistical model, say an indexed class of probability distributions
{Pθ}θ∈Θ, and that the task of theoretical statistics is to use a random sample
to estimate the parameter θ.b

Fisher explained this abstract starting point by saying that theoretical statis-
tics begins after the practical statistician has specified “a hypothetical infinite
population, of which the actual data are regarded as constituting a random
sample.” The theoretician’s task is to estimate from this data the “law of dis-
tribution of this hypothetical population”, which “is specified by relatively few
parameters”. He assumed that the number of observations in the random sam-
ple was large relative to the number of parameters (the dimensionality of θ), so

that this task can be thought of as “data reduction”.1

Fisher’s framework is now so taken for granted, and seems so helpful for
understanding aspects of statistical theory in the century before Fisher as well
as the century after, that it is difficult to analyze its originality. It reflects much
of what came before, from Jacob Bernoulli’s estimation of the probability of
an event to Karl Pearson’s fitting of frequency curves, but it abstracted from
previous practice in at least three original ways:

1. Most novel, perhaps, was the unqualified assumption that the class of
probability distributions {Pθ}θ∈Θ is always known – that it has been put
in place by the “practical statistician”. The theory of errors, as formulated
by Laplace and Gauss, had not assumed that we know the probability law
for the errors. Laplace’s celebrated normal approximation of 1810, now
seen as an early version of the central limit theorem, was important to
Laplace and his 19th-century successors precisely because it allows us to
draw inferences when these probabilities are not known, provided we have
many independent measurements.2

2. The level of abstraction was new, at least for most of Fisher’s readers.3

In the 19th century, the theory of statistical estimation was concerned
with estimating quantities that had a concrete meaning in the world in-
dependent of any probabilities. Writing in 1884 [75], Francis Edgeworth
distinguished between real quantities, such as a star’s position, and fic-
tional quantities, such as the average flowering-time of a plant. But even
Edgeworth’s fictional quantities were described directly in terms of fea-
tures of the world. Karl Pearson’s work with W. F. R. Weldon shifted
the attention of statisticians from estimating such self-standing quanti-
ties to fitting frequency distributions – the distribution of flowering-time
for a plant or the distribution of forehead-size for a species of crab [213].
Pearson addressed this problem by inventing classes of distributions with
adjustable constants and estimating the constants from Weldon’s data.

bHere θ may be a single real number or a vector of real numbers; thus Θ is a subset of the
real numbers or a subset of a Euclidean space. When θ is a vector, it is now customary to call
both it and its components parameters. A real-valued function h(θ), such as θ1 − θ2 when
θ = (θ1, θ2), may also be called a parameter, but for clarity I will instead call it a feature of
the parameter.
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Fisher made this picture abstract, calling Pearson’s frequency curves laws
of probability and calling Pearson’s frequency-constants parameters.4

3. The framework was also original and powerful by virtue of its narrow-
ness – what it left out. It put the random sample (independently and
identically distributed observations) at the center of theoretical statistics,
relegating to a peripheral role most of the statistical theory of the pre-
ceding century, including time series and least squares, not to mention
topics to which Fisher himself was to make pathbreaking contributions:
significance testing, multiple regression, randomization, and the design of
experiments. The narrowness can be understood in the context of Fisher’s
leadership struggle with Pearson, for Pearson and his fellow biometricians
were emphasizing random sampling from biological populations. But most
statistical work at the beginning of the 20th century was in fields such as
economics, demography, insurance, and meteorology, where time series are
central. Even Pearson, Gosset, and Yule contributed to the theory of time
series.5

For many older statisticians, Fisher’s pronouncements concerning the task of
theoretical statistics sounded ridiculous.6 But time series as a branch of prob-
ability theory, the field of study we now call stochastic processes, was in its
infancy in 1922.7 Fisher’s narrowing of the scope of theoretical statistics to the
random sample enabled him and his immediate successors to provide a firmer
foundation for the subject using the existing probability calculus. The success
of this mathematical work has kept the random sample at the center of math-
ematical statistics even to this day, sometimes in ways we may not recognize.
Today we are accustomed to parametric statistical models in which the Pθ are
probability laws for a stochastic process for which there will be only a single
observation, or in which the number of parameters far exceeds the number of
observations, so that an estimate of θ is hardly a data reduction. Yet there
is still a temptation to suppose that Pθ’s probabilities must be understood in
terms of hypothetical repeated draws from a hypothetical population. (See the
discussion of the “repeated sampling principle” on page 36 below.)

Fisher’s abstract framework also subtly changed the relationship between di-
rect (Bernoullian) and inverse (Bayesian) probability. After the work of Laplace
and Gauss in the early 19th century, the two methods had co-existed for a
century, often peacefully. Inverse probability was attractive to many mathe-
maticians, but because probabilities for observations given by causes (the Pθ
in Fisher’s formulation) were usually considered unknown, and Gauss’s direct
probability argument (now called the Gauss-Markov theorem) applied even to
relatively small samples, direct arguments were seen more often in statistical
practice.

Laplace had introduced the distinction between direct and inverse probabil-
ity in 1774 ([131], Section II). He explained that there are two classes of prob-
lems in probability theory: direct problems, in which we seek the probabilities
of events from causes, and inverse problems, in which we seek the probabilities
of causes from events.8 This distinction between cause and event did the same
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work as Fisher’s distinction between parameter and data. A cause is a possible
value of Fisher’s θ (an element of Θ). An event is the data, say x1, . . . , xn.

Laplace advanced a simple principle for solving inverse problems: in light
of an event, the probability of each possible cause should be proportional to
the probability the cause gives the event.9 Let us write Pθ(x1, . . . , xn) for Pθ’s
probability for x1, . . . , xn (or for its density if the possible values for the data
vary continuously). If Θ is finite or countable, then Laplace’s principle says that

posterior probability(θ) :=
Pθ(x1, . . . , xn)∑
τ∈Θ Pτ (x1, . . . , xn)

,

where posterior means posterior to seeing the data x1, . . . , xn. If the parameter
varies continuously, then the principle says that

posterior density(θ) :=
Pθ(x1, . . . , xn)∫

τ∈Θ
Pτ (x1, . . . , xn)dτ

.

Fisher called Pθ(x1, . . . , xn), considered as a function of θ with x1, . . . , xn fixed,
the likelihood function. So in Fisher’s language, Laplace’s principle tells us to
obtain probabilities by normalizing the likelihood function.c

For more than thirty years, Laplace was unable to evaluate the integrals
involved in applying his inverse principle to errors of observations. But his 1810
approximation result enabled him to do so in the case of many observations, and
he obtained not only inverse-probability solutions but also direct-probability
solutions. They were more or less identical, and they justified the method of
least squares. They assumed that the error distribution was unknown but was
symmetric around zero and essentially bounded.

The nature of the near identity between inverse and direction solutions is
more readily explained for the binomial problem considered by Bernoulli and
Bayes than for the errors-in-observation problem that Laplace finally conquered
in the 1810s. In the binomial problem, the inverse and direct solutions both say
that

P

(∣∣∣ y
n
− p
∣∣∣ ≤ 2

√
y
n (1− y

n )

n

)
≈ 0.95, (1)

where p is the unknown probability of an event, n is large and y is the number
of times the event happens in n trials. In the direct-probability interpretation,
p is fixed, and 0.95 is the probability that y satisfies the inequality. In the
inverse-probability interpretation, y is fixed and 0.95 is the probability that p
satisfies the inequality. These results were already more or less available in the
1770s; the direct-probability result, which follows from the central limit for the
binomial established by De Moivre in 1733, was spelled out by Lagrange in 1776

cLaplace’s principle has also been called Bayes’s rule, but Bayes’s formulation of it, pub-
lished in 1763 [7], was not known to Laplace in 1774, and Bayes’s argument for the rule was
not influential until the second half of the 20th century. In 1922, the principle was still known

in English as the principle of inverse probability.10
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(see for example [114]). The inverse-probability result can be obtained from the
methods in Laplace’s 1774 article (see [108]).

Once Laplace had obtained his direct-probability justification for least
squares, he and others using the theory of errors preferred it over his inverse-
probability justification. Anders Hald reports that Laplace never used inverse
probability after 1811, and Gauss never used it after 1816. The direct argument
was sufficient and, as Gauss once wrote, less metaphysical. In 1823, moreover,
Gauss gave a simpler direct-probability argument, called the Gauss-Markov
theorem in later textbooks, that accomplishes nearly as much even when the
number of observations is not so large.11

By the middle of the 19th century inverse probability was the object of much
explicit criticism, beginning most notably in Antoine Augustin Cournot’s Expo-
sition de la théorie des chances et des probabilités in 1843 [32]. Cournot defended
direct-probability arguments, but others challenged the validity and usefulness
of the entire probability calculus, and most mathematicians continued to con-
sider the inverse principle an integral part of that calculus. Throughout the
second half of the 19th century and into the 20th, most treatises on probability
included the inverse principle, even as more applied work on the theory of errors
and mathematical statistics generally relied on probable errorsd interpreted in
terms of direct probability.12

As he stated it in 1774, Laplace’s inverse principle made no mention of prior
probabilities. It assumed, implicitly, that prior probabilities are equal or uni-
formly distributed. Some of Laplace’s 1774 examples show that he understood
that unequal prior probabilities are sometimes needed, but he evidently thought
it unnecessary to mention them in the statement of the principle, as they could
be introduced in other ways. Only in 1814, in his Essai philosophique sur les
probabilités [133], did he did finally mention prior probabilities in his statement

of the principle.13

In the final decades of the 19th century, unequal prior probabilities became
more prominent in discussions of inverse probability. In 1884, for example,
Frances Edgeworth devoted an article to them [76]. But even at the beginning
of the 20th century, the terms inverse probability and Bayes’s rule were often
taken to refer to a formula in which prior probabilities do not appear and hence
a uniform distribution of probabilities is assumed.

Karl Pearson worked in the 19th-century tradition of co-existence between
direct and inverse probability, calculating standard deviations for his estimators
using whatever method, direct or inverse, seemed most convenient. He also
relied on inverse probability in his philosophy of science. In The Grammar
of Science, the influential book on the philosophy of science he first published
in 1892 [172], he advised readers who wanted to learn about probability to
consult Thomas Galloway’s 1839 treatise [100], which taught inverse probability

dThe notion of a probable error (error probabilis in Latin) was introduced by Bessel in

1818 [14]. The probable error of an estimate θ̂ of a quantity θ is the number m such that

θ̂ −m ≤ θ ≤ θ̂ + m with probability 50%. The standard error σ of the estimate, introduced
by Karl Pearson, is now more familiar; m ≈ 0.67σ when the estimate is normally distributed.
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as developed by Laplace and Poisson. He quoted Francis Edgeworth [76] in
defense of uniform prior distributions: “the assumption that any probability-
constant about which we know nothing in particular is as likely to have one
value as another, is grounded upon the rough but solid experience that such
constants do as a matter of fact as often have one value as another.”14

Fisher upended this co-existence of direct and inverse probability. His theory
of estimation (sufficiency, maximum likelihood, etc.) used direct probability, and
he forcibly criticized inverse probability on the grounds that its results depend on
the scale for the parameter (or, equivalently, on the choice of prior probabilities).
But his very framework, especially his declaration that theoretic statistics is
concerned only with estimation using random samples (not with testing, for
example) and his assumption that the probabilities given the parameter values
are known, made inverse probability appear as a completely general and simple
way of doing theoretical statistics: just normalize the likelihood function, first
multiplying by a factor representing prior probabilities if needed. Little wonder
that Fisher denounced this alternative so fiercely.15

2.2 Bayesianism

From the 1920s into the 1960s, the development of mathematical statistics was
led by Fisher and then by Jerzy Neyman, Egon S. Pearson, and Abraham Wald.
Neyman and Egon S. Pearson were initially more interested in inverse probabil-
ity than Fisher, but they and Wald eventually agreed with Fisher that Bayes’s
theorem was of little use in statistical analysis because of its reliance on prior
probabilities. Neyman, Pearson, and Wald departed from Fisher, however, by
emphasizing decisions based on statistical evidence. This emphasis, bolstered
by the development of game theory and decision theory in the late 1940s and
early 1950s, led to renewed acceptance of subjective probability and subjective
expected utility. This led in turn to the development, beginning in the late
1950s, of a new school of thought that called itself Bayesian. Influenced by
decision-theoretic arguments that suggested the need for subjective probabili-
ties, and appealing to earlier work on subjective probability by Frank P. Ramsey
and Bruno de Finetti, most of the new Bayesians considered it unnecessary to
justify uniform probabilities as an expression of ignorance or rough past expe-
rience. Each person should settle on their own subjective probabilities.16

The vast majority of the new Bayesians were never as thoroughly subjective,
however, as their rhetoric suggested. While insisting on the subjective nature
of the prior probabilities for θ, they continued to interpret the probability dis-
tributions Pθ objectively, just as Fisher and Neyman had done. Like Bernoulli,
Laplace, Gauss, and almost all mathematical statisticians since, they thought
unknown probability laws were features of the world. To see why this is so, con-
sider the interpretation that Bruno de Finetti, known for his uncompromising
subjectivism since the 1930s, proposed for the Fisherian framework in 1953 [52].
The probabilities given by Pθ, he proposed, are subjective probabilities every-
one would have if they knew the value of θ. Such conditional opinions might
indeed be understood in a purely subjective way when θ has some reference in
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Figure 1: Example used by Edwards, Lindman, and Savage (1963) to illustrate
the principle of stable estimation.BAYESIAN STATISTICAL INFERENCE 205

104

X (DEGREES FAHRENHEIT)

FIG. 1. w(\) and v(x\\) for the fever thermometer example. (Note that the units
on the y axis are different for the two functions.)

Numerically, what can the principle of
stable estimation do for the fever-ther-
mometer example? Figure 1 is a reasonably
plausible numerical picture of the situation.
Your prior distribution in your role as invalid
has a little bump around 98.6°, because on
other occasions you have taken your tem-
perature when feeling out of sorts and found
it depressingly normal. Still, you really think
you have a fever, so most of your density is
spread over the region 99.5M04.50. It gets
rather low at the high end of that interval,
since you doubt that you could have so much
as a 104° fever without feeling even worse
than you do.

The thermometer has a standard deviation
of .05° and negligible systematic error—this
is reasonable for a really good clinical ther-
mometer, the systematic error of which
should be small compared to the errors of
procedure and reading. For convenience and
because it is plausible as an approximation,
we assume also that the thermometer dis-

tributes its errors normally. The indicated
reading will, then, lie within a symmetric
region .1° wide around the true temperature
with probability a little less than .7. If the
thermometer reading is 101.0°, we might take
the region B to extend from 100.8° to 101.2°—
four standard deviations on each side of the
observation. According to tables of the
normal distribution, a is then somewhat less
than 10-".

The number <p should be thought of as the
smallest value of u(\) within B, but its actual
value cancels out of all important calculations
and so is immaterial. For the same reason,
it is also immaterial that the two functions
v(101.0|X) and w(A) graphed in Figure 1 are
not measured in the same units and therefore
cannot meaningfully share the same vertical
scale; in so drawing them, we sin against
logic but not against the calculation of u(\\x)
or w(\\x). Figure 1 suggests that ft is at
most .05, and we shall work with that value,
but it is essential to give some serious

The bimodal curve is the prior density. The spiked curve is the likelihood
function, which can be expected, when there many observations, to have ap-
proximately the shape of a normal density. A normal density is effectively zero
outside an interval extending a few standard deviations from its peak. So the
posterior density, which is proportional to the product of the prior density and
the likelihood, will also be zero outside this interval. When their are many ob-
servations, the interval is very narrow. On the reasonable assumption that the
prior density is approximately constant over this narrow interval, it will make
little difference.

the world aside from the probabilistic predictions it makes, as when it represents
the fraction of balls in an urn or the true value of a quantity being measured.
But in general, there is no such reference in Fisher’s picture. Instead, θ is merely
a constant that we adjust to fit the data. In this case, statisticians must put a
Bernoullian gloss on de Finetti’s formulation: θ is the hypothesis that Pθ gives
accurate frequencies or withstands gambling strategies. You would adopt Pθ as
your subjective probability distribution if you knew this hypothesis were true,
but the hypothesis itself is an objective interpretation of Pθ’s probabilities.17

Far more often than not, Bayesian statisticians also hope that the conclusions
of their analyses will be at least approximately valid from the Bernoullian point
of view. Typically they have a plan for selecting and announcing a set of values
of θ that has posterior probability near one, and they want each Pθ to predict
that this plan will be successful. In other words, for each θ, they want Pθ to
give a probability close to one that θ will be in the announced set. They often
express this by saying that they want their Bayesian analyses to have good
“frequency properties”.

When sample sizes are large enough, the prior probabilities are smooth, and
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θ is one-dimensional or perhaps two-dimensional, Laplace’s approximation of
1810 can be deployed to show that the prior probabilities do not matter very
much, and that Bayesian analyses will have Bernoullian properties. This was
well understood in the 19th century, and it was textbook fare by the early 20th
century.18 Then, as now, it was expressed in various ways.

1. We can say simply that the prior probabilities do not matter much, and
hence that we can simplify by using uniform prior probabilities, as in
Laplace’s and Bayes’s original formulations. In the early 1960s, Leonard J.
Savage made this point, calling it the principle of precise estimation [184]
or the principle of stable estimation [82]. The latter article, which Savage
published in 1963 with co-authors Ward Edwards and Harold Lindman,
used Figure 1 to illustrate the principle of stable estimation.

2. We can explain in more detail that the posterior probability for θ will
be approximately normal, with mean and variance that can be estimated
from the data and do not depend on the prior probabilities. This was
emphasized, for example, by Harold Jeffreys in 1939 [122].

3. A Bayesian can explain the acceptability of Bernoullian analyses by show-
ing that they approximate the Bayesian analysis with a smooth prior.
John W. Pratt made this point in 1965 [177].

4. A Bernoullian can explain the acceptability of Bayesian analyses by show-
ing that they approximate Bernoullian analyses. This view was taken in
1843 by Cournot ([32], Section 95).

5. Ignoring direct Bernoullian analyses, Bayesians can claim Bernoullian or
“frequentist” properties for their results.

In the first flush of their new faith in the 1960s, the new Bayesians emphasized
Points 1 and 3. But in more recent decades, even as the ranks of mathemat-
ical statisticians calling themselves Bayesians has swelled, their emphasis has
shifted from defending subjective probability to seeking Bayesian procedures
with Bernoullian properties.19

When the sample size is not large enough for the principle of stable estima-
tion to be applicable, Bernoullian properties may be elusive, but Bayesians can
emphasize that the posterior distribution for θ is always a legitimate compro-
mise between the prior distribution and the likelihood. This compromise is often
illustrated with pictures like Figure 2, where the prior density, the likelihood,
and the posterior density are all unimodal.

2.3 Fiducial and Dempster-Shafer arguments

In 1922, Fisher’s rejection of inverse probability led him to conclude that a
random sample from a parametric model does not justify stating probabilities
about θ. You have only a likelihood function for θ, and this is not a probability
distribution. It tells you the relative likelihood of two different values of θ (by

9



Figure 2: The compromise between prior and likelihood.

The posterior density is a compromise between the prior density and the likeli-
hood, and so its mode falls between their modes. Examples of this type appear
in many expositions of Bayesian statistics.

Fisher’s new definition of likelihood!), but its values do not sum or integrate to
one, and you cannot sum or integrate over a subset of Θ to get a probability for
that subset.

The proposition that one cannot make probability statements about a pa-
rameter based on observations was contrary to statistical tradition, however.
Statisticians had long used both direct and inverse large-sample methods to
make such statements. Fisher’s admirers were soon using direct probability to
calculate small-sample error limits for parameters, in the same spirit as Laplace’s
large-sample error limits [2]. In 1930, Fisher convinced himself that this is some-
times legitimate. He called the probabilities thus obtained for θ fiducial.

Suppose, to consider the simplest example, that we are about to measure a
quantity θ. Our measuring apparatus makes errors. If we write x for the result
of the measurement and u for its error, then

x = θ + u. (structural equation)

We can also write this as

θ = x− u (fiducial equation)

or
u = x− θ. (pivot equation)

Suppose we have a probability distribution P for the error u, based perhaps
on past experience, and suppose P is the normal distribution with mean zero
and variance one. If we observe x = 2.3, say, then our fiducial equation is
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θ = 2.3 − u. If we continue to trust the probability distribution P for u (this
thought animates all Bernoullian arguments), then by the rules of probability,
θ is normal with mean 2.3 and variance one. This is θ’s fiducial probability
distribution.

This example is relatively appealing, because it supplies a story about the
origin of the Fisherian model (x is normal with mean θ and variance one) and
the fiducial equation (θ = x − u), a story that harks back to Laplace’s and
Gauss’s error theory. In general, however, we begin with only with a Fisherian
model, supposedly supplied by the practical statistician. We must then invent a
fiducial equation that fits this model, perhaps choosing it somewhat arbitrarily
from multiple possibilities.

Fisher developed his fiducial argument by giving examples, not by laying
out a general theory. Usually he looked for a pivot equation, an equation of the
form

u = ψ(x, θ) (2)

such that (1) u’s probability distribution is the same for all θ, (2) ψ depends on
the data x only through the minimal sufficient statistic,e and (3) the equation
can be solved uniquely for θ so as to obtain a fiducial equation

θ = Hx(u). (3)

Other authors have often preferred to begin with a structural equation

x = G(θ, u) (4)

that can be solved uniquely to obtain a fiducial equation. This starting point
is attractive because it allows us to imagine that it encodes an origin story for
the parametric model, as in our example of a single measurement with error.20

The quantity u in Equation (2), the pivot equation, is called the pivot. In
order to obtain direct-probability statements about θ by inverting (2), it is
sufficient that the pivot’s probability distribution be the same, at least approxi-
mately, for all θ. As we have noted, Lagrange obtained such a direct-probability
statement for the large-sample binomial problem in 1776. Cournot explained the
logic of the inversion in 1843 (see Section 3.1). This logic does not require that u
depend only on the minimal sufficient statistic, and it does not even require that
the pivot equation be uniquely solvable for θ, but the direct-probability state-
ments do not constitute probabilities for θ in the usual sense. In 1937, Neyman
underlined this point by calling them degrees of confidence [163]. Fisher, on the
other hand, believed that in his examples, where u depends only on a sufficient
statistic and the dependence is continuous and strictly monotonic, a probability
obtained from Equation (3) is a probability like any other probability.

eFisher called any function of the observations x1, . . . , xn a statistic. He called a statistic
sufficient if its probability distribution under Pθ is the same for all θ. He believed that a
sufficient statistic captures all the information about θ that is provided by the observations.
Thus a minimal sufficient statistic represents the maximal reduction of the data that retains
all its information about θ.
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Fisher’s view was at first difficult to refute, because he did not lay out what
he expected from a probability.21 But puzzles began to emerge as soon as Fisher
and his followers began to consider examples in which θ is multidimensional.
Particular attention became focused on the problem of two normal distributions
with unknown means µ1 and µ2 and unknown variances. Given independent
observations from the two distributions, what should we say about the difference
µ1 − µ2 (this is the Behrens-Fisher problem) or about the ratio µ1/µ2 (this
is the Fieller-Creasy problem) [236]? It was not always clear how to answer
these questions on Fisher’s principles, and proposed answers had properties
most statisticians were loath to accept. You could use the data to make money
betting against some of these answers.

Fisher’s contributions had earned him so much prestige and so many loyal
followers that he was able to deflect and ignore criticisms of his fiducial ideas
in the 1930s and 1940s [246], but he paid more attention in the mid-1950s,
when Georges Darmois, who had championed his ideas in France, showed him
a critique by the Russian mathematician Andrei Kolmogorov in 1942 [129].22

Kolmogorov noted that Fisher’s fiducial inversion can produce “probabilities”
that do not have a property that Richard von Mises had called the irregularity
axiom.23 This axiom says that the information you have when you make bets at
the odds set by a declared probability should not enable you to pick out trials on
which the long-run frequency is different from that probability. Apparently after
reading Kolmogorov’s critique (in a French translation supplied by Darmois),
Fisher gave this property his own name; he called it the absence of recognizable
subsets. But he did not abandon his intuition about sufficiency. In his 1956 book,
Statistical Methods and Scientific Inference [94], he claimed, without proof, that
his fiducial probabilities, when based on sufficient statistics (perhaps conditioned
when appropriate on statistics whose distribution is the same for all values of the
parameter) did not admit recognizable subsets. He was flatly wrong. In 1963,
a year after Fisher’s death, Robert J. Buehler and A. P. Feddersen closed the
book on Fisher’s argument by showing that even intervals based on Student’s
t-distribution, the most basic example of Fisher’s theory, admitted recognizable
subsets [29, 188, 246].

Fisher had advanced his argument only for models with continuous observa-
tions (otherwise the structural equation cannot be inverted to obtain a fiducial
equation), but in 1957 he suggested that something similar could be done with
discrete models such as the binomial, even if this did not produce precise proba-
bilities.24 Arthur Dempster took up this idea in a series of articles in the 1960s,
giving methods for obtaining upper and lower probabilities for both continuous
and discontinuous models [58, 59, 60, 61, 63, 65, 66]. Dempster used a structural
equation of the form (4), but he did not require that it be uniquely solvable for
θ when x is fixed so as to yield a fiducial equation of the form (3). He accommo-
dated values of u for which there are multiple solutions by mapping u to the set
of solutions (thus describing a random subset of Θ rather than a random point
in Θ), and he eliminated u for which there are no solutions by conditioning on
those for which there are, in the manner of Bayes.

Dempster’s argument produces the same results as Fisher’s fiducial argu-
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ment in some problems, such as the simple measurement problem discussed on
page 10, and it is often considered a generalization of that argument. It has a
different starting point, however. Fisher started with a parametric model and
added structure to it by defining a pivot in terms of the model. Dempster began
instead with a parameter space Θ and a probability distribution for a variable
u unrelated to Θ. He then specified a structural equation x = G(θ, u) and as-
sumed that the observations were obtained from θ and u via this equation. A
parametric model can be obtained from this picture by fixing θ, but it is not
basic. Because Dempster’s interpretation of the probability distribution u was
subjectivist, he did not ask for his inferences to have Bernoullian properties
with respect to this parametric model.

While being related to the fiducial argument, Dempster’s method also con-
stituted a generalization of the Bayesian calculus, and like the Bayesian calculus
it can be used outside the Fisherian framework. I presented it in this general
way in my 1976 book, A Mathematical Theory of Evidence [190]. In the 1980s it
was widely used in artificial intelligence under the name Dempster-Shafer theory
[245].

Dempster-Shafer belief functions have found their greatest use in domains
where statistical models have little traction because it is impossible, impractical,
or implausible to model in advance the evidence we might obtain, but where we
nevertheless want to quantify and formally combine various items of evidence,
including evidence that provides little or no support for either side of some
questions being considered. This includes domains such as financial auditing,
assurance services, the assessment of intelligence, and judicial deliberation.25

The most important tools in these domains are the rule of combination, intro-
duced by Dempster in his articles in the 1960s, and belief-function discounting,
introduced in my 1976 book.f Because there is no parametric model in these
applications, the issue of Bernoullian properties with respect to a parametric
model does not arise.

In 1982 [194], I argued that a Fisherian model and accompanying observa-
tions may not provide enough information to permit an analysis using belief
functions; what is missing is the evidence that justifies the model. In cases
where we can say something about this missing evidence (as when we have a
story justifying a particular probability distribution for an anticipated error),
it may be possible to model it in ways more amenable to persuasive belief-
function analysis. Dempster has repeatedly made related arguments, beginning
in the foreword that he wrote for my 1976 book. In a recent article [70], he
has pointed out that once Bayesian models and analyses are re-expressed in
Dempster-Shafer terms (and thus given the additional structure represented by
a structural equation), it becomes clear that both the prior distribution and
the likelihood function can be weakened to reflect the weakness or absence of
underlying evidence.

fBoth ideas had already been used used already by Jacob Bernoulli and George Hooper in
the 17th century [191, 196], and I learned from their work as well as from Dempster.
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2.4 The 21st century Bayesian crisis

By the 1980s, subjective Bayesianism was gaining ground in applied statistics
because of the increasing size and complexity of datasets and the concomitant
complexity of the Fisherian parametric models proposed for their analysis. Jerzy
Neyman and E. S. Pearson’s ideas for choosing among Bernoullian tests and
confidence intervals, so popular since the 1930s for problems in which θ was a
single quantity or a low-dimensional vector, proved less helpful for these more
complex models. Since the 1980s, increasing computational power and more
sophisticated computational methods, especially Markov chain Monte Carlo,
have made Bayesian analyses more and more practical. Today Bayesian methods
are widely used, and their position vis-à-vis Bernoullian methods is at least as
strong as it was in the 19th century.

As data and models have become even more complex, however, Bayesian
analyses have become less transparent, and the Bayesian procedure has lost the
simple properties that made it so attractive and persuasive in the last decades
of the 20th century. We are often interested in a particular feature h(θ) of
the complex multi-dimensional parameter θ, or in a few such features, and in
many cases the Bayesian procedure for obtaining probabilities for particular fea-
tures may not have desired Bernoullian properties or even produce a reasonable
compromise between the prior and the likelihood.

As statisticians have long understood, the likelihood function for a multi-
dimensional parameter, even when there are so many observations that it is
concentrated on a relatively small region of the parameter space Θ, may not be
concentrated with respect to a particular feature h(θ) of interest. In relatively
simple models this problem can be detected, and the model can be modified to
remedy it.g But in complex models the problem may be difficult to detect.

Moreover, the geometry of high-dimensional spaces makes Edgeworth’s and
Pearson’s notion of diffuse and unopinionated prior probabilities grounded on
“rough but solid experience” elusive when θ = (θ1, . . . , θk) and k is large. A
diffuse prior distribution for (θ1, . . . , θk) expresses strong opinions about some
features. A uniform distribution on the cube [−K,K]k, where K is large, for

example, suggests that h(θ) :=
∑k
i=1 θ

2
i is very large. Yet a prior distribution

concentrated around an anchor point expresses equally strong opinions; the ball
{θ ∈ Rk|

∑k
i=1 θ

2
i ≤ 1} is a very small part of the cube [−1, 1]k.

It follows that if we avoid extremely diffuse priors because of their extreme
opinions, we cannot provide a prior density that will be relatively uniform, no
matter how the likelihood function comes out, over the multi-dimensional region
of values where this likelihood has non-negligible values. Thus the principle of
stable estimation, as illustrated in Figure 1, does not generalize beyond the case
where Θ has just a few dimensions.

It is even very possible that the prior distribution will give little probability

gOne very widely understood example is that of “multicollinearity” in multiple regression,
where the estimation of two regression coefficients is highly uncertain because of the indepen-
dent variables associated with them are almost linearly related. One remedy is simply to omit
one of these variables.
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Figure 3: How a Bayesian posterior can fail to be a compromise between the
prior and the likelihood. (Example suggested by Min-ge Xie.)

prior

likelihood

The circle is a contour for the prior density.
The tilted ellipse is a contour for the likelihood
function. Both suggest that 0 is the most likely
value for θ1.

The posterior density, being proportional to
product of the prior and the likelihood, is great-
est in the region where the two contours come
closest, suggesting a negative value for θ1.

Far from being exceptional, this failure to com-
promise arises for some feature h(θ1, θ2) when-
ever the prior density and likelihood function
are tilted with respect to each other.

to the region where the likelihood is concentrated, and in this case we cannot
even count on the posterior being a compromise between the prior and the
likelihood for particular features that interest us. Even in two dimensions,
as Min-ge Xie has pointed out to me, the likelihood function and the prior
density will typically be tilted with respect to each other, and then there will
be real-valued functions h(θ) for which the posterior density, instead of being a
compromise between the prior and the likelihood, falls to the same side of both
of them.

Figure 3 illustrates this point. Here we have a two-dimensional parameter
θ = (θ1, θ2). The prior density is centered on θ1 = θ2 = 0, but the maximum-
likelihood estimate is θ1 = 0, θ2 = 1. The posterior density is greatest in the
region where high contours of the prior density are closest to high contours of
the likelihood function. In the case of θ2, this results in a compromise between
the prior and the likelihood – a posterior mode between the prior mode 0 and the
maximum-likelihood estimate 1. But because the likelihood function is tilted, we
do not obtain a compromise for θ1; the prior mode and the maximum-likelihood
estimate are both zero, but the posterior mode is negative.

The picture in Figure 3 can arise in many ways. Suppose, for example, that
θ1 and θ2 are independent and standard normal under the prior, and suppose
the likelihood arises from a single bivariate normal observation (x, y), x having
mean θ1 and variance 1, y having mean θ2 and variance 0.2, and the two having
correlation 0.8. A standard calculation shows that the posterior is bivariate
normal, with mean −0.08 for θ1 and mean 0.97 for θ2. In this case, the tilt in
the likelihood arises because of the prior assumption that the correlation 0.8,
and one might object to giving this particular value for the correlation proba-
bility one. But if there were many observations instead of a single observation,
we would expect a tilt just from the randomness of the data. In general,both
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because of the randomness of the data and the complexity of the model, we
can expect that the contours of the likelihood will be tilted with respect to the
contours of the likelihood. Whenever this happens, moreover, we can rotate the
picture so that their centers are aligned vertically, and then the linear combina-
tion of θ1 and θ2 represented by the horizontal axis, which might be a feature
of interest, will have a posterior that is centered to one side of the vertical
alignment, as in the figure. So we can expect in general that the posterior will
fail to be a compromise between the prior and the likelihood for at least some
features of the parameter. When there are only a few parameters, we might
anticipate this phenomenon and deal with it in some way, but it is increasingly
difficult in high dimensions to see whether the phenomenon affects a particular
feature of interest. This problem has been studied in detail by Min-ge Xie and
his colleagues; see [243] and [244], pages 27ff and the discussion with Christian
Robert on pages 55, 74–75.

These difficulties have become increasingly important in practice as well as
in theory. Fields as disparate as medicine and macroeconomics now work with
parametric models in which the dimensionality of the parameter space is orders
of magnitude greater than the number of independent observations, and for such
models prior probabilities dominate the analysis in ways not easily understood.
Paul Romer, chief economist at the World Bank, has recently argued that this
now happens routinely in the best respected work in macroeconomics [181].

The failure of the principles of stable estimation and compromise has left
21st century statistical theory in a quandary. This quandary can be seen as a
crisis of Bayesianism, but I believe that it goes deeper, bringing into question
not only the meaningfulness of a Bayesian prior for a Fisherian model with a
large number of parameters but also the meaningfulness of such models them-
selves. We never have evidence that justifies such complex models, and we
should consider probabilistic analyses that begin with fewer bets, bets that we
do have some reason to trust.

2.5 The fiducial revival

The problems just discussed can be summarized by saying first that in complex
models with a multidimensional parameter θ, our prior distribution will either
overwhelm or distort the message of the likelihood function for some features
h(θ), and second that this problem has become increasingly important in prac-
tice. Statisticians have understood for over half a century that a prior that
seems relatively unopinionated about a large number of individual parameters
θ1, . . . , θn will express strong opinions about some features h(θ),26 but now that
we are working with so many parameters, in models so complex that their inter-
action is not transparent, this theoretical problem has become a real problem.

To deal with the problem, several statistical theorists have proposed focusing
in advance on a feature h(θ) of interest and seeking posterior distributions that
have desired Bernoullian properties for that particular feature. This is hardly
consistent with Bayesianism’s subjectivist philosophy, and it has sometimes led
to non-Bayesian procedures that are variants on fiducial or Dempster-Shafer
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arguments.
The theoretical statisticians exploring this direction of thought have not

reached consensus on principles and methods, and I cannot survey their research
in detail here. But here are three lines of thought that have attracted attention:

� Confidence distributions. The oldest and most obvious approach, per-
haps, is to seek a method that produces nested confidence intervals for
h(θ) at all levels of confidence and then to interpret these nested intervals

as a probability distribution.27 This approach was suggested by Bradley
Efron in 1993 [83] and has since been developed by a number of authors,
most notably Tore Schweder and Nils L. Hjort [186, 187] and Kesar Singh,
Regina Liu, Min-ge Xie and their collaborators [244].

� Generalized fiducial inference. In this approach, developed by Jan
Hannig and his collaborators [118], one chooses a structural equation

x = G(u, θ) adapted to the feature h(θ) of interest.28 After the obser-
vation of x, a posterior distribution for θ is found using Dempster’s rule
of conditioning (a special case of Dempster’s rule of combination); the
problem of conditioning on a set of measure zero in the continuous case
is handled by first discretizing and then taking a limit. The posterior has
desired Bernoullian properties under widely applicable conditions.

� Inferential modeling. This approach, developed by Ryan Martin and
Chuanhai Liu [154], is also inspired by Dempster-Shafer theory; see [155].
Like generalized fiducial inference, it begins by adopting a structural equa-
tion x = G(u, θ) that determines the parametric model, but it then weak-
ens the probability distribution for u to a Dempster-Shafer belief function
(i.e., a random subset in u’s space of possible values) in such a way that
the structural function can be inverted without using Demspterian condi-
tioning to obtain a Dempster-Shafer belief function for θ that has desired
Bernoullian properties for h(θ).

Inferential modeling produces Dempster-Shafer belief functions that may or may
not be probability distributions. The posteriors produced by generalized fiducial
inference and confidence distributions are probability distributions (a probabil-
ity distribution on the entire parameter space in the first case, and a probability
distribution just for h(θ) in the second case), but there may or may not exist
genuinely prior (not depending on the data) distributions that will give them

as Bayesian posteriors.29

For a review of other methods for ensuring that Dempster-Shafer belief func-
tions have Bernoullian properties, see [72]. For a recent study of fiducial methods
that does not address the issue of Bernoullian properties, see [221].

3 The fiducial principle

The English words fiducial and confidence both derive from the Latin fidere,
meaning “to trust”. The first definition of fiducial given by the Oxford English
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Dictionary is the general and theological one: “of or pertaining to, or of the
nature of, trust or reliance”. One example from 1870: “The words . . . appear to
. . . fasten on the Lord with a fiducial grip.”

When is a probability fiducial? Leaving aside Fisher’s various answers to
this question,30 let us say that a probability becomes fiducial when we decide
to trust it even though the evidence for it is weaker than we would like or even
though we have other evidence that it ignores.

Once we adopt this broad sense of fiducial, we must recognize that practically
all probabilities are fiducial when we put them to use. We create probabilities
from theory, from conjecture, or from experience of frequencies. But this evi-
dence is never strong enough to fully justify a system of numerical probabilities,
and there is always other evidence.31 To use the probabilities in a meaningful
way, we must proceed nevertheless, and this makes the probabilities fiducial.
This is just as true for Bernoullian and Bayesian probabilities as it is for the
fiducial probabilities that Fisher invented. In fact, it is glaringly true at the
outset for any Fisherian model {Pθ}θ∈Θ, for we never have enough evidence to
fully justify the infinitely precise probabilities given by such a model.

What does it mean to trust a probability or a system of probabilities? Prob-
ably the best way to make this question concrete is to rephrase it in betting
terms. What does it mean to trust given odds or a given system of odds? There
are two distinct answers to this question. One answer, advocated by de Finetti
and many other subjective Bayesians, is that we are disposed to bet at the given
odds.32 A second answer is that we respect them; we believe that no gambling
strategy we devise to take advantage of them will make us rich without undue
risk. More precisely: no gambling strategy will multiply the capital it risks by
a large factor.33

We can qualify in many ways the notion that we trust or continue to trust
certain odds or systems of odds. When interpreting this trust as disposition
to bet, we can limit the disposition to specific bets, specific situations, specific
opponents, and specific times. When interpreting it in terms of skepticism about
gambling strategies, we can limit the skepticism to specific strategies undertaken
at specific times. The lesson we should draw from the failure of Fisher’s fiducial
argument is that such limitations are sometimes needed, and the newer fiducial
methods discussed in Section 2.5 impose such limitations.

When we take a closer look at the fiducial character of Bernoullian and
Bayesian methods of using probability, we see that they also limit our trust in
probabilities in various ways.

3.1 Bernoullian estimation

If an event with probability p happens y times in n independent trials, and
n is large, then we can expect y/n to be close to p with high probability. In
fact, if we specify a non-zero distance from p and a high probability, then we
can find a value of n such that y/n will be at least that close to p with at
least that probability. This is Jacob Bernoulli’s theorem, first published in
1713. It is justly celebrated.34 As Aleksandr Aleksandrovich Chuprov wrote
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to commemorate its two hundredth anniversary [169], “everywhere the logic of
inference rests in the final account on the theorem of Jacob Bernoulli.”

Here is a slightly more formal statement of Bernoulli’s theorem: For any
ε > 0 and any δ > 0, we can find n large enough that the event∣∣∣ y

n
− p

∣∣∣ ≤ ε (5)

has probability at least 1−δ. This has many generalizations, all of which say that
under certain conditions certain quantities can be estimated with high accuracy
and high confidence. Chuprov’s sweeping statement refers to the importance of
these generalizations together with the original theorem.

The assertion (5) is uncontroversial when it is made before the trials, when we
know n but not y. Should our subsequent knowledge of y change our probability
for (5)? Do we know why and how we gained knowledge of y? Could the process
that brought us this information be influenced by the process that determined
p? Is it even possible that someone disclosed this information to us in order
to mislead us about p? Use of Bernoulli’s theorem in any particular case is
legitimatized by the judgement that the additional information (including the
value of y and the very fact that we have learned it) is not materially relevant
to our use of the high probability for (5). This is a fiducial judgement. Similar
judgements are required when we use the many generalizations and applications
of Bernoulli’s theorem.

Abraham De Moivre improved on Bernoulli’s crude calculations by finding
an estimate of the probability that the difference (5) will be within given bounds

for a given n.35 The logic for using this probability in the estimation of p was
explained by Cournot in 1843. Here is the explanation, translated from the
French but retaining Cournot’s symbols: p for the probability we are estimating,
n for the number of times the event happens in m trials (so that the frequency
is n/m rather than y/n) and P for the probability before the trials are observed
that

∣∣p− n
m

∣∣ ≤ l:
As we have explained, the probability P has an objective value.
It measures in effect the probability of error that we incur when
we declare that the difference

∣∣p− n
m

∣∣ falls between the limits ±l.
Even if, for unknown reasons, certain values of p are able to appear
more often than others in the ill-defined multitude of phenomena
to which statistical observations can be applied, the number of true
judgements that we will produce by declaring with probability P
that the difference

∣∣p− n
m

∣∣ falls between the limits ±l will be to the
number of mistaken judgements approximately in the ratio of P to
1−P, provided that we make a large enough number of judgements
that chance anomalies more or less cancel each other out.36

Here Cournot envisages a sequence of problems in which the unknown p varies
but we select an interval of the same probability P each time. (The numbers m
and n may also vary, as will the length of the interval.) By another application
of Bernoulli’s theorem, we will be right P of the time. The fiducial judgement
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here is that we are content with this – that we are content that the probability
P will resist anyone who bets against it before seeing the outcomes.

Cournot’s logic merely elaborated the reasoning of Laplace and Gauss before
him, when they derived what we would now call large-sample non-Bayesian
confidence limits (see [116], Chapter 8). It also seems fair to say that this
logic was the implicit foundation for the exposition of least squares in most
manuals on statistics and error theory for the following century (see for example
Bowley [19] and Palmer [171]), even if some expositions (Poincaré’s text [174],
for example) evoked inverse probability to justify least squares. Neyman made
the same argument as Cournot had made when he called the use of confidence
intervals inductive behavior in 1957 [165].37

Is P still a probability after the observations are made? Neyman said no.
As he explained to de Finetti in 1939,

My expression “confidence coefficient” designates the value of the
probability that an estimation is correct, a value chosen arbitrarily
in advance; so this expression is not a synonym for the term “prob-
ability”.38

The fiducial principle can free us, however, from debates about whether a par-
ticular number used in a particular way is or is not a probability. We can trust
or continue to trust a probability in different ways, and we need not subscribe
to a doctrine, be it de Finetti’s or Fisher’s, that prescribes a panoply of ways
we must trust it in order to continue to call it a probability.

3.2 Bayesian estimation

Bayesian estimation is usually explained in a formal way. Bayes’s theorem is
deduced from the definition of conditional probability and used in a Fisherian
model in which the probabilities appear as conditional probabilities given the
parameters. Attention is then directed to the choice of initial probabilities for
the parameters, and the philosophical discussion revolves around the subjectiv-
ity of this choice.

The subjectively chosen initial or prior probabilities are evidently fiducial,
for they are necessarily based on scanty evidence. Even “objective Bayesians”,
who believe that given evidence determines probabilities objectively, generally
concede that they lack the resources to calculate or otherwise determine those
probabilities precisely. As Alan Turing put it ([224], Section 1.3; [248]), “When
the whole evidence about some event is taken into account it may be extremely
difficult to estimate the probability of the event, even very approximately, and
it may be better to form an estimate based on a part of the evidence, so that
the probability may be more easily calculated.”

Moreover, the use of Bayes’s theorem adds further fiducial judgements. In
Thomas Bayes’s time, there was no such thing as conditional probability – no
such general concept, no formal definition, and certainly no notation for it. But
earlier writers had considered events that happen or fail in sequence, and they
had considered how probabilities for later events change as earlier ones happen.
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Abraham De Moivre, for example, considered an event A and a later event B
and showed that the probability of B after A happens, for which I will write
P (B|A),39 should satisfy

P (A&B) = P (A)P (B|A), (6)

where P (A) and P (A&B) are the initial probabilities for A and A&B, respec-
tively. The equality (6) has long been called the rule of compound probability.
It implies, of course, that

P (B|A) =
P (A&B)

P (A)

when P (A) > 0. De Moivre’s argument for the rule of compound probability
was based on the betting definition (or the game-theoretic definition, as we
can now call it) of probability: the probability of an event is the amount you

must risk to end up with one monetary unit if the event happens.40 To turn
P (A)P (B|A) into one monetary unit if A&B happens, you first bet it all on A;
this gives you P (B|A) if A does happen, in which case you bet this on B.

In his famous essay on probability, published posthumously in 1763, Bayes
repeated De Moivre’s proposition and proof; this was his third proposition. But
he also tried to prove an analogous result backwards in time: if you learn B
has happened without knowing whether the earlier event A has happened, you
should change your probability for A from P (A) to

P (A&B)

P (B)
. (7)

This is the fifth proposition in Bayes’s essay, but his proof was hardly a proof.
He imagined a sequence (A1, B1), (A2, B2), . . . of events ordered in time and
posited that we will be told nothing about which ones happen until the first B
happens. Then we will be told that this B has happened, and we will bet on
the A that is paired with it. Thus we know in advance that we will be told B
and will have no other information. The argument for changing from P (A) to
the ratio (7) is then convincing. But this does not establish that the change
makes sense in other cases, where we may have other information, or we may not
have known in advance what we would be told and when, so that the very fact
that are told about B without being told about A is itself information [193].
To use Bayes’s fifth proposition, we must make the fiducial judgement that
this additional information is irrelevant. We must decide, as Bruno de Finetti
explained centuries later, that this additional information does not change our
attitude towards certain bets.41

Were we to accept Bayes’s fifth proposition, and were we then to adopt
uniform prior probabilities for an unknown prior probability p, then we could
derive Bayes’s formula for Bernoulli’s problem of estimating p from y happenings
in n trials:

posterior probability that a ≤ p ≤ b =

∫ b
a
py(1− p)n−ydp∫ 1

0
py(1− p)n−ydp

. (8)
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Bayes’s friend Richard Price, who published Bayes’s essay after Bayes’s death,
explains in his introduction to the essay that Bayes had written this argu-
ment out but had feared that his readers would not find it convincing and had
therefore used a different argument, an argument involving rolling balls on a
rectangular table, and bolstered this argument with a scholium. This argument
did not appeal to Bayes’s fifth proposition.

The table’s two dimensions are not needed, and we can explain the argu-
ment more quickly in one dimension, as Morgan Crofton did in the article on
probability in the Encyclopæedia Britannica in 1885 [39]. The question “will
not be altered” Crofton opined, if we suppose that whether the event happens
or not on each trial is determined by whether a point chosen at random on a line
segment falls to the left or the right of a particular unknown point. Suppose,
for simplicity, that the segment is the unit interval [0, 1]; the event happens if
the point falls to the left of p, fails if it falls to the right of p; thus it happens
each time with probability p. The point p itself is also chosen at random –
i.e., from the uniform distribution on [0, 1]. So all we know of p is that it is
the (y + 1)st in order of n + 1 points chosen at random in A. The formula (8)
follows. The fiducial judgement here the assumption that the random choice
of the point p is independent of the statistical evidence y – independent of the
random choices of the n other points on the line. This replaces the equally
fiducial fifth proposition.

In his scholium, Bayes pointed out that y has n+ 1 possible values, namely
0, 1, . . . , n, and that his billiard table experiment, considered before any throws
are made, gives equal probabilities to these n+ 1 values. The reasonableness of
this result, he contended, vindicated his method.

In his introduction, Price asserts that it was the uniform prior probabili-
ties for p that Bayes feared might be unpersuasive.42 This uniform distribution
is still present and hardly disguised, however, in the billiard-table argument.
So it seems reasonable to ask if it might instead have been the fiducial argu-
ment for the fifth proposition that worried Bayes. Assumptions of independence
were familiar and easily accepted even in Bayes’s time, and so the assumption
that p was chosen independently of the other points might have seemed more
persuasive.

The first person to explain the limitations of Bayes’s rule clearly may have
been Antoine Augustin Cournot, in his 1843 book, Exposition de la théorie des
chances et des probabilités. He summarized his analysis as follows:

Bayes’s rule . . . has no utility aside from leading to the fixing of bets
under a certain hypothesis about what the arbiter knows and does
not know. It leads to an unfair fixing if the arbiter knows more than
we suppose about the real conditions of the random trial.43

The fiducial principle allows us to say this in a more positive way: we should
continue to trust the betting rate only if we make the judgement that other
information, information other than B’s happening and the information that
went into fixing P (B) and P (A&B), is irrelevant.
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3.3 Dempster-Shafer belief functions

The arguments by Bayes and Crofton that we just reviewed can be placed within
Dempster-Shafer theory and generalized in various ways. Dempster’s first article
on the theory included a generalization of the Crofton argument in which we do
not put prior probabilities on p and hence obtain only upper and lower posterior
probabilities for it [59].44 In [68], Dempster explained how the simple fiducial
example discussed on page 10 above fits into Dempster-Shafer theory, where it
generalizes to a treatment of the Kalman filter.

The central idea of Dempster-Shafer theory is what I call Dempster’s rule
of combination. This rule tells us how to combine beliefs (upper and lower
probabilities) based on independent bodies of evidence. Here (as in the case of
Bayes’s billiard table), the word independent signals a fiducial judgement. We
decide that each body of evidence does not materially change certain judgements
based on the other body of evidence. As Dempster occasionally put the matter
to me in the 1970s, we “continue to believe”. As I now prefer to say, we continue
to trust that certain bets will not succeed spectacularly. Over the years, critics
of Dempster-Shafer have pointed to examples where we do not want to make this
judgement, but that there are such examples only confirms that the judgement
is needed. Bayesian arguments are in the same boat.45

The fiducial principle is also at play in Dempster-Shafer and Bayesian anal-
yses in financial auditing, intelligence, and other domains where little of the
evidence we want to combine is statistical. In these cases, we construct belief
functions or probability distributions by drawing an analogy between games of
chance and other setups where numerical probabilities are strongly trusted and
murkier situations to which we decide to extend that trust. See [192, 205].

3.4 Imprecise and game-theoretic probability

As I have noted (page 18), we can decide to continue to trust only certain
probabilities rather an entire initial probability distribution. We do this when
we “condition” using the formula (7), for this amounts to continuing to trust
certain conditional bets while no longer trusting the initial unconditional bets.
The same move is involved (if renormalization is required) in the more general
case of Dempster’s rule of combination. Generalized fiducial inference, discussed
in Section 2.5, also involve this move.46

If we anticipate that we might retain only some probabilities, it is reasonable
to ask whether some of those that we will not retain can be identified at the
outset and removed from the initial model, thus making this model simpler
and perhaps more plausible as a representation of actual evidence. This may
take us outside the Fisherian framework and into the realm of imprecise and
game-theoretic probability [5, 206]. For an application of the fiducial idea to
the theory of imprecise probability, see [204]. For a yet more general picture
in which different probability judgements are trusted to different degrees, see
[109].

The theories of imprecise probabilities and game-theoretic probability both
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begin with a betting interpretation of probability but differ in how they trust
given odds. Following Walley [237], most authors working with imprecise prob-
abilities adopt de Finetti’s view that subjective probabilities are dispositions to
bet or otherwise act. In the game-theoretic picture [206], trust in a system of
odds is interpreted as a judgement that these odds will resist gambling strate-
gies: they will not allow you to multiply the capital you risk by a large factor.
This is the game-theoretic version of Cournot’s principle (see Section 5 below).

4 Poisson’s principle

Siméon Denis Poisson (1781–1840) was Laplace’s successor as the leader of
French mathematics [24]. We can trace back to his work in the 1830s the prin-

ciple that probabilistic prediction is possible even when probabilities vary.47

In 1835, Poisson enthusiastically announced what he saw as a great empirical
discovery:

Things of every nature are subject to a universal law that we may call
the law of large numbers. It consists in the fact that if you observe
very considerable numbers of events of the same nature, depend-
ing on causes that vary irregularly, sometimes in one direction and
sometimes in another, without tending in any particular direction,
you will find a nearly constant ratio between these numbers.48

Poisson explained this empirical stability by generalizing Bernoulli’s theorem.
He showed that with high probability, counts and averages will be stable over
time even if the probabilities and expected values vary.

Poisson’s contemporaries found the complexity of his picture confusing. If
there are probabilities for how the probabilities vary, then Bernoulli’s theorem,
applied to the mean probability, is theory enough.49 But they took up his insight
in various ways. In 1846, for example, the Russian mathematician Pafnuty
Chebyshev (1821–1894) proved a generalization of Bernoulli’s theorem in which
the probabilities vary [30]. Many other generalizations followed.

4.1 Beyond the random sample

For simplicity, let us first consider the case where we consider the frequency
of some event in successive trials (rather than the average of some variable
quantity), but where the event’s probability may change. We may suppose that
the trials are tosses of a coin. Suppose there are n successive tosses. Set

xn :=

{
1 if the nth toss comes up heads

0 if the nth toss comes up tails,

so that
∑n
i=1 xi/n is the frequency of heads in the n tosses. Here are three

successively more general versions of the law of large numbers, ε and δ being
arbitrarily small positive numbers.
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Version 1 (Bernoulli). Suppose the tosses are independent and the proba-
bility p of heads is the same each time. Then we can find a value of n
sufficiently large that ∣∣∣∣∑n

i=1 xi
n

− p
∣∣∣∣ ≤ ε (9)

with probability at least 1− δ.

Version 2 (Chebyshev). Suppose the tosses are independent and the prob-
ability of heads on the ith toss is pi. Then we can find a value of n
sufficiently large that ∣∣∣∣∑n

i=1 xi
n

−
∑n
i=1 pi
n

∣∣∣∣ ≤ ε. (10)

with probability at least 1− δ.

Version 3 (Lévy). Suppose P is a probability distribution for x1, . . . , xn.
Then we can find a value of n sufficiently large that

P

(∣∣∣∣∑n
i=1 xi
n

−
∑n
i=1E(xi|x1, . . . , xi−1)

n

∣∣∣∣ ≤ ε) ≥ 1− δ, (11)

where E(xi|x1, . . . , xi−1), the expected value under P of xi given the val-
ues of x1, . . . , xi−1, is also the probability that xi = 1 given x1, . . . , xi−1.

In each version, the conclusion of the theorem is that the frequency of heads will
approximate, with very high probability, a probability or an average probability.
In Version 1, the frequency approximates the probability p. In Versions 2 and 3,
it approximates an average probability. Version 3, the martingale law of large
numbers, began to emerge only with the work of the Russian mathematician
Sergei Bernstein in the 1920s and was first clearly understood by the French
mathematician Paul Lévy in the 1930s.50 British and American mathematical
statisticians began to think in terms of Versions 2 and 3 only beginning in the
1940s, as they more fully absorbed continental work on mathematical probability
as a result of the influx of mathematicians fleeing Hitler.51

4.2 Beyond frequencies

Bernoulli’s, Chebyshev’s and Lévy’s laws of large numbers for coin tossing all
generalize to the case where the random variables x1, . . . , xn are not necessarily
binary but satisfy certain regularity conditions. The ratio

∑n
i=1 xi/n is then

an average, not necessarily a frequency; p in (9) is x’s mean; pi in (10) is
xi’s mean. The conditional expected value in (11) is no longer necessarily a
conditional probability.

Poisson’s principle, as I have formulated it, says that these laws of large
numbers are predictions, even though they are not statements about frequencies.
The prediction ∣∣∣∣∑n

i=1 xi
n

−
∑n
i=1E(xi|x1, . . . , xi−1)

n

∣∣∣∣ ≤ ε (12)
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in (11), when the xi are not binary, is a case in point. It does not equate a
probability or even an average probability with a frequency.

Poisson’s principle is now a commonplace. Markov processes, martingales,
time-series models, and a plethora of other stochastic processes have been major
topics of statistical research for more than half a century. But our ways of talking
have sometimes lagged behind, remaining in Fisher’s picture of a random sample
from a hypothetical population. The persistence of the word frequentist is one
example of this lag.

In 1960, in the Journal of the American Statistical Association [166], Jerzy
Neyman announced that stochastic processes had superseded independent trials
in all branches of science. He wrote:

The fourth period in the history of indeterminism, currently in full
swing, the period of “dynamic indeterminism,” is characterized by
the search for evolutionary chance mechanisms capable of explaining
the various frequencies observed in the development of the phenom-
ena studied. The chance mechanism of carcinogenesis and the chance
mechanism behind the varying properties of the comets in the Solar
System exemplify the subjects of dynamic indeterministic studies.

Here he was evidently using frequencies in a broad and even metaphorical way,
to refer not merely to frequencies on repeated trials but to averages of various
kinds.

The law of large numbers is further generalized game-theoretically in [206],
from the setting where a probability distribution for the whole sequence of
variables is offered at the outset to the case where possibly more limited bets
are offered on xi after x1, . . . , xi−1 are announced. For example, you may be
offered xi at the price mi. Assuming for example that the xi and mi are all
uniformly bounded in absolute value, we can show that for n sufficiently large,

P

(∣∣∣∣∑n
i=1 xi
n

−
∑n
i=1mi

n

∣∣∣∣ ≤ ε) ≤ 1− δ, (13)

where P (A), the upper probability of an event A, is by definition the amount
of money you must risk in order to get one monetary unit if A happens.

5 Cournot’s principle

To put Poisson’s principle to work, we must acknowledge how a probabilistic
theory makes a prediction: it predicts an event by giving it very high probability.
As Abraham Wald said in a lecture at Notre Dame in 1941 [235], probability
theory can be applied to real phenomena by translating the theoretical statement
“the event E has a probability near to one” into “it is practically certain that
the event E will occur in a single trial.”

We did not need Wald to tell us this. As soon as we saw the probability
statement (11), we understood that the stochastic process represented by P was
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predicting the event (12). But this needs to be stated explicitly. Cournot did
so, and he also pointed out that this is the only way that probability relates to
phenomena [207].

If we agree with Chuprov that Bernoullian statistics rests on Bernoulli’s
theorem and its generalizations, then we must also recognize that Cournot’s
principle is part of that foundation. Chuprov and his student Oscar Anderson
called it Cournot’s bridge, because it connects the probability statement (e.g.,
Bernoulli’s theorem) to the event it predicts (e.g., the empirically observed law
of large numbers) [156, 157]. It was the French mathematician Maurice Fréchet

who first called this bridge Cournot’s principle.52

In addition to providing part of the foundation of Bernoullian statistics,
Cournot’s principle also helps bring Bernoullian and Bayesian statistics together,
because most statisticians who call themselves Bayesian also believe in model
checking. In the end, a Bayesian model is of little use in practice unless its
predictions are consistent, in the large, with what we observe. For Bayesian
testimony on this point, see George E. P. Box’s classic defense of significance
testing [20]. See also [101, 189, 203].

Most continental mathematicians who studied mathematical probability in
the first half of the 20th century subscribed to Cournot’s principle in one way
or another. In addition to Wald, salient examples include Evgeny Slutsky, Paul
Lévy, Emile Borel, Andrei Kolmogorov, Abraham Wald, and Trygve Haavelmo
[156, 208, 198, 202]. Like Chuprov, these mathematicians saw Bernoulli’s the-
orem and its generalizations as fundamental to probability, but they also saw
that only one of the probabilities in Bernoulli’s theorem is being approximately
equated with a frequency. The probability p in (5) is equal for practical pur-
poses to the frequency y/n, but the probability that p is within ε of y/n is not
a frequency. As Cournot explained (see page 19 above), we can interpret it as a
frequency if we want; we imagine that the whole experiment involving n trials
is itself repeated many times. Again applying Bernoulli’s theorem, we see that
with very high probability the frequency with which p − y/n ≤ ε happens in
this imaginary superexperiment will be near one. But again we have an unin-
terpreted probability, and to give it a frequency interpretation we need a yet
huger imaginary superexperiment. Here looms, in the words of R. A. Fisher,“a
perpetual regression defining probabilities in terms of probabilities in terms of
probabilities” ([96], page 266). We will have an uninterpreted probability forever
unless we terminate the regression by applying Cournot’s principle.

The continental mathematicians also saw that the law of large numbers is far
from being the only prediction that can be checked in order to test a probabilistic
hypothesis. Consider, for example, the law of the iterated logarithm, which
concerns the rate at which a frequency will converge in repeated independent
trials of an event [126]. This law is of little interest to statisticians, because
the number of observations needed to test it is impossibly large, but there are
related predictions that can be tested. One such prediction, emphasized by Jean
Ville, is that the frequency will at least oscillate around the probability; it will
not converge to it from above or from below [227].

27



5.1 Objections to the principle

Cournot’s principle is sometimes criticized for its vagueness. A probability close
to one is a prediction, but how close to one? As Wald explained, such vagueness
is always associated with the application of theory to real phenomena:

The purpose of statistics, like that of geometry or physics, is to
describe certain real phenomena. The objects of the real world can
never be described in such a complete and exact way that they could
form the basis of an exact theory. We have to replace them by some
idealized objects, defined explicitly or implicitly by a system of ax-
ioms. For instance, in geometry we define the basic notions “point,”
“straight line,” and “plane” implicitly by a system of axioms. They
take the place of empirical points, straight lines, and planes which
are not capable of definition. In order to apply the theory to real
phenomena, we need some rules for establishing the correspondence
between the idealized objects of the theory and those of the real
world. These rules will always be somewhat vague and can never
form part of the theory itself.

On the other hand, we can give guidelines, depending on context and purpose.
Emile Borel, who called Cournot’s principle “the only law of chance” [18], sug-
gested that a probability of 10−6 is negligible on a human scale, a probability
of 10−15 on a terrestrial scale, a probability of 10−50 on a cosmic scale, and a
probability of 10−1000 on a universal scale ([17] pages 6–7).

Another common objection is that what happens always has small proba-
bility. A lottery always has a winning ticket. This overlooks the role of the
statistician or scientist, who chooses the prediction in advance.53 Injecting a
scientist into the picture might seem to threaten the objectivity of the proba-
bility model, but in practice only a limited number of predictions are important
[23, 234]. Even in theory we can only make a countable number of predictions,
which could be combined into a single prediction were it computable [15].

Bruno de Finetti rejected Cournot’s principle.54 In a note to Maurice Fréchet
in 1955 [55], he wrote as follows:55

The definition of subjective probability is based on the behavior of
the person who assesses it: it comes down to measuring the sacrifices
the person thinks it reasonable to accept in order to escape from
the risk of some harm that would accompany the event considered
(insurance premium, betting rate, etc.). In particular, saying that
the probability is small indicates that the person judges the risk
to be negligible, that is to say, that he acts more or less as if the
event were impossible. If this is not a principle, it is because it is by
definition a synonym, a tautology, a banality.

This passage might give the impression that de Finetti would agree that a very
small probability authorizes a prediction. But this he consistently denied. In
his uncompromising subjective view, a probability is a always forecast, never a
prediction.56
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5.2 The game-theoretic form of the principle

We predict using a probabilistic theory by singling out an event E to which it
gives small probability and predicting that E will not happen. This is one of
the simplest ways of stating Cournot’s principle. We can make the statement
more concrete by interpreting the theory’s probability for E, say α, as an offer
to bet. If we take the bet, betting α on E, and E does happen, then we will have
turned the amount α we have risked into the amount 1; we will have multiplied
the capital we risked by the large factor 1/α. So predicting that E will not
happen is tantamount to predicting that we will not multiply our capital by a
large factor.

The game-theoretic form of Cournot’s principle can be stated in a somewhat
more general and flexible form: the objective content of a system of probabilities
lies in the prediction that a strategy for betting at the corresponding odds will
not multiply the capital risked by a large factor. This coheres with the game-
theoretic form of the fiducial principle, as stated on page 18: to use probabilities,
we must decide to believe that no strategy we devise to bet at the corresponding
odds will multiply the capital it risks by a large factor.

One advantage of the game-theoretic formulation is that it makes more
salient the requirement that the event being predicted be selected in advance of
observing whether it happens. No one will take a bet after the fact.

As noted on page 18, we can use the fiducial principle flexibly by deciding
only to trust certain probabilities and only in certain situations. This flexibility
is particularly salient and far-reaching when we use the game-theoretic formu-
lation. Instead of predicting that no strategy for using given odds will multiply
the capital risked by a large factor, we can make this prediction for a particular
strategy or for some small class of particularly simple strategies.

The generalization from predicting the failure of particular events to predict-
ing the futility of particular strategies is particularly consequential when we use
Cournot’s principle for testing. In this case, the choice of a particular event (or
critical region, as it is called in the Neyman-Pearson theory of testing) also fixes
the significance level α, which measures the strength of the test and hence the
level of negative evidence if the test rejects. A gambling strategy, on the other
hand, can measure the level of negative evidence more flexibly, by how large
a factor the capital is multiplied. This measure has a legitimacy not shared
by p-values. When we use p-values, we are specifying in advance a test statis-
tic on which to bet, but we are not specifying the bet in advance. Moreover,
idea of testing by a gambling strategy is applicable when we are dealing with a
forecasting system, an actual forecaster, or a theory that produces only limited
betting odds, perhaps sequentially with feedback, whereas the idea of testing
by selecting an event of small probability requires that the theory or forecaster
provide a comprehensive probability distribution in advance so that a critical
region can be selected.

See Appendix II for additional information on the game-theoretic under-
standing of probability.
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6 Conclusion

In practice, both Bernoullian and Bayesian statistics rely on fiducial judgements.
Bernoullian statistics relies on judgements, made in particular cases, that pre-
dictions in which we are confident before certain observations still merit our
confidence after. Bayesian statistics relies on similar judgements, applied to
conditional predictions.

Poisson’s principle clarifies the role of frequencies. Bernoullian and Bayesian
analyses make predictions about averages and about other events, not merely
about frequencies.

Cournot’s principle tells us how a probabilistic analysis, Bernoullian or
Bayesian, makes a prediction: it assigns the predicted event a probability close
to one. This can be put in betting terms. The probability close to one implies
very favorable odds for a bet against the event, odds that would multiply the
capital you risk by a large factor if the event fails; the prediction is that the bet
will not succeed.

The three principles unify probability while validating its diversity. They
are used by fiducial, Dempster-Shafer, and imprecise-probability analyses just
as they are used by Bernoullian and Bayesian analyses. This lends legitimacy to
these less classical approaches and may open the way to even leaner paradigms
of probabilistic analysis and prediction. Bets we choose to trust may yield
interesting predictions even if they are too sparse to define random points or
random subsets or to satisfy the axioms of imprecise probability.

7 Appendix I: Bayesian, Bernoullian, etc.

How did the names Bayesian, fiducial, and frequentist arise? What other names
have been used for the Bayesian and Bernoullian schools of thought?

7.1 Bayesian

So far as we know, Bayesian has been used in English to refer to the work of
Thomas Bayes only beginning in the middle of the 20th century. In the second
half of the 19th century and the first half of the 20th, we find only Bayes’s or
Bayes’, as in Bayes’s rule, Bayes’s formula and Bayes’s theorem. We similarly
see only the possessive form in French during this period: régle de Bayes, not
règle bayesienne.

We do see the adjectival form very early in German. The German translation
of Cournot’s book on probability, which appeared in 1849, translated Cournot’s
règle de Bayes as Bayes’sche Regel. The adjective endured. Emmanuel Czuber
used Bayessche in his history of probability ([42] 1900) and in the multiple
editions of his authoritative probability textbook ([43] 1903). In the German
edition of Andrei Markov’s textbook, published in 1912 [153], we find both
Formel von Bayes and Bayesschen Formel. In his book on the philosophy of
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probability ([44] 1923), Czuber applied the adjective Bayessche to the nouns
Theorem, Satz, Formel, Regel, Ansatz, and Schlussweise.

This difference between German practice on the one hand and French and
English on the other was not merely a matter of grammar or literary style. The
English readily turned other prominent names into adjectives in the 19th cen-
tury; witness Newtonian, Kantian, and Laplacean. The role of Laplace is surely
the crux of the matter. He, rather than Bayes, developed the statistical method-
ology that we now call Bayesian, for Bayes studied only what we now call the
binomial case. Yet it makes little sense to call the methodology Laplacean, for
inverse probability was but one of the probability methods Laplace developed.57

The English solved this problem by adopting the term inverse probability, which
first appears in print in work by Augustus de Morgan in the 1830s, with ref-
erence both to Bayes’s problem (finding an inverse or converse to Bernoulli’s

theorem) and Bayes’s and Laplace’s solution of the problem [81].58 The French,
who became remarkably disinterested in and even hostile towards Laplace’s work
on probability during the second half of the 19th century [28, 158], continued
to use Cournot’s name règle de Bayes and similar phrases. The Germans, as
we have noted, continued to use Bayessche.

The influx of German-speaking mathematicians into the United States and
Britain before, during, and after World War II surely brought German ways of
speaking with it. In any case, Bayesian begins to appear in print in English
around 1950. The first appearance I have seen came in 1948, in an article by
Charles P. Winsor, then working in biostatistics at Johns Hopkins [241]. Review-
ing a discussion of binomial estimation that had taken place in the Educational
Times in the 1880s, Winsor uses the phrases Bayesian argument and Bayesian
assumption. The next appearance is in 1950, in prefaces R. A. Fisher wrote
for two of his earlier papers [93].59 In 1951, L. J. Savage writes of “modern, or
unBayesian, statistical theory” [183].

As Stephen Fienberg has documented, the adjective Bayesian became stan-
dard in the 1950s [86]. Those who began using it then included long-standing
advocates of Bayes’s rule such as I. J. Good, newly Bayesian statisticians such as
Savage and Denis Lindley, and decision theorists in American business schools
such as Harry V. Roberts and Robert Schlaifer. Good had learned probability
by reading Keynes and Ramsey in the 1930s (see the preface to [107]) and had
learned inverse probability by working with Turing in World War II. According
to Fienberg, Good first used Bayesian in 1956, in a review in Mathematical Re-
views of an article in French by de Finetti, where de Finetti had used bayesien;
Good subsequently used Bayesian in an article published in 1958 [106]. Lindley
was perhaps the first to use Bayesian extensively and systematically in print, in
an article published in 1958 [145], and as Fienberg notes (page 17), Savage used
the adjective in corresponding with Lindley about a draft of this article. In 1958,
Erich Lehmann used Bayesian derivation in passing in an unpublished techni-
cal report [140]. In a symposium Savage led in London in 1959 (published only
in 1962), the adjective was used by Savage, Peter Armitage, George Barnard,
Maurice Bartlett (quoting Lindley), and David R. Cox. By 1960, Roberts could
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write that “Bayesian statistics” was now a standard term ([179], page 26). By
1962, he could write about the sometimes-called “Bayesian revolution” ([180],
page 202).

In the instances just cited, Bayesian was used as an adjective. The earliest
instance of the word being used as a noun that I have located is by Savage in
1961; he writes ([184], page 577):

We Bayesians believe that the dilemma to which the frequentist po-
sition has led, along a natural and understandable path, is insoluble
and reflects what is no longer a tenable position about the concept
of probability.

The dilemma to which he refers is simply the inability of frequentists (Bernoul-
lian statisticians) to express their conclusions in the form of probabilities for
hypotheses.

Counterparts for the newly coined English Bayesian and Bayesianism even-
tually came into use in other European languages. The first uses I have seen in
Italian and French were by Bruno de Finetti; he used the adjective bayesiano
in Italian in 1954 [53] and the adjective bayesien in French in 1955 ([54], the
article reviewed by Good). The French adjective is now written more often as
bayésien, in an attempt to better imitate the English pronunciation. The French
noun bayésienisme came much later and is still rare. In German, the English
noun Bayesian became Bayesianer and Bayesianism became Bayesianismus.

7.2 Bernoullian

In this article I have used the adjective Bernoullian to refer in general to non-
Bayesian methods of statistical testing and estimation that are now often called
frequentist. This usage is not standard but has a reasonable pedigree, going
back at least to Francis Edgeworth:60

� Edgeworth used Bernoullian with this meaning in 1918, contrasting “the
direct problem associated with the name of Bernoulli” with “the inverse
problem associated with the name of Bayes” [79].

� Richard von Mises made a similar remark in German in 1919 ([229], page
5): “Man kann die beiden großen Problemgruppen . . . als den Bernoullis-
chen und den Bayesschen Ideenkreis charakterisieren.” In English: “We
can call the two large groups of problems the Bernoullian and Bayesian
circles of ideas.”

� Arthur Dempster advocated the usage in 1966 [59]. In 1968 [62], in a re-
view of three volumes of collected papers by Neyman and Pearson, Demp-
ster wrote

Neyman and Pearson rode roughshod over the elaborate but
shaky logical structure of Fisher, and started a movement which
pushed the Bernoullian approach to a high-water mark from
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which, I believe, it is now returning to a more normal equilib-
rium with the Bayesian view.

� Ian Hacking used the term several times in his 1990 book, The Taming of
Chance [110]. Writing about Poisson’s interest in changes in the chance
of conviction by a jury, he wrote (page 97):

Laplace had two ways in which to address such questions. One
is Bernoullian, and attends to relative frequencies; the other is
Bayesian, and is usually now interpreted in terms of degrees
of belief. Laplace almost invited his readers not to notice the
difference.

The adjective Bernoullian honors Jacob Bernoulli just as Bayesian honors
Thomas Bayes, and in a parallel way. In both cases, the person honored dealt
only with the estimation of an individual probability, but their approach has
grown into a vast methodology. Unlike frequentist, moreover, Bernoullian does
not suggest a naive equation of probability with frequency.

In addition to frequentist, Bernoullian statistics has also been called objec-
tivist, orthodox, classical, and sampling-theory. I turn now to these names.

Classical

Although Edgeworth’s use of Bernoullian in 1918 is notable, the need for such a
name was widely felt only in the mid-twentieth century, when Bayes’s rule was
first widely seen as a general methodology rather than a particular method. The
need was first felt by the Bayesians, who needed a name for their opponents.
Savage’s objectivistic and the occasionally used non-Bayesian were awkward,
and modern, used by Savage before he considered himself a Bayesian, would
no longer do. The adjectives orthodox and classical were better suited to the
occasion, and both were common in the 1950s and 1960s. It is easy to find
authors who used both adjectives, and others as well:

� I. J. Good used orthodox statistical theory in his 1950 book, Probability and
the Weighing of Evidence [104]. In a 1956 book review, he used orthodox
and classical in the same paragraph ([105], page 389). In a 1958 article,
he used classical objectivistic statistics [106]

� Edwards, Lindman, and Savage systematically contrasted classical with
Bayesian statistics in their 1963 article [82].

� Denis V. Lindley used classical statistics in a 1964 article [146]. In the
preface to a 1965 book [147], he used orthodox statistics.

� John W. Pratt, in a 1965 article entitled “Bayesian interpretation of stan-
dard inference statements” [177], explained that by “standard” he was re-
ferring to methods developed in the “orthodox”, “classical”, “objective”,
“frequency” or “Neyman-Pearson” tradition or traditions.
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What is orthodox or classical is of course very changeable; these adjectives
often refer to whatever aspect of yesterday’s practice the author wants to replace
or extend. The vagaries of classical statistics in the 20th century are particularly
striking.

� Since the 1920s, physicists have used classical statistics to refer to statis-
tical predictions that have been corrected by quantum theory.

� The preface to a statistics textbook published in 1940 [173] contrasted
classical statistics as developed by Karl Pearson and his school with newer
techniques developed by R. A. Fisher.

� In 1943, Jacob Wolfowitz contrasted classical statistics with nonparamet-
ric methods [242]. Joseph L. Hodges and Erich Lehmann were still using
classical in this way in 1961 [120].

� For many in the mid 20th century, the treatment of inverse probability
by Bayes and Laplace was classical. In a 1942 article in Russian ([129],
page 4), Andrei Kolmogorov called the use of Bayes’ theorem the classical
method (klassiqeski� metod). In the chapter on confidence regions in his
1946 book [36], Harald Cramér wrote (page 507):

In the older literature of the subject, probability statements of
this type were freely deduced by means of the famous theorem
of Bayes, one of the typical problems treated in this way being
the classical problem of inverse probability . . .

� Some authors in the 1950s and 1960s used classical statistics for methods
that assumed random sampling, as opposed to newer methods for stochas-
tic processes or time series. Examples include Geoffrey H. Jowett in 1956
and 1957 [123, 124], Donald A. Darling in 1958 [46], and John W. Tukey
in 1961 [223].

� In 1953, M. A. Girshick used classical statistics to refer to Neyman-
Pearson hypothesis testing, contrasting it with the theory of making de-
cisions under uncertainty [102].

Although Girshick came close, it seems reasonable to say that I. J. Good
was the first to use classical statistics as a general name for Bernoullian as
opposed to Bayesian methods. He did so repeatedly, beginning in the 1950s.
Also influential was the use of the term by Robert Schlaifer and his Bayesian
decision-theory group at the Harvard Business School. Arthur Dempster has
mentioned to me that this group’s use of classical surprised him when he en-
countered it in the late 1950s; for Dempster as for Cramér, inverse probability
was classical, and Neyman-Pearson theory was the innovation. In the chapter
entitled “The Classical Theory of Testing Hypotheses” in his 1959 book, Prob-
ability and Statistics for Business Decisions [185], Schlaifer made his case for
the terminology (page 607):
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At least in the United States, the theory of these procedures . . . is
now “classical” in the literal sense of the word: it is expounded in
virtually every course on statistics and is adhered to by the great
majority of practicing statisticians.

One remarkable aspect of this use of the name classical statistics is that
some proponents of the methods being called classical eventually adopted the
term. It was used, for example, by Lucien Le Cam in 1964 [137] and by Jaroslav
Hájek in 1967 [113]. Stephen Fienberg and John Aldrich have speculated that
this embrace was influenced by Neyman’s use of classical probability for the
mathematics of probability that he had learned as a student in Poland. In
Neyman’s view, confidence intervals used classical probability to accomplish
what Fisher was trying to do with his nonclassical fiducial probability [163].

Erich Lehmann continued to use classical statistics in the 21st century. In
the first sentence of his Fisher, Neyman, and the Creation of Classical Statistics,
posthumously published in 2011 [141], he wrote

Classical statistical theory – hypothesis testing, estimation, and the
design of experiments and sample surveys – is mainly the creation
of two men: R. A. Fisher (1890–1962) and J. Neyman (1894–1981).

Frequentist

The thesis that probability should be equated with relative frequency was al-
ready being debated in the second half of the 19th century, but the word fre-
quentist came into use much later. By all accounts, the word was first used
in print by the Columbia University philosopher Ernest Nagel (1901–1985) in
1936 [160, 161]. Nagel used frequentist only as a noun; the Harvard University
philosopher Donald Williams used it as an adjective and also used frequentism
in 1945 [239]. Nagel and Williams used frequentist and frequentism to refer to a
view about the meaning of probability, not to a statistical methodology. Thus
frequentism was synonymous for them with the already common term frequency
theory of probability.

In the 1920s and 1930s, many mathematicians used frequency theory to refer
more specifically to the framework of Richard von Mises, which specified con-
ditions on a sequence under which probability might be identified with limiting
frequency in the sequence [229]. This framework was cumbersome compared
with the axiomatics advanced by Fréchet and Kolmogorov [128], and by the end
of the 1930s mathematicians had decisively rejected it as a starting point for
mathematical work [208].

The term frequentist was first used to refer to Bernoullian statistics only in
1949, by the statistician Maurice G. Kendall [125], and it was not widely used
before the 1960s. Jerzy Neyman bears some responsibility for its subsequent
popularity. As we have seen, he used frequencies to refer broadly to the regu-
larities predicted by stochastic processes. In a philosophical article published in
1977 [168], he emphatically embraced the label frequentist.
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In this paper, I have argued against continued use of frequentism to refer
to Bernoullian statistics. It suggests a naive equation of probability with fre-
quency that hardly does justice to the generations of mathematicians who have
developed the topic By using it, Bernoullian statisticians have persuaded many
philosophers that their viewpoint is shallow and incoherent [112, 111].

Sampling-theory

The earliest use I have seen of sampling theory as a general name for Bernoullian
statistics is by Denis V. Lindley, in a discussion paper published by the Royal
Statistical Society in 1968 [148]. There Lindley uses “orthodox sampling theory
description”, “classical sampling theory methods”, “sampling theory approach”,
and simply “sampling theory”.

In a article published in 1971 [67], Arthur Dempster used similar language.
He wrote (page 58):

I do not believe that either the Bayesian approach or the sampling
distribution approach to unity is a total error, but I do find that
subtle issues are involved which compromise parts of both schools,
so that a mixed viewpoint becomes desirable. Specifically, one must
reckon with the weaknesses of sampling distribution methods for
estimation and of Bayesian methods for significance testing.

In 1972, in another discussion paper for the Society [151], Lindley and Adrian
F. M. Smith used “orthodox, sampling-theory framework” and “sampling-theory
school”. The response was strikingly different from the response to Lindley
three years earlier, in that most of the discussants, some Bayesians and some
not, followed his lead by using the same or similar variations on sampling theory.
These included J. A. Nelder, David R. Cox, R. L. Plackett, A. P. Dawid, and
C. Chatfield. Even Oscar Kempthorne used “sampling-theory school”, though
with the quotation marks.

Lindley continued to use the term in a number of later publications, including
his well known 1975 article “The future of statistics: a Bayesian 21st century”
[149] and in a number of later publications (e.g., [150]). Two other prominent
statisticians whose repeated use of the term has attracted notice are George E.
P. Box, who considered himself a Bayesian, and David R. Cox, who does not.

� Box contrasted the “sampling theory approach” to the Bayesian approach
in his 1973 book with George C. Tiao, Bayesian Inference in Statisti-
cal Analysis [21]. In his well known 1980 discussion paper at the Royal
Statistical Society ([20] 1980), Box also contrasted Bayesian theory with
“sampling inference” and “sampling theory”, and again a number of dis-
cussants followed by using similar terms.

� In their 1974 textbook, Theoretical Statistics [35], Cox and David V. Hink-
ley described theirs as the “sampling theory approach to statistical in-
ference”. This approach, they explained, follows the repeated sampling
principle (page 45):
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. . . statistical procedures are to be assessed by their behavior in
hypothetical repetitions under the same conditions.

In his Principles of Statistical Inference, published in 2006 [34], Cox wrote
(page 7):

There are two broad approaches, called frequentist and
Bayesian, respectively, both with variants. Alternatively,
the former approach may be said to be based on sampling
theory and an older term for the latter is that it uses inverse
probability.

In my view, sampling-theory statistics is even more misleading than frequen-
tism, because it ties us so firmly to Fisher’s framework of independent, identi-
cally distributed observations. It suggests, and the repeated-sampling principle
makes explicit, the doctrine that a stochastic process that runs only once can
be understood only by imagining that it runs many times – a doctrine that
we can recognize as fallacious once we understand Cournot’s principle. The
resulting confusion extends beyond statistical work to fields in physics that use
probability, including statistical mechanics [103], quantum mechanics [22], and
cosmology [212].

7.3 Fiducial

At the beginning of his 1873 essay on determinism [159], James Clerk Maxwell
wrote that “we need some fiducial point or standard of reference, by which we
may ascertain the direction in which we are drifting.” Maxwell was alluding
to the use of the adjective fiducial in surveying and astronomy, where it refers,
according to the Oxford English Dictionary, to a line or point, etc., assumed as
a fixed basis of comparison.

Fisher was evidently also referencing this meaning of the word when he called
the probabilities he constructed from a pivot fiducial. In his initial example, the
fixed point was the 95th percentile of the cumulative distribution function of
the pivot. By continuing to believe the 95% probability statement – by trusting
it, we obtain a 95% probability bound on the parameter.

The analogy with a true fixed point is imperfect. What Fisher was taking
as fixed is fixed only by a fiducial judgement. But he brought the word fiducial
into statistics in a permanent way. Rather than leave it to designate merely
a failed argument, I propose to use it in a wider way relevant to nearly every
application of statistics.

8 Appendix II: Game-theoretic probability

The game-theoretic framework for mathematical probability can be traced back
to ideas advanced by Blaise Pascal in the 17th century. In their correspondence
in 1654, Pascal and Pierre Fermat had competing methods for calculating how
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stakes should be divided when a competition is cut short before either player
has won enough games to win the entire stakes. Fermat used combinatorial
reasoning, of a kind that had been understood in Europe since the 13th century
[8], whereas Pascal used backwards induction to study how the value of each
player’s position (or expectation) changes as games are won and lost. Fermat’s
reasoning used the notion of equally possibility chances, whereas Pascal’s rea-
soning, especially as elaborated later by Christian Huygens, relied only on the
players’ agreement to play on even terms and hence seems to apply to games of
skill just as well as to games of chance [209].

The classical definition of probability was based on Fermat’s notion of equally
possible cases: the probability of an event is the ratio of the number of favorable
cases to the total number of cases. Pascal’s approach, which begins instead with
odds at which the players have agreed to bet, leads to a different definition of
probability: the probability of an event is the amount you must risk in order to
get one monetary unit if the event happens. The two definitions connect with
phenomena in different ways: Fermat connects through the notion of “equally
possible,” though this may strike modern sensibilities as mysterious. Pascal
needs some other connection, and the natural one is Cournot’s principle: we
assume that strategies for betting at the corresponding odds will not allow you
to multiply the money you risk by a large factor.

Mathematical probability is developed starting with Pascal’s game-theoretic
definition in my 2001 book with Vovk [206] and in a series of subsequent
papers by several different authors, many published and many posted at
probabilityandfinance.com. Here are some highlights of this work:

1. Concrete versions of the classical limit theorems of probability (the law
of large numbers, the central limit theorem, and the law of the iterated
logarithm) follow from applying Cournot’s principle to relatively simple
strategies [206].

2. Abstract versions of more abstract measure-theoretic results, beginning
with Lévy’s zero-one law, can be deduced from assumptions about avail-
able bets similar to the assumptions used in the theory of imprecise prob-
abilities [232].

3. Simple gambling strategies can be used to adjust p-values to account for
the fact that they fall short of tests with fixed significance levels [48].

4. Reasonable statistical tests can be represented as betting strategies, and
by playing against these strategies a forecaster can make a series of fore-
casts that pass the tests, provided only that he is provided feedback [199].
This casts light on why adaptive or non-stationary forecasting is possible
and casts doubt on the notion that it teaches us anything about the world.

5. In securities markets, the assumption that a speculator will not multiply
capital risked by a large factor relative to a market index using certain
simple strategies implies that that the paths of security prices will look
like (possibly time-distorted) geometric Brownian motion and that the
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market index will appreciate in proportion to its accumulated variance
[233, 201]. This resolves the equity premium puzzle and explains why eq-
uity performance is related to apparent risk without making assumptions
about investors’ probabilities and utilities.

Notes

1. The development of Fisher’s thinking leading up the 1922 article has been studied by John
Aldrich [1] and Stephen Stigler [218]. David Hand [117] has celebrated the article’s significance.
Anders Hald and Stephen Stigler have studied the early history of maximum likelihood ([115,
217], Chapter 16), and Stigler has reviewed its development by and after Fisher [219]. See
also Vladimir Vovk’s algorithmic treatment of the method’s efficiency [231].

What mathematical form might be given to Fisher’s intuitive notion of a random sample
from an infinite population? Fisher sketched an answer in a prefatory note to a 1925 article,
“Theory of statistical estimation” [91].

2. In 1810, Laplace used what we now call characteristic functions or Fourier transforms to perfect
his method of approximating integrals involving very high powers, a method that he had first
begun to develop nearly forty years earlier. His 1810 breakthrough resulted in Gaussian or
normal integrals and various instances of what we now call the central limit theorem. However,
as Hans Fischer has noted ([87], page 23), Laplace applied his method to particular problems
(often concerning errors of observations) and never stated a general theorem corresponding
to the central limit theorem in today’s sense. This work by Laplace is discussed by most
authors who have studied 19th-century mathematical statistics. In addition to Fischer, these
include Marie-France Bru and Bernard Bru [28], Richard William Farebrother [85], Prakash
Gorrochurn [108], Anders Hald [114, 116], and Stephen Stigler [215].

3. Francis Edgeworth preceded Fisher in developing an abstract estimation theory that assumed
a known class of probability distributions indexed by multiple constants, especially in his
1908 and 1909 articles on the “genuine inverse method” [77, 78]; see [116], pages 71–72. But
Fisher’s gift for exposition quickly earned him a much wider readership than Edgeworth ever
enjoyed.

4. Was Fisher’s systematic use of parameter original? In 1976 [214], Stephen Stigler reported
finding only a few isolated instances where Fisher’s British predecessors had used the word
to designate a constant in a probability law. We can also find a few analogous instances of
paramètre in French: by Auguste Bravais in 1846 (cited by Edgeworth, as Stigler noted),
by Jean-Baptiste Liagre in 1852 [144], and by Emile Dormoy in 1888 [73]. But the word
was also used in very different ways by French and English students of probability. In Henri
Poincaré’s probability textbook, for example, paramètre is sometimes used for what we now
call a random variable ([174], page 98 in the 1896 edition, page 121 in the 1912 edition).

In 1915, on the other hand, in the first edition of his probability textbook [88], the
Danish-American statistician Arne Fisher had already systematically used parameter in the
same way that R. A. Fisher later used it. See, for example, the discussion of “the parameters
of frequency curves” on page 185. Notable in this connection is R. A. Fisher’s 1931 letter
to Arne Fisher, in which he defends his failure to cite the work of Scandinavian predecessors
([10], pages 310–313).

5. As John Aldrich has pointed out [3], Fisher put multiple regression in its modern form in
another 1922 article [89] by adding the (often fictional) assumption that the values of the
independent variables are initially known.

Judy Klein has masterfully described the importance of time series in statistics from the
17th to the 20th centuries [127].

6. Some of their reservations about Fisher are on display in the discussion following his 1935
presentation to the Royal Statistical Society [92].
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7. Bernard Bru has documented the emergence of the theory of stochastic processes in the 1920s
[25]. See also the discussion of the martingale law of large numbers in Section 4.

8. Laplace did not use the terms direct and inverse; they were introduced, in English, by Au-
gustus De Morgan in the 1830s.

9. As Bernard Bru and Pierre Crépel showed in their painstaking study of Condorcet’s unpub-
lished work, Condorcet used the inverse principle in an unpublished manuscript written before
the spring of 1771. (See [31], pages 247–263, especially footnote 19 on pages 256–260; see also
[37], pages 288–289, and [28].) Laplace began his work on the principle later, in the pioneering
article he read to the Academy in 1773 and published in 1774. Immediately after stating the
inverse principle in this 1774 article, Laplace applied it to the same problem (an urn containing
finite but unknown numbers of black and white tickets) that Condorcet had considered in his
unpublished manuscript ([131], pages 29–30). From this and other circumstantial evidence,
Bru and Crépel concluded that Laplace most likely learned the principle from Condorcet’s
manuscript.

Prior to Crépel’s and Bru’s work, Stephen Stigler had conjectured, based partly on study
of an unpublished paper on the theory of errors drafted by Laplace in 1772, that Laplace had
persuaded himself of the principle by way of a fiducial argument ([215], pages 100–101; see
also [216]). It was in the theory of errors, in any case, that Laplace found the principle to
have the greatest importance.

10. The French mathematicians studying probability in the 1770s had not taken serious notice
of Bayes’s work. D’Alembert and Condorcet apparently first noticed Bayes’s priority around
1780, after Bayes’s literary executor Richard Price had entered into correspondence with
Turgot [31, 45]. Laplace first mentioned Bayes in print in his Essai philosophique sur les
probabilités in 1814 [133].

11. Laplace argued that the averaging involved in least-square calculations leads to a normally
distributed error of estimation regardless of the probability law for individual errors, and
he deduced from this that least squares minimizes the error of estimation as measured by
expected absolute error. He also argued that individual errors, if themselves the result of many
independent influences, will be approximately normally distributed, vindicating Gauss’s earlier
inverse argument for least squares based on the assumption of normality. Later, in 1823, Gauss
showed that least-squares estimators have the least mean-squared error among all unbiased
linear estimators, thus providing a direct (as opposed to inverse) argument for least squares
even for small samples For details, see the general histories cited earlier [85, 108, 116, 215, 222].

A general abstract account of the equivalence of direct and inverse probability when
the form of the probability law of the observations is known, showing that the sampling
distribution of the maximum likelihood estimators in a model with multiple parameters has
the same approximate multivariate normal distribution as the posterior distribution obtained
using a uniform prior distribution, was first given by Francis Edgeworth in 1908 and 1909 (see
Hald [116], Chapter 10).

12. Hald provides a succinct overview of these developments in [116]. His comment about Laplace
and Gauss moving away from inverse probability in practice is on page 73. On page 101, he
cites a letter from Gauss to Friedrich Wilhelm Bessel in which Gauss characterizes inverse
probability as metaphysical.

Contemporary reports on the status of the inverse-probability debate early in the 20th
century are provided by Emanuel Czuber ([41], pages 91–110) and Arne Fisher ([88], pages
55–56).

Czuber’s own work provides an example of the distance between probability theory and
the theory of errors at the end of the 19th century. His authoritative book on probability [43]
included a chapter on Bayes’s theorem, but his book on errors of observations [40] did not
mention it.

13. On one occasion, Laplace suggested that prior information could be taken into account by
introducing fictional observations; See [215], page 136.
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More generally, unequally possible cases can be made into equally possible cases by sub-
dividing cases that are more possible than others. Jacob Bernoulli had explained this in his
Ars Conjectandi ([12], page 322 of Edith Sylla’s translation):

I assume that all cases are equally possible, or can happen with equal ease.
Otherwise a correction must be made. For any case that happens more easily
than others as many or more cases must be counted as it more easily happens.
For example, in place of a case three times as easy I count three cases each of
which may happen as easily as the rest.

When we are considering a continuous quantity, this selective subdivision can be accomplished
by a transformation – what we now call a reparametrization.

14. The passage quoted is in Chapter 4, §17, “The Bases of Laplace’s Theory lie in an Experience
as to Ignorance.” Laplace’s law of succession was integral to Pearson’s philosophy of science.
He distinguished between perceptions (sense impressions) and conceptions (theories), and he
saw the law of succession in our construction of theories from repeated perceptions. This view
echoes Laplace’s associationist psychology [47, 220].

An avid student of German culture [176], Pearson called his philosophy “a sober idealism”
in the preface to the second edition of The Grammar of Science. Harold Jeffreys, the best
known proponent of inverse probability in England in the 1930s, stated in the preface to the
third edition of his Theory of Probability [122] that The Grammar of Science was his primary
inspiration. Jerzy Neyman, perhaps the most influential proponent of Bernoullian statistics in
the 20th century, stated in 1957 [165] that he had learned from the The Grammar of Science
“that scientific theories are no more than models of natural phenomena, frequently inadequate
models.”

15. Although Fisher directly criticized Bayes’s 1763 article in his 1922 article, he eventually con-
vinced himself that Bayes shared his own understanding of probability. He then contended
that the Laplace had introduced the aspect of inverse probability to which he objected: the
use of prior probabilities unsupported by frequency evidence [4].

16. This story has been recounted by a number of authors; see for example [86]. A discussion
led by Leonard J. Savage at Birbeck College in 1959 [6] gives some insight into how the new
subjectivism looked to mathematical statisticians at the time.

The introduction of the terms Bayesian and Bayesianism is discussed in Appendix I. The
use of Bayesian as an adjective in English can be found as early as 1948, but its use as a
noun does not appear until the 1960s. Nor does Bayesianism. Before then, no one called
themselves Bayesian.

The name Bayesian has now also been adopted by authors who continue to advocate
Laplacean inverse probability, with various ways of justifying the objectivity of the prior
probabilities. These include Edwin Jaynes [121], Roger Rosenkrantz [182], James Berger [11],
and Jon Williamson [240]. The name objective Bayesian, perhaps first used by Rosenkrantz,
is now often used for this group.

17. For discussions of other ways Ramsey, de Finetti, and others have tried to understand unknown
probabilities in subjective terms, see [99, 143, 152].

18. The point is more or less implicit in some of Laplace’s examples, but Laplace did not state it
explicitly. As we have seen, he was more concerned with the fact that even the form of the
probability laws is unknown, and he seldom bothered with explicit prior probabilities.

Cournot, whom we may call the first Bernoullian because of the clarity of his early critique
of inverse probability, addressed the question as follows in 1843, considering the case where
balls are drawn from an urn with unknown numbers of black and white balls:

When the numbers [drawn] . . . are very large . . . the result obtained from Bayes’s
rule will no longer differ noticeably from the result obtained from Bernoulli’s
theorem. Well they should, because the validity of Bernoulli’s theorem is inde-
pendent of any hypothesis concerning the initial choice of an urn. In this case
it is not (as many authors have apparently thought) Bernoulli’s rule that be-
comes exact by approaching Bayes’s rule; it is Bayes’s rule that becomes exact,
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or acquires an objective value that it did not have, by becoming the same as
Bernoulli’s rule.

Here are Cournot’s words in the original French ([32], Section 95):

Quand les nombres . . . sont très grands . . . le résultat trouvé par la règle de Bayes
ne diffère plus sensiblement de celui que donnerait le théorème de Bernoulli. Il
faut bien qu’il en soit ainsi, puisque la vérité du théorème de Bernoulli est
indépendante de toute hypothèse sur le triage préalable de l’urne. Ce n’est
point dans ce cas (comme beaucoup d’auteurs ont paru se le figurer) la règle de
Bernoulli qui devient exacte en se rapprochant de la règle de Bayes; c’est la règle
de Bayes qui devient exacte, ou qui acquiert une valeur objective qu’elle n’avait
pas, en se confondant avec la règle de Bernoulli.

Cournot went on to note that if the urn from which the balls are drawn is itself chosen at
random, and the chances of getting urns with various proportions of black and white balls
is unknown, then Bayes’s rule (which assumes a uniform prior distribution) will give the
wrong answer, but that it the difference will the negligible when the number of balls drawn
in sufficiently large.

Edgeworth took up the issue in 1884 ([76], pages 228–229). Citing Cournot and silently re-
purposing his argument (taking the distribution over urns with different proportions of black
and white balls to be known and subjective rather than unknown and objective), Edgeworth
wrote:

There is not required a precise à priori knowledge. . . Almost any à priori knowl-
edge, as Cournot has well shown, is sufficient to deduce an overwhelmingly large,
though not of course a numerically-measured, probability.

Edgeworth elaborated and repeated his own version of the argument several times; see [80] and
the references he gives on page 83 of that article. Arthur Lyon Bowley picked the argument
up from Edgeworth and explained it in his widely used textbook, The Elements of Statistics
[19], beginning with its fourth edition in 1920 (page 414).

Some authors now lump Edgeworth’s conclusion, that the subjective prior will not matter
if it is smooth when there are many observations, together with Laplace’s 1810 conclusion
that the posterior resulting from his inverse principle (where the a uniform prior is implicit)
will be approximately normal and centered on the true value of the parameter), under the
name “Bernstein–von Mises theorem”. Several modern versions of this theorem have been
developed, but they all require that the number of observations must be many times the
number of parameters, and either the parameter space Θ must be finite or stringent conditions
must be imposed on the class of smooth prior distributions considered [98].

There is little justification for the name “Bernstein–von Mises theorem”. Apparently the
name was first used in print in 1956 by Lucien Le Cam, then a junior faculty member in
statistics at Berkeley [136]. To all appearances, however, the name is due to Jerzy Neyman,
who explained in 1962 [167] that he had learned the result personally from Sergei Bernstein
as a student in 1915 or 1916 and cited a 1919 article by Richard von Mises [228]. In fact, von
Mises discusses the result only for the binomial case, where it was already proven by Laplace,
and cites Czuber’s textbook for the result ([228], page 84 , [43], page 218 of the 3rd edition of,
1914). Le Cam [135] cites the first edition of Bernstein’s probability textbook, published in
1917. I have not seen this edition, but the 1927 edition discusses only Laplace’s Bernoullian
result for the binomial and does not discuss Bayesian asymptotics.

19. The situation is somewhat different in some other disciplines. In economics, interest in math-
ematical models of economic agents keeps the Bayesian picture in view as the default model
of rationality. Philosophers continue to use it as a general model of uncertain reasoning. Per-
ceptual psychologists are now using it in detailed studies of how past experience is combined
with inputs from the perceptual system.

20. This name structural equation was used by Donald A. G. Fraser and others beginning in the
1960s; see [97]. Some recent authors use instead the name data generating equation. I prefer
to avoid this name, because it suggests that u and therefore x are fully or partly created
by chance, perhaps by the goddess called Tyche by the Greeks and Fortuna by the Romans.
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Montmort and De Moivre believed they had conquered this pagan goddess [9], but she seems
to have regained her powers in recent decades.

21. In 1958, in a letter to John Tukey in 1958 ([10], page 233), Fisher explained that he used
the word probability “in the sense in which it was used by the old masters, Fermat, Pascal,
Leibnitz, Bernoulli, Montmort, de Moivre, and Bayes.” These old masters, like even earlier
authors who calculated odds in games of chance [8] saw multiple meanings in the chances
they counted; these chances are subjective, because they define our bets, but also objective,
because they play out in what happens. It is not surprising, therefore, that different readers
of Fisher see different aspects of his understanding of probability. Dempster argues that he
understood probability primarily as degree of rational belief [68], Lehmann contends that he
understood it primarily as frequency ([141], and Zabell sees some vacillation ([246], pages
83–86 and pages 371–374 and 381).

For a late essay by Fisher on the nature of probability, see [96].

22. See Fisher’s 22 March 1955 letter to Georges Darmois and his 28 March 1957 letter to E. B.
Wilson in [10], pages 79–80 and 239.

23. As von Mises explained, failure of the irregularity axiom would allow an opponent to make
money betting against the probability [230].

Related ideas go back at least to John Venn’s Logic of Chance, published in 1866 [225].
As Venn pointed out, any individual belongs to many classes, and when we interpret the
probability that the individual has a given feature as the frequency of that feature in a class,
we must decide on the class. Hans Reichenbach called this the problem of selecting a reference
class [178]. We do not want to use a given class if we can see that the individual belongs to
a smaller class in which the frequency is different.

The idea can also be expressed in terms of subjective probability: with respect to the
feature in question the individual should be exchangeable with the other individuals in the
class [49].

24. See [95]. There are also comments in this direction in the third (posthumous) edition of
Statistical Methods and Scientific Inference (1973).

25. See [71] and the web site for the Belief Function and Applications Society, http://www.

bfasociety.org/. For an accounting of my own work on Dempster-Shafer belief functions
in the 1970s and 1980s and its relation to my later work, see [200].

26. Often cited is Charles Stein’s 1959 example of the discrepancy between fiducial and Bernoullian
estimates of the sum of squares of many normal means [211]. In this example, x1, . . . , xn are
normal and independent with unit variances and means θ1, . . . , θn. We set h(θ) := θ21 + · · · θ2n
and d2 := x21 + . . .+ x2n, and we propose to estimate h(θ) using d2. Because d2 has expected
value h(θ) + n and variance 2n + 4h(θ), a Bernoullian analysis gives high probability to a
confidence interval for h(θ) of width of order

√
n around d2 − n. Fisher’s fiducial argument

for this model produces a probability distribution for h(θ) that has mean d2 +n and variance
2n + 4d2, which gives high probability to an interval of width of order

√
n around d2 + n.

A Bayesian analysis using a prior that is flat in a very large region of Rn that turns out to
have x1, . . . , xn well in its interior will give approximately the same results as Fisher’s fiducial
argument.

27. The name confidence interval was introduced by Jerzy Neyman in an effort to explain what he
thought Fisher was doing with his fiducial intervals, but the idea goes back to Laplace [140].
Cournot explained how the idea is independent of Bayesian thinking (see [32], Section 107,
quoted in Section 3.1 below). Aldrich discusses its use by 20th century authors from whom
Fisher drew inspiration [2].

28. For example, Hannig has suggested to me that in Stein’s example, described in Footnote 8
above, an appropriate data generating function for the feature h(θ) := θ21 + · · ·+ θ2n might be
based on the inverse of the cumulative distribution function for the non-central chi-squared
distribution.
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29. A data-dependent prior distribution is one chosen after the likelihood function is observed. It
is inconsistent with the rationale for Bayesian reasoning to tailor the prior to be consistent
with the likelihood, but some statisticians systematically do this, especially if an initially
chosen prior conflicts strongly with the likelihood. Some authors, such as George E. P. Box
[20], have defended an iterative process of Bayesian calculation, model checking, and adjusting
the prior.

30. Initially, in his 1930 article, Fisher suggested that fiducial probabilities are probabilities of a
different kind. But he soon changed his mind, arguing that they are probabilities like any
other, and that they differ from Bayesian posterior probabilities (at least the ones he thought
legitimate, those where the prior distribution expresses frequencies in a population from which
θ is drawn) only in the argument that produces them.

31. Permit me to deny, without repeating arguments I have made elsewhere (in [197], for example),
the claim that a rational person should have already integrated all of his or her evidence and
can find the resulting probabilities by examining his or her dispositions to act.

32. As de Finetti wrote in 1937, “the degree of probability attributed by a given individual to a
given event” can be defined by “making mathematically precise the trivial and obvious idea”
that it “is revealed by the conditions under which he would be disposed to bet on that event”
([49], page 6). In later work, de Finetti argued that it would be more operational to ask
individuals to choose between certain loss functions ([56], Chapter 5).

33. This formulation is related to the game-theoretic version of Cournot’s principle; see [198] and
Sections 3.4 and 5.2 and Appendix II below.

34. Bernoulli considered the difference between the estimated odds (y/n)/(1−(y/n)) and the true
odds p/(1− p) rather than the difference between the estimated probability y/n and the true
probability p. Moreover, his calculation can be improved; considerably smaller values of n
than the ones he found will do. The important point, as he emphasized, is that we can find
such values; statistical estimation is possible in principle. See Stigler 1986 [215], Chapter 2.

35. This was the first central limit theorem. Again see Chapter 2 of [215] for details.

36. Here is the French original of the translated passage ([32], Section 107):

La probabilité P a, comme nous l’avons expliqué, une valueur objective; elle
mesure effectivemnent la probabilité de l’erreur du jugement que nous portons,
en prononçant que la différence

∣∣p− n
m

∣∣ tombe entre les limites ±l. Lors même
que, dans la multitude indéfinie de faits auxquels peuvent s’appliquer les observa-
tions statistiques, des raisons inconnues rendraient certains valeurs de p habiles
à se produire plus fréquemment que d’autres, le nombre des jugements vrais
que nous émettrions, en prononçant, d’après la probabilité P, que la différence∣∣p− n

m

∣∣ tombe entre les limites ±l, serait au nombre des jugements erronés sen-
siblement dan le rapport de P à 1 − P, si d’ailleurs on embrassait une série de
jugements assez nombreux pour que les anomalies fortuites aient dû se compenser
sensiblement.

37. Neyman introduced the term confidence interval in English in 1934 [162]. It is often thought
that he developed the definition and introduced the name in reaction to Fisher’s fiducial
argument, but in 1941 [164] he explained that he had developed and used the concept in
Poland around 1930, without knowing about Fisher’s work, and that the name confidence
interval was a translation of the Polish przedzia l ufności.

38. Neyman wrote to de Finetti in French:

L’expression “coefficient de confiance” employée par moi désigne une valeur de
la probabilité pour qu’une estimation soit correcte, une valeur choisit arbitraire-
ment d’avance; par conséquent cette expression n’est pas un synonyme du terme
“probabilité”.
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De Finetti quotes him on page 29 of [50].

39. I hasten to repeat that De Moivre had no such notation.

40. For example, if Player I announces the probability 0.05 for A, then Player II is allowed to bet
on A at the odds 1 : 19. By betting 5 cents on A, he increases the 5 cents to 1 dollar if A
happens and loses only the 5 cents if A fails.

41. De Finetti made the point in this way ([56], Section 11.2.2):

. . . the H appearing in P(E|H) means that this is the probability You attribute
to E if ‘in addition to your present information . . . it will become known to
You that H is true (and nothing else)’. It would be wrong, therefore, to state,
or to think, in a superficial manner, without at least making sure that these
explanations are implicit, that P(E|H) is the probability of E once H is known.
In general, by the time we learn that H has occurred, we will already have learnt
of other circumstances which might also influence our judgement. In any case,
the evidence which establishes that H has occurred will itself contain, explicitly
or implicitly, a wealth of further detail, which will modify our final state of
information, and, most likely, our probabilistic judgement.

42. Price reported (page 371) that Bayes thought that he could solve the problem . . .

. . . provided some rule could be found according to which we ought to estimate
the chance that the probability for the happening of an event perfectly unknown,
should lie between any two named degrees of probability, antecedently to any
experiments made about it; and that it appeared to him that the rule must be
to suppose the chance the same that it should lie between any two equidifferent
degrees; which, if it were allowed, all the rest might be easily calculated in the
common method of proceeding in the doctrine of chances. Accordingly, I find
among his papers a very ingenious solution of this problem in this way. But
he afterwards considered, that the postulate on which he had argued might not
perhaps be looked upon by all as reasonable . . .

43. My translation of a passage in Section 89. See [202] for additional translations from Cournot.

44. The structural equation G can be written in the form G(u, p) = happen if u ≤ p and G(u, p) =
fail if u > p, where u is uniformly distributed on [0, 1].

45. Here Dempster’s and my views have diverged. In 1968, Dempster observed that “the connec-
tion [between probability and betting] is so close that it is almost of the nature of a tautology
to speak of one or of the other” ([64], page 244). He now emphasizes a logical conception of
probability not based on betting, in the tradition of De Morgan, Boole, and Jevons [69, 226],
whereas I now take a betting version of Cournot’s principle (see Section 5) as basic to the
meaning of probability, and this is more Bernoullian than logical. And whereas Dempster now
disavows phrases such as “continuing to believe”, I see continuing to trust (that a gambling
strategy using given odds will not multiply one’s capital by a large factor) as the best way to
express the judgement of independence or irrelevance needed for Dempster’s rule.

46. The notion of “conditioning” or “conditionalizing” a probability distribution is fairly recent.
To the best of my knowledge, the word conditionalize was first used in connection with proba-
bility by William K. Estes and Patrick Suppes in 1957 [84]. I prefer condition to conditionalize,
and in my 1976 book [190], I used the name Bayes’s rule of conditioning for the rule corre-
sponding to Bayes’s fifth proposition, the rule that tells us to change the our probability for
A from P (A) to P (A&B)/P (B) when we learn B. This seems to have been the first time
this name was used in print. The notion of conditioning or conditionalizing a probability
distribution plays little or no role in mathematical probability theory, because the notion of
a stochastic process includes a protocol or filtration [195] for how probability changes with
time or information, and this excludes the idea that new information might be an arbitrary
subset of the probability space. Both Bayes’s rule of conditioning (and Dempster’s rule of
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combination) take us outside the mathematical theory and require a fiducial judgement.

47. And perhaps even farther back. See Chapter 9 of the second book of Laplace’s Théorie
analytique [132].

48. [175], page 478, my translation. The original French: “Les choses de toute nature sont soumise
à une loi universelle qu’on peut appeler la loi des grandes nombres. Elle consiste en ce que,
si l’on observe des nombres très considérables d’événements d’un même nature, dépendants
de causes qui varient irrégulièrement, tantôt dans un sens, tantôt dans l’autre, sans que leur
variation soit progressive dans aucun sens déterminé, on trouvera, entre ces nombres, des
rapports à peu près constants.”

49. See Stephen Stigler’s summary on page 182–186 of [215]. Stigler regards I. J. Bienaymé as
Poisson’s most effective critic. See also [27, 119].

50. Lévy focused not on the martingale law of large numbers as stated here but on the corre-
sponding central limit theorem, which approximates the probability in (11) using the normal
distribution, thus strengthening the martingale law of large numbers just as just as De Moivre
improved on Bernoulli’s theorem. See [13, 142, 138].

51. Jerzy Neyman, Abraham Wald, and other immigrants to Britain and the United States were
already changing the direction of statistics in the 1930s, but as Sandy Zabell has pointed out,
it was only in the 1940s that probability, with the help of newcomers such as William Feller
and Mark Kac, became a distinct and powerful branch of mathematics in the United States
[247].

52. The role of moral certainty in early probability theory, the introduction of the name Cournot’s
principle, and its use by multiple authors in the 1950s is discussed at greater length in [198,
207, 208]. After first adopting the name Cournot’s principle, Fréchet later suggested the name
Buffon-Cournot principle, but this was not followed by other authors.

53. The condition that the criterion for testing a probabilistic theory be chosen in advance was
emphasized by Cournot and Borel; see Cournot’s discussion of multiple testing translated in
[202] and Borel’s discussion in his 1914 book, Le Hasard [16]. Neyman cited this discussion
by Borel as an inspiration for the ideas in his work with E. S. Pearson on hypothesis testing
[168, 139]. There is a difference, however, between choosing a rejection region in advance and
choosing only a test statistic from which a p-value will be calculated. The game-theoretic
framework of [206] provides straightforward ways to correct for the incompleteness of a test
statistic as a specification of a test, and the correction is generally comparable to using a
Bayesian significance test of Harold Jeffreys’s type [202].

54. See page 221 of [51], Sections 5.2.3 and 5.10.9 of [56], and page 163 of [57].

55. My translation of the following passage in French on page 235:

La définition de la probabilité subjective est basée sur le comportement de
celui qui l’évalue: elle consiste dans la mesure des sacrifices qu’il croit con-
venable d’accepter pour échapper au risque d’un dommage qui surviendrait avec
l’événement considéré (taux d’assurance, de pari, etc.). En particulier, dire que
la probabilité est petite, signifie que l’on juge le risque comme négligeable, c’est-
à-dire, que l’on agit à peu près comme si l’événment était impossible. Si cela
n’est plus un principe, c’est qu’il est par définition un synonyme, une tautologie,
une banalité.

56. In his later work, de Finetti systematically used the Italian previsione, which can be translated
into French as prévision and into English as forecast, for the probabilistic concept of expected
value. A probability, being the expected value of a zero-one variable, is also a previsione. De
Finetti explains his distinction between previsione (forecast) and predizione (prediction) in
[56], Sections 3.1.2 and 5.2.3. De Finetti’s previsione was rendered as prevision in the English

46



translation of [56], and this use in English has subsequently been adopted by several other
authors, including Walley in his work on imprecise probabilities [237].

57. The 19th century uses of Laplacean and Laplacian in English that I have found are in physics
rather than in probability. Arne Fisher, in his 1915 book on probability [88], calls the nor-
mal probability curve Laplacean. In the preface to the second edition, in 1922, he refers to
Laplace’s Bernoullian work using the phrases “Laplacean methods” and “Laplacean doctrine
of frequency curves”.

58. The French phrase Méthode inverse des probabilités appeared much earlier in unpublished
teaching notes by Fourier; see [38].

59. In one preface, he wrote “Bayesian probabilities a posteriori” (page 1.2b), in another
“Bayesian probability a posteriori” (page 22.527a).

60. Bernoullian has also been used in reference to various other contributions by the Bernoullis.
In probability theory, it has been used to refer to Daniel Bernoulli’s theory of utility and to
various aspects of Jacob Bernoulli’s problem of estimating a probability from repeated trials.
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[17] Émile Borel. Valeur pratique et philosophie des probabilités. Gauthier-Villars,
Paris, 1939. 28
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tique, 144(1–2):134–226, 2003. 40

[26] Bernard Bru. Poisson, the probability calculus, and public education. Elec-
tronic Journal for History of Probability and Statistics, 1(2), November 2005.
Translation of [24]. 48

48



[27] Bernard Bru, Marie-France Bru, and Olivier Bienaymé. La statistique critiquée
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Universitaires de Besançon, to appear. 31, 39, 40

[29] Robert J. Buehler and A. P. Fedderson. Note on a conditional property of
Student’s t. Annals of Mathematical Statistics, 34:1098–1100, 1963. 12

[30] Pafnutii Lvovich Chebyshev. Démonstration élementaire d’une proposition
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volumes are numbered I through XI, but VI and XI are double volumes. 49

[34] David R. Cox. Principles of Statistical Inference. Cambridge University Press,
2006. 37

[35] David R. Cox and David V. Hinkley. Theoretical Statistics. Chapman and Hall,
London, 1974. Second edition 1979. 36

[36] Harald Cramér. Mathematical Methods in Statistics. Princeton University Press,
Princeton, NJ, 1946. 34
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des applications aux sciences d’observation en général et à la géodésie. Muquardt,
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