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Abstract

The method of defensive forecasting is applied to the problem of prediction with
expert advice for binary outcomes. It turns out that defensive forecasting is not
only competitive with the Aggregating Algorithm but also handles the case
of “second-guessing” experts, whose advice depends on the learner’s prediction;
this paper assumes that the dependence on the learner’s prediction is continuous.
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1 Introduction

There are many known techniques in competitive on-line prediction, such as fol-
lowing the perturbed leader (see, e.g., [8, 13, 12]), Bayes-type aggregation (see,
e.g., [17, 20, 6]) and the closely related potential methods, gradient descent
(see, e.g., [2]) and closely related exponentiated gradient descent [14], and the
recently developed technique of defensive forecasting (see, e.g., [27, 24]). Defen-
sive forecasting combines the ideas of game-theoretic probability (see, e.g., [18])
with Levin and Gács’s ideas of neutral measure [16, 7] and Foster and Vohra’s
ideas of universal calibration [5]. See [3] for a general review of competitive
on-line prediction.

This paper applies the technique of defensive forecasting to prediction with
expert advice in the simple case of binary outcomes The learner’s goal in pre-
diction with expert advice is to compete with free agents, called experts, who
are allowed to choose any predictions at each step. We will be interested in
performance guarantees of the type

LN ≤ min
k=1,...,K

Lk
N + aK (1)

where K is the number of experts, aK is a constant depending on K, LN is
the learner’s cumulative loss over the first N steps, and Lk

N is the kth expert’s
cumulative loss over the first N steps (see §§3–5 for precise definitions).

It has been shown by Watkins ([22], Theorem 8) that the Aggregating Algo-
rithm (implementing Bayes-type aggregation for general loss functions [20, 21],
the AA for short) delivers the optimal value of the constant aK in (1) whenever
the goal (1) can be achieved. (Watkins’s result was based on earlier results by
Haussler, Kivinen, and Warmuth [10], Theorem 3.1, and Vovk [21], Theorem
1, establishing the optimality of the AA for a large number of experts.) Theo-
rem 3 of this paper asserts that, perhaps surprisingly, defensive forecasting also
achieves the same performance guarantee.

Whether the goal (1) is achievable depends on the loss function used for
evaluating the learner’s and experts’ performance. The necessary and sufficient
condition is that the loss function should “perfectly mixable” (see §5 for a defi-
nition). For simplicity, we first consider two specific, perhaps most important,
examples of perfectly mixable loss functions: the quadratic loss function in §3
and the log loss function in §4. Those two sections are self-contained in that
they do not require familiarity with the AA. In the last section, §5, we establish
the general result, for arbitrary perfectly mixable loss functions. In an appendix
we state Watkins’s theorem in the form needed in this paper.

It is interesting that the technique of defensive forecasting is also applicable
to experts who are allowed to “second-guess” the learner: their recommen-
dations can depend (in a continuous manner in this paper) on the learner’s
prediction. It is not clear that second-guessing experts can be handled at all by
the AA.

A result similar to this paper’s results is proved by Stoltz and Lugosi in [19],
Theorem 14 (a more detailed comparison will be given in [25]). Second-guessing
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experts are useful in game theory (where competing with second-guessing ex-
perts is known as prediction with a small internal regret). For a more down-
to-earth example of a useful second-guessing expert, remember that humans
tend to give too categorical (i.e., close to 0 or 1) predictions; therefore, a useful
second-guessing expert for a human learner would transform his/her predic-
tions to less categorical ones (according to the learner’s expected calibration
curve [4]).

2 Defensive forecasting

Let E be a topological space (E = [0, 1]K in the application to prediction with
expert advice in §§3–5).

The binary forecasting protocol

K0 := 1.
FOR n = 1, 2, . . . :

Expert announces continuous γn : [0, 1] → E.
Forecaster announces pn ∈ [0, 1].
Reality announces ωn ∈ {0, 1}.

END FOR.

A process is any function S : (E × [0, 1] × {0, 1})∗ → R. Given the sequence
of the players’ moves in the binary forecasting protocol, we sometimes write
SN , N ∈ {0, 1, . . .}, for S (γ1(p1), p1, ω1, . . . , γN (pN ), pN , ωN ). (Notice that SN

depend on γn only via γn(pn).) We also sometimes interpret SN as function of
the players’ moves in the protocol and identify the process S with the sequence
of functions SN , N = 0, 1, . . ., on the set of all histories (γ1, p1, ω1, γ2, p2, ω2, . . .).

A process S is said to be a supermartingale if it is always true that

pNS (g1, p1, ω1, . . . , gN−1, pN−1, ωN−1, gN , pN , 1)
+ (1− pN )S (g1, p1, ω1, . . . , gN−1, pN−1, ωN−1, gN , pN , 0)

≤ S (g1, p1, ω1, . . . , gN−1, pN−1, ωN−1) (2)

(i.e., it is true for all N , all g1, . . . , gN in E, all p1, . . . , pN in [0, 1], and
all ω1, . . . , ωN−1 in {0, 1}). In the traditional theory of martingales (when
translated into our framework), Expert’s move is an element of E (in other
words, a constant function), and this would be sufficient for application to
the traditional problem of prediction with expert advice; however, the ver-
sion with second-guessing experts requires the generalization to γn : [0, 1] →
E. We say that a supermartingale S is forecast-continuous if, for each N ,
S (g1, p1, ω1, . . . , gN , pN , ωN ) is a continuous function of pN ∈ [0, 1] and gN ∈ E.

Lemma 1 (Levin, Takemura) For any forecast-continuous supermartingale
S there exists a strategy for Forecaster ensuring that S0 ≥ S1 ≥ · · · regardless
of the other players’ moves.
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Proof Set, for p ∈ [0, 1] and ω ∈ {0, 1},

t(ω, p) := S (γ1(p1), p1, ω1, . . . , γN−1(pN−1), pN−1, ωN−1, γN (p), p, ω)
− S (γ1(p1), p1, ω1, . . . , γN−1(pN−1), pN−1, ωN−1) .

Our goal is to prove the existence of p such that t(ω, p) ≤ 0 for both ω = 0
and ω = 1. I will give an argument (from [24], the proof of Lemma 1) that is
applicable very generally.

For all p, q ∈ [0, 1] set

φ(q, p) := qt(1, p) + (1− q)t(0, p).

The function φ(q, p) is linear in its first argument, q, and continuous in its second
argument, p. Ky Fan’s minimax theorem (see, e.g., [1], Theorem 11.4) shows
that there exists p∗ ∈ [0, 1] such that

∀q ∈ [0, 1] : φ(q, p∗) ≤ sup
p∈[0,1]

φ(p, p).

Therefore,
∀q ∈ [0, 1] : qt(1, p∗) + (1− q)t(0, p∗) ≤ 0,

and we can see that t(ω, p∗) never exceeds 0.

For generalizations (due to Levin and Takemura) of Lemma 1 in different
directions, see, e.g., [26] (Theorem 1) and [24] (Lemma 1). By defensive fore-
casting we mean using such results in prediction with expert advice.

3 Algorithm competitive with continuous second-
guessers: quadratic loss function

This is the version of the standard protocol of prediction with expert advice
under quadratic loss for continuous second-guessing experts:

Prediction with expert advice under quadratic loss

L0 := 0.
Lk

0 := 0, k = 1, . . . , K.
FOR n = 1, 2, . . . :

Expert k announces continuous γk
n : [0, 1] → [0, 1], k = 1, . . . , K.

Learner announces pn ∈ [0, 1].
Reality announces ωn ∈ {0, 1}.
Ln := Ln−1 + (pn − ω)2.
Lk

n := Lk
n−1 + (γk

n(pn)− ωn)2.
END FOR.

To apply Lemma 1 to the problem of prediction with expert advice under
quadratic loss, we will need the following result.
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Lemma 2 Suppose E = [0, 1] and κ ∈ [0, 2]. The process

SN := exp

(
κ

N∑
n=1

(
(pn − ωn)2 − (γn(pn)− ωn)2

))

is a supermartingale in the binary forecasting protocol.

Proof By (2), it suffices to check that

p exp
(
κ

(
(p− 1)2 − (g − 1)2

))
+ (1− p) exp

(
κ

(
(p− 0)2 − (g − 0)2

))
≤ 1

for all p, g ∈ [0, 1]. If we substitute g = p + x, the last inequality will reduce to

pe2κ(1−p)x + (1− p)e−2κpx ≤ eκx2
, ∀x ∈ [−p, 1− p].

The last inequality is a simple corollary of Hoeffding’s inequality ([11], (4.16),
which is true for any h ∈ R: cf. [3], Lemma A.1). Indeed, applying Hoeffding’s
inequality to the random variable

X :=

{
1 with probability p

0 with probability 1− p,

we obtain
peh(1−p) + (1− p)e−hp ≤ eh2/8,

which the substitution h := 2κx reduces to

pe2κ(1−p)x + (1− p)e−2κpx ≤ eκ2x2/2 ≤ eκx2
,

the last inequality assuming κ ≤ 2.

Lemma 2 immediately implies a performance guarantee for the method of
defensive forecasting.

Theorem 1 There exists a strategy for Learner in the quadratic-loss protocol
with K experts that guarantees

LN ≤ Lk
N +

ln K

2
(3)

for all N = 1, 2, . . . and all k ∈ {1, . . . ,K}.

Proof Consider the binary forecasting protocol with E = [0, 1]K . By Lemma 2,
the process

K∑

k=1

exp

(
κ

N∑
n=1

(
(pn − ωn)2 − (

γk
n(pn)− ωn

)2
))
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is a supermartingale. By Lemma 1, Learner has a strategy that prevents this
supermartingale from growing. This strategy ensures

K∑

k=1

exp

(
κ

N∑
n=1

(
(pn − ωn)2 − (

γk
n(pn)− ωn

)2
))

≤ K,

which implies, for all k ∈ {1, . . . , K},

exp

(
κ

N∑
n=1

(
(pn − ωn)2 − (

γk
n(pn)− ωn

)2
))

≤ K,

i.e., (3) in the case κ = 2.

For the proof of (3) being the performance guarantee for the AA, see, e.g.,
[20], Example 4, or [23], §2.4. It is interesting that even such an apparently
minor deviation from the AA as replacing the AA-type averaging of the ex-
perts’ predictions by the arithmetic mean (with the same exponential weighting
scheme) leads to a suboptimal result: the constant 2 in (3) is replaced by 1/2
([15], reproduced in [23], Remark 3).

4 Algorithm competitive with continuous second-
guessers: log loss function

The log loss function is defined by

λ(ω, p) :=

{
− ln p if ω = 1
− ln(1− p) if ω = 0,

where ω ∈ {0, 1} and p ∈ [0, 1]; notice that the loss function is now allowed to
take value ∞. The protocol of prediction with expert advice becomes:

Prediction with expert advice under log loss

L0 := 0.
Lk

0 := 0, k = 1, . . . , K.
FOR n = 1, 2, . . . :

Expert k announces continuous γk
n : [0, 1] → [0, 1], k = 1, . . . , K.

Learner announces pn ∈ [0, 1].
Reality announces ωn ∈ {0, 1}.
Ln := Ln−1 + λ(ωn, pn).
Lk

n := Lk
n−1 + λ(ωn, γk

n(pn)).
END FOR.

This is the analogue of Lemma 2 for the log loss function:
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Lemma 3 Suppose E = [0, 1] and κ ∈ [0, 1]. The process

SN := exp

(
κ

N∑
n=1

(
λ (ωn, pn)− λ (ωn, γn(pn))

))

is a supermartingale in the binary forecasting protocol.

Proof It suffices to check that

p exp (κ (− ln p + ln g)) + (1− p) exp (κ (− ln(1− p) + ln(1− g))) ≤ 1,

i.e., that
p1−κgκ + (1− p)1−κ(1− g)κ ≤ 1,

for all p, g ∈ [0, 1]. The last inequality immediately follows from the inequality
between the geometric and arithmetic means when κ ∈ [0, 1]. (The left-hand
side of that inequality is a special case of what is known as the Hellinger integral
in probability theory.)

Lemma 3 implies a performance guarantee for the log loss function as in the
previous section.

Theorem 2 There exists a strategy for Learner in the log loss protocol with K
experts that guarantees

LN ≤ Lk
N + ln K (4)

for all N = 1, 2, . . . and all k ∈ {1, . . . ,K}.

Proof Take κ := 1. Lemma 3 guarantees that the process

K∑

k=1

exp

(
κ

N∑
n=1

(
λ (ωn, pn)− λ

(
ωn, γk

n(pn)
))

)

is a supermartingale in the binary forecasting protocol with E = [0, 1]K . Any
strategy for Learner that prevents this supermartingale from growing ensures
(4) for all k ∈ {1, . . . ,K}.

For the proof of (4) being the performance guarantee for the AA, see, e.g.,
[20], Example 3.

5 Algorithm competitive with continuous second-
guessers: perfectly mixable loss functions

In this section we assume that Learner chooses his predictions from a non-empty
decision space Γ and that his performance is evaluated using a loss function
λ : {0, 1} × Γ → R. The triple ({0, 1},Γ, λ) will sometimes be called our game
of prediction (the first element, the outcome space {0, 1}, is redundant at this
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time). The loss function will be assumed bounded below; there is no further
loss of generality in assuming that it is non-negative.

As mentioned in §1, to have a chance of achieving (1), the loss function has to
be assumed “perfectly mixable” (this will be further discussed in the appendix);
we start from defining this property.

A point (x, y) of the plane R2 is called a superprediction (with respect to
the loss function λ) if there exists a decision γ ∈ Γ such that

λ(0, γ) ≤ x & λ(1, γ) ≤ y.

Our next assumption about the game of prediction will be that the superpre-
diction set is closed.

Let η be a positive constant (the learning rate used). A shift of the curve
{(x, y) | e−ηx + e−ηy = 1} in R2 is the curve {(x, y) | e−η(x+α) + e−η(y+β) = 1}
for some α, β ∈ R (i.e., it is a parallel translation of e−ηx + e−ηy = 1 in any
direction and by any distance). The loss function is called η-mixable if for each
point (a, b) on the boundary of the superprediction set there exists a shift of
e−ηx + e−ηy = 1 passing through (a, b) such that the superprediction set lies
completely to one side of the shift (it is clear that in this case the superprediction
set must lie to the Northeast of the shift). The loss function is perfectly mixable
if it is η mixable for some η > 0.

Suppose λ is η-mixable, η > 0. Each decision γ ∈ Γ can be represented by the
point (λ(0, γ), λ(1, γ)) in the superprediction set. The set of all (λ(0, γ), λ(1, γ)),
γ ∈ Γ, will be called the prediction set ; for typical games this set coincides with
the boundary of the superprediction set. As far as the attainable performance
guarantees are concerned (before we start paying attention to computational
issues), the only interesting part of the game of prediction is its prediction
set; the game itself can be regarded as an arbitrary coordinate system in the
prediction set. It will be convenient to introduce another coordinate system in
essentially the same set.

For each p ∈ [0, 1], let (ap, bp) be the point (x, y) in the superprediction set
at which the minimum of py + (1 − p)x is attained. Since λ is η-mixable, the
point (ap, bp) is determined uniquely; it is clear that the dependence of (ap, bp)
on p is continuous.

We can now redefine the decision space and the loss function as follows: the
decision space becomes [0, 1] and the loss function becomes

λ(0, p) := ap, λ(1, p) := bp.

The resulting game of prediction is essentially the same as the original game
(one of the minor differences is that, if the superprediction set has “corners”, a
decision γ ∈ Γ maybe split into several decisions p ∈ [0, 1] in the new game, all
leading to the same losses). In the rest of this section, let us assume that the
game of prediction has been transformed to this standard form. Notice that the
new loss function is a “proper scoring rule” (see, e.g., [4]).

The protocol of this section formally coincides with that of the previous
section (although λ ranges over a much wider class of loss functions):
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Prediction with expert advice in a standard perfectly mixable game

L0 := 0.
Lk

0 := 0, k = 1, . . . , K.
FOR n = 1, 2, . . . :

Expert k announces continuous γk
n : [0, 1] → [0, 1], k = 1, . . . , K.

Learner announces pn ∈ [0, 1].
Reality announces ωn ∈ {0, 1}.
Ln := Ln−1 + λ(ωn, pn).
Lk

n := Lk
n−1 + λ(ωn, γk

n(pn)).
END FOR.

Lemmas 2 and 3 carry over to the perfectly mixable loss functions:

Lemma 4 Let η > 0, ({0, 1}, [0, 1], λ) be a standard η-mixable game of predic-
tion, E = [0, 1], and κ ∈ [0, η]. The process

SN := exp

(
κ

N∑
n=1

(
λ (ωn, pn)− λ (ωn, γn(pn))

))

is a supermartingale in the binary forecasting protocol.

Proof It suffices to check that

p exp (κ (λ(1, p)− λ(1, g))) + (1− p) exp (κ (λ(0, p)− λ(0, g))) ≤ 1

for all p, g ∈ [0, 1]. As λ is η-mixable, it will also be κ-mixable; we will only be
using the latter property. Using the notation (a, b) := (ap, bp) = (λ(0, p), λ(1, p))
and (a′, b′) := (ag, bg) = (λ(0, g), λ(1, g)), we can slightly simplify this inequal-
ity:

p exp (κ (b− b′)) + (1− p) exp (κ (a− a′)) ≤ 1. (5)

It is clear that the superprediction set lies to the Northeast of the shift
e−κ(x+α) + e−κ(y+β) = 1 of e−κx + e−κy = 1 that passes through (a, b),

e−κ(a+α) + e−κ(b+β) = 1, (6)

and has the tangent at (a, b) orthogonal to (1− p, p),
(
−κe−κ(x+α),−κe−κ(y+β)

)
x:=a,y:=b

∝ (1− p, p) (7)

(the expression on the left-hand side is the gradient of e−κ(x+α) + e−κ(y+β) at
(a, b)). We can see from (6) and (7) that

e−κ(a+α) = 1− p, e−κ(b+β) = p.

Substituting these values for p and 1− p in (5), we transform (5) to

e−κ(b′+β) + e−κ(a′+α) ≤ 1,

which is true: the last inequality just says that (a′, b′) is Northeast of the shift.

8



Theorem 3 Let η > 0 and consider any standard η-mixable game of prediction
({0, 1}, [0, 1], λ). There exists a strategy for Learner in the prediction protocol
with K experts that guarantees

LN ≤ Lk
N +

ln K

η
(8)

for all N = 1, 2, . . . and all k ∈ {1, . . . ,K}.

Proof Take κ := η and proceed as in the proof of Theorem 2 (using Lemma 4
instead of Lemma 3).

Inequality (8) as the performance guarantee for the AA is derived in [20],
Theorem 1.
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Appendix: Watkins’s theorem

Watkins’s theorem is stated in [22] (Theorem 8) not in sufficient generality: it
presupposes that the loss function is perfectly mixable. The proof, however,
shows that this assumption is irrelevant (it can be made part of the conclusion),
and the goal of this appendix is to give a self-contained statement of a suitable
version of the theorem.

By a game of prediction we now mean a triple (Ω, Γ, λ), where Ω and Γ are
sets called the outcome and decision space, respectively, and λ : Ω × Γ → R
is called the loss function (R is the extended real line R ∪ {−∞,∞} with the
standard topology, although the value −∞ will be later disallowed).

Partly following [21], for each K = 1, 2, . . . and each a > 0 we consider
the following perfect-information game GK(a) (the “global game”) between two
players, Learner and Environment.

Global game GK(a)
L0 := 0.
Lk

0 := 0, k = 1, . . . , K.
FOR n = 1, 2, . . . :

Environment chooses γk
n ∈ Γ, k = 1, . . . ,K.

Learner chooses γn ∈ Γ.
Environment chooses ωn ∈ Ω.
Ln := Ln−1 + λ(ωn, γn).
Lk

n := Lk
n−1 + λ(ωn, γk

n), k = 1, . . . , K.
END FOR.

Learner wins if, for all N = 1, 2, . . . and all k ∈ {1, . . . , K},

LN ≤ Lk
N + a; (9)

otherwise, Environment wins.

It is possible that LN = ∞ or Lk
N = ∞ in (9); the interpretation of inequalities

involving infinities is natural.
For each K we will be interested in the set of those a > 0 for which Learner

has a winning strategy in the game GK(a) (we will denote this by L ^ GK(a)).
It is obvious that

L ^ GK(a) & a′ > a =⇒ L ^ GK(a′);

therefore, for each K there exists a unique borderline value aK such that L ^
GK(a) holds when a > aK and fails when a < aK . It is possible that aK = ∞
(but remember that we are only interested in finite values of a).

These are our assumptions about the game of prediction (similar to those in
[21]):

• Γ is a compact topological space;
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• for each ω ∈ Ω, the function γ ∈ Γ 7→ λ(ω, γ) is continuous;

• there exists γ ∈ Γ such that, for all ω ∈ Ω, λ(ω, γ) < ∞;

• the function λ is bounded below.

We say that the game of prediction (Ω, Γ, λ) is η-mixable, where η > 0, if

∀γ1 ∈ Γ, γ2 ∈ Γ, α ∈ [0, 1] ∃δ ∈ Γ ∀ω ∈ Ω:

e−ηλ(ω,δ) ≥ αe−ηλ(ω,γ1) + (1− α)e−ηλ(ω,γ2). (10)

In the binary case, Ω = {0, 1}, this condition says that the image of the super-
prediction set under the mapping (x, y) 7→ (e−ηx, e−ηy) is convex, and it is easy
to see that it is equivalent to the definition used in §5.

It follows from [9] (Theorem 92, applied to the means Mφ with φ(x) = e−ηx)
that if the prediction game is η-mixable it will remain η′-mixable for any positive
η′ < η. (For another proof, see the end of the proof of Lemma 9 in [21].) Let
η∗ be the supremum of the η for which the prediction game is η-mixable (with
η∗ := 0 when the game is not perfectly mixable). The compactness of Γ implies
that the prediction game is η∗-mixable.

Theorem 4 (Chris Watkins) For any K ∈ {1, 2, . . .},

aK =
ln K

η∗
.

In particular, aK < ∞ if and only if the game is perfectly mixable.

It is easy to see that L ^ GK(aK): this follows both from general considerations
(cf. Lemma 3 in [21]) and from the fact that the AA and this paper’s algorithm
based on defensive forecasting (the latter assuming Ω = {0, 1}) win GK(aK) =
GK(ln K/η∗).

Proof of Theorem 4 The proof will use Theorem 1 of [21]. Without loss
of generality we can, and will, assume λ > 1 (add a suitable constant to λ if
needed); therefore, Assumption 4 of [21] (the only assumption in [21] not directly
made in this paper) is satisfied. In view of the fact that L ^ GK(ln K/η∗),
we only need to show that L ^ GK(a) does not hold for a < ln K/η∗. Fix
a < ln K/η∗.

Since the two-fold convex mixture in (10) can be replaced by any finite convex
mixture (apply two-fold mixtures repeatedly), the point (1, 1/η∗) belongs to the
separation curve (set β := e−η∗ in the definition of c(β)) whereas the point
(1, a/ ln K) is Southwest and outside of the separation curve (use Lemmas 8–
12 of [21]). Therefore, E (=Environment) has a winning strategy in the game
G(1, a/ ln K), as defined in [21]. It is easy to see from the proof of Theorem 1 in
[21] that the definition of the game G in [21] can be modified, without changing
the conclusion about G(1, a/ ln K), by replacing the line

E chooses n ≥ 1 {size of the pool}
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in the protocol on p. 153 of [21] by

E chooses n∗ ≥ 1 {lower bound on the size of the pool}
L chooses n ≥ n∗ {size of the pool}

(indeed, the proof in §6 of [21] only requires that there should be sufficiently
many experts). Let n∗ be the first move by Environment according to her
winning strategy.

Now suppose L ^ GK(a). From the fact that there exists Learner’s strategy
L1 winning GK(a) we can deduce: there exists Learner’s strategy L2 winning
GK2(2a) (we can split the K2 experts into K groups of K, merge the experts’
decisions in every group with L1, and finally merge the groups’ decisions with
L1); there exists Learner’s strategy L3 winning GK3(3a) (we can split the K3

experts into K groups of K2, merge the experts’ decisions in every group with
L2, and finally merge the groups’ decisions with L1); and so on. When the
number Km of experts exceeds n∗, we obtain a contradiction: Learner can
guarantee

LN ≤ Lk
N + ma

for all N and all Km experts k, and Environment can guarantee that

LN > Lk
N +

a

ln K
ln(Km) = Lk

N + ma

for some N and k.
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