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Abstract

Even if the price of a security is not governed by a probability measure, a
European option in the security can be hedged in discrete time by trading in
the security and an instrument that pays its variance. A non-probabilistic bound
on the error of the hedging is given.
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1 Introduction

In [12], Vladimir Vovk and I demonstrated that an option U on a security S
can be hedged dynamically in discrete time if the market prices an instrument,
say D, that pays directly the variance of the underlying security. This article
reviews that demonstration, discusses its implications for risk management, and
asks some questions about the practicality of an exchange for trading in D.

Hedging in discrete time cannot be perfect. But the demonstration reviewed
in this article establishes that its error can be bounded. No probabilities are
involved in the bound.

Most theories of option pricing assume that the price of S follows some prob-
ability distribution. This is not assumed here. Instead, it is assumed that the
price of S scales approximately as

√
dt, while the price of D scales approxi-

mately as dt. What it means for a time series to scale approximately as (dt)1/q

is explained in §2.
Often one also assumes a constant interest rate. In order to avoid the error

introduced by this assumption, this article proposes that hedging be financed
not with short-term money but with trades in a zero-coupon risk-free bond.
If this proposal is adopted, it becomes mathematically convenient to measure
prices and capital in units of the bond, so that the payment or receipt of interest
is no longer explicit. The error bound demonstrated in [12], which is reviewed
and explained heuristically in §3, is formulated in these terms.

The sensitivity of the value of a portfolio of options to the two main risk
factors, changes in the prices of S and D, is considered in §4. The partial
derivative of the value with respect to the price of S can be called Delta, as in
the established theory. The partial derivative with respect to the price of D is
a new “Greek”, which needs a new name; the proposed name is “Upsilon”.

In §5 the analysis is restated in dollar terms, and the special case of a constant
interest rate is reconsidered.

In §6, some practical questions are raised. Is it feasible to organize an ex-
change that allows ready trading in variance instruments of the type D and in
the equivalent of zero-coupon risk-free bonds with maturities matching those
of commonly marketed options? What further costs or approximation errors
would be introduced by trying to do so?

There are two appendices. Appendix A gives a self-contained proof of the
bound stated in §3. Appendix B relates the ideas discussed here to other work.

2 The variation spectrum

Let us now consider the notion of scaling relative to dt in discrete time.
Given a sequence R0, R1, . . . , RN of real numbers and a positive real number

p, set

varR(p) :=
N−1∑
n=0

|dRn|p ,
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where dRn := Rn+1 − Rn. The function varR is the variation spectrum for
R0, R1, . . . , RN .

Suppose R0, R1, . . . , RN are successive values of a quantity R, observed at
evenly spaced times over the interval [0, T ], so that the time dt between Rn and
Rn+1 equals T/N . Suppose further that N is large, dt is small, and the dRn

have the same order magnitude, on average, as (dt)1/q. Then varR(p) will have
about the same order of magnitude as

N−1∑
n=0

|dt|p/q = N (q−p)/qT p/q.

So if we hold T constant and increase N (thereby making dt smaller), varR(p)
will behave like N (q−p)/q. If p > q, varR(p) tends to zero as N grows; if p < q,
it tends to infinity.

This article applies this general picture to S and D roughly as follows:

1. S’s scaling approximately as
√

dt is interpreted to mean that varS(p) ¿ 1
for p somewhat greater than 2.

2. D’s scaling approximately as dt is interpreted to mean that varD(p) ¿ 1
for p somewhat greater than 1.

The smaller varS(p) and varD(p) are for the relevant values of p, the smaller
the error of the hedging strategy described in §3.

The rough statement of the preceding paragraph needs to be emended in
two ways:

1. In the case of the underlying security S, it is not the the variation spectrum
varS , but the relative variation spectrum varrel

S , given by

varrel
S (p) :=

N−1∑
n=0

∣∣∣∣
dSn

Sn

∣∣∣∣
p

,

that comes into play. It is dimensionless and invariant with respect to the
unit in which Sn is measured, but it has the same asymptotic behavior as
varS(p).

2. There is a relation between the p for which varrel
S (p) ¿ 1 is needed and

the p for which varD(p) ¿ 1 is needed. We need varrel
S (2 + γ) ¿ 1

and varD(2 − γ) ¿ 1 for some γ ∈ (0, 1). Any such γ will do, but it
is convenient to consider 2/3, because varrel

S (2 + 2/3) and varD(2− 2/3)
are both of order N−1/3. Empirical evidence ([12], §10.4) suggests that
varrel

S (2+2/3) and varD(2−2/3) will be reasonably small for highly liquid
securities when dt is one week or one day.
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3 Black-Scholes pricing in terms of a bond

When the variance instrument D is available, as we will now see, we can replicate
a well behaved European option U with the same maturity as D by trading in
S and D. The cost of the replication, and hence the price of U , is given by the
Black-Scholes formula with the theoretical variance Tσ2 replaced by the initial
market price of D. There is no theoretical variance, because the price process
for S is not stochastic.

As already mentioned, the discrete-time theory developed here requires that
trades in S and D be financed by trades in a zero-coupon bond with the same
maturity as U and D. In this section, prices and capital are measured in units
of this bond. The results are translated into dollar terms in §5.

The theory of this section applies to American as well as European options;
see Chapter 13 of [12]. But for simplicity and clarity, the exposition here is
limited to European options.

It is initially assumed that S does not pay dividends. The case where S does
pay dividends is discussed in §3.4.

3.1 The protocol

Let us now consider the capital process for an investor who trades freely during
N periods in S, D, and a zero-coupon risk-free bond with the same maturity as
D. In this idealized picture, the investor can go long or short in these securities
in any amount, with no transaction costs.

Let S0 and D0 be the market prices of S and D, respectively, at the start of
trading, and let Sn and Dn be their prices at the end of the nth period and the
beginning of the (n + 1)st. These prices are in units of the bond.

At end of the nth period, D pays as a dividend a number of units of the
bond equal to the square of S’s return over that period, (dSn−1/Sn−1)2. Over
the course of the N periods it pays a total of

N−1∑
n=0

(
dSn

Sn

)2

.

The dividends are the only source of value for D. So D0 is the value the market
initially places on the total dividend stream, and Dn is the value it places on
the dividend stream that remains at the end of the nth period,

N−1∑

i=n

(
dSi

Si

)2

.

At the end of the N trading periods, D is worthless; DN = 0.
Were the market to believe that the price of S follows geometric Brownian

motion with variance σ2, it would set

Dn :=
N − n

N
Tσ2. (1)
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The market knows not to expect geometric Brownian motion, and so (1) will not
hold with any exactness. But it is reasonable to expect the series D0, D1, . . . , DN

to be smoother than the series S0, S1, . . . , SN , scaling as dt rather than as
√

dt.
If the investor holds Mn units of S and Vn units of D during the nth period,

his profit for the period will be

MndSn−1 + Vn

((
dSn−1

Sn−1

)2

+ dDn−1

)
(2)

units of the bond.
This picture is summarized by the following protocol for the game that

determines the investor’s capital process K.

Discrete Black-Scholes protocol
Parameters: N , K0 > 0, δ ∈ (0, 1)
Players: Market, Investor
Protocol:

Market announces S0 > 0 and D0 > 0.
FOR n = 1, . . . , N :

Investor announces Mn ∈ IR and Vn ∈ IR.
Market announces Sn > 0 and Dn ≥ 0.
Kn := Kn−1 + MndSn−1 + Vn((dSn−1/Sn−1)2 + dDn−1).

Additional Constraints on Market: Market must set DN = 0 and must
choose the other Sn and Dn so that

varrel
S (2 + γ) < δ and varD(2− γ) < δ (3)

for some γ ∈ (0, 1).

This protocol is not subject to arbitrage by Investor, for Market can keep
Investor from making any money at all by setting

Dn :=
N − n

N
D0 and Sn = Sn−1 ± Sn−1

√
D0

N
,

the sign being opposite that of Mn. If he also chooses D0 < (δ3N)1/4, he will
satisfy the constraint (3) with γ = 2/3.

It is worth emphasizing that the protocol does not require Market to move
stochastically. Market can move however he wants; he can even play strategi-
cally against Investor. The only constraint on his moves is (3).

3.2 The Black-Scholes formula

A European option U with maturity T is defined by its payoff function, say
U ; it pays U(SN ) at time T = Ndt. Suppose p is a real number, and ε is a
positive real number. Let us say that the price of U at the outset of trading (in
the situation where S0 and D0 have just been announced) is p with accuracy ε

4



if Investor has a strategy in the discrete Black-Scholes protocol guaranteeing,
when his initial capital K0 is p, that his final capital KN will satisfy

|U(SN )−KN | ≤ ε

provided Market obeys (3).1

Proposition 1 Suppose U : (0,∞) → IR is log-Lipschitzian2 with coefficient c.
Then in the situation where S0 and D0 have just been announced, the price of
U is ∫

U(S0e
z) N−D0/2, D0(dz) (4)

with accuracy
40cδ1/4. (5)

Here Nµ, σ2 is the Gaussian distribution with mean µ and variance σ2. Equa-
tion (4) reduces, in the case of a call or a put, to the usual Black-Scholes formula,
except that the interest rate is set to zero and D0 is substituted for Tσ2.

As explained in §2, the parameter δ in the protocol can be chosen reasonably
small if trading is frequent. The bound 40cδ1/4 will still be too large to be useful
for U with too large a value of c. But as the proof of Proposition 1 will reveal,
this bound can be tightened substantially for most options (see Appendix A.3).

3.3 Heuristic proof

To see that (4) is the approximate cost of replicating U , consider the function

U(S, D) :=
∫

IR

U(Sez) N−D/2, D(dz). (6)

This function is defined for S ∈ IR and D ≥ 0. It is easily verified that

∂U

∂D
=

1
2
S2 ∂2U

∂S2
(7)

when D > 0. When D = 0, N−D/2, D puts all its probability on z = 0, and so

U(S, 0) = U(S). (8)

The differential equation (7) is a variant on the Black-Scholes equation, and (6)
is its solution satisfying the initial condition (8).

The value of D at the end of trading, DN , being zero, the quantity
U(SN , DN ) is equal, by (8), to U ’s payoff. Proposition 1 says that U(S0, D0) is

1Because of the symmetry of Investor’s move space (he can replace Mn by −Mn and Vn

by −Vn), this implies that Investor can also replicate −U to within ε starting with −p. So he
can buy or sell U for p and suffer a loss of at most ε.

2A function f : IR → IR is Lipschitzian with coefficient c if |f(x)− f(y)| ≤ c|x− y| for all
x and y in IR. A function U : (0,∞) → IR is log-Lipschitzian with coefficient c if |U(ex) −
U(ey)| ≤ c|x− y| for all x and y in IR.
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U ’s approximate price at the outset of trading. In fact, U approximately prices
U throughout. Right after Market announces Sn and Dn, the approximate
price of U is

Un = U(Sn, Dn).

This is because if Investor has capital K0 = U0 at the outset, he can trade in S
and D in such a way that his capital at the end of each period n is approximately
Un. To show that this is so, it is enough to show that Investor can always choose
his moves Mn and Vn so that dKn−1 = dUn−1. To this end, approximate dUn−1

by a Taylor’s series:

dUn−1 ≈ ∂U

∂S
dSn−1 +

∂U

∂D
dDn−1 +

1
2

∂2U

∂S2
(dSn−1)2. (9)

We can neglect higher order terms because of the constraint (3). Comparing (9)
with dKn−1, which is given by (2), we see that the two will be equal if

Mn =
∂U

∂S
(Sn−1, Dn−1), (10)

Vn =
∂U

∂D
(Sn−1, Dn−1), (11)

and
Vn

S2
n−1

=
1
2

∂2U

∂S2
(Sn−1, Dn−1). (12)

Equations (10) and (11) give the moves Mn and Vn Investor needs to make. If
he does make the move Vn given by (11), then (12) will also hold, because U
satisfies the partial differential equation (7).

To prove Proposition 1, it remains to show that the constraint (3) suffices to
keep the total hedging error caused by the approximations (9) from exceeding
40cδ1/4. This is done in Appendix A.

3.4 When S pays dividends

How should the preceding theory be modified when S pays dividends?
Suppose first we know in advance how SN will be related to the final final

value S∗N of one share assuming its dividends are reinvested; we know a strictly
monotonic function f such that S∗N = f(SN ). We might, for example, know
there will be a continuous dividend payment at rate q, so that

S∗N = eqT SN .

Then we can simply re-express the problem in terms of S∗; this means D’s divi-
dend should be S’s total return, which is (dS∗/S∗)2, and the pricing formula (4)
should be applied not to U but to the function U∗, where

U∗(x) := U(f−1(x)),
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so that U∗(S∗N ) = U(SN ). This approach is appropriate when S is the currency
issued by a foreign government with a risk-free interest rate that differs by a
constant amount from the domestic rate.

A different approach is appropriate when one knows at the outset the dates
and dollar amounts of the dividends. In this case, each share of S can be
regarded as portfolio, consisting of a share that does not pay dividends and a
portfolio of bonds that can, if desired, be hedged by taking an opposite position
in risk-free bonds of the same maturities. The dividend for D should then be
simply dS/S, the percentage price change ignoring any dividends from S, and
the pricing formula (4) should be applied to U .

4 The Greeks

Let us turn now to the Greeks, which measure the sensitivity of the price of an
option to various risk factors.

4.1 The Greeks for a single option

The partial derivatives (10) and (11) measure the sensitivities of U ’s price to
the prices of S and D. Let us call them Delta and Upsilon:

∆ :=
∂U

∂S
, Υ :=

∂U

∂D
.

The Black-Scholes equation, (7), tells us that

∂2U

∂S2
=

2
S2

Υ (13)

So the Taylor’s series (9) can be written in the form

dU ≈ ∆dS + Υ

(
dD +

(
dS

S

)2
)

. (14)

In the small period of time dt, the instrument D pays out the dividend (dS/S)2,
thus diminishing in value by this amount. In addition, Market changes its
opinion about the value of D’s future dividends by some amount, say d∗D. The
total change in D’s value, dD, is therefore

dD = d∗D −
(

dS

S

)2

.

So (14) can be written as

dU ≈ ∆dS + Υd∗D. (15)

This equation tells us the meaning of ∆ and Υ: ∆ is the sensitivity of U ’s price
to changes in the price of S, while Υ is the sensitivity of U ’s price to changes in
the price of S’s future variance.
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The security S itself is a European option on S with the same maturity as
D; its Delta is one, while its Upsilon is zero. Similarly, the risk-free bond with
the same maturity as D is a European option on S; its Delta and Upsilon are
both zero. The derivative security D is a non-European option, but its price is
certainly a function of the price of D and the price of S; differentiating with
respect to these prices, we see that its Delta is zero and its Upsilon is one.

The two Greeks can also be defined for a portfolio P consisting of units of
D and various European options on S with the same maturity as D. Assuming
that the options in P are indexed by a finite set I, say P = {UI}I∈I , and
writing ∆I and ΥI for the Delta and Upsilon for UI , one sets

total Delta for P :=
∑

I

∆I ;

total Upsilon for P :=
∑

I

ΥI ;

These definitions makes sense because the value of the portfolio is the sum of
the values of the options in it, and the partial derivative of a sum is the sum of
the partial derivatives.

It is instructive to compare this picture with that of the usual theory, where
the value of the option is a function of the security price, its volatility, and time:

U
∗
(S, σ, t) :=

∫

IR

U(Sez) N−(T−t)σ2/2, (T−t)σ2(dz).

As explained in textbooks (e.g., [9]), one monitors the value of an option or a
portfolio of options by looking at several partial derivatives, including:

Delta :=
∂U

∗

∂S
, Vega :=

∂U
∗

∂σ
, Theta :=

∂U
∗

∂t
, Gamma :=

∂2U
∗

∂S2
.

Our Delta is analogous to Delta, and but our Upsilon combines, in some re-
spects, the roles of Vega, Theta, and Gamma.

The usual theory considers both Vega and Theta because the theoretical
variance σ2 and the time t both enter into (T − t)σ2, the total variance of S’s
price between time t and time T . In the present picture, there is no stochastic
assumption and hence no theoretical variance, but the total remaining empirical
variance is priced by the market, and Υ measures the sensitivity of U ’s price to
it.

Equation (13) tells us that Υ also does Gamma’s job. By monitoring Upsilon,
we also monitor not only the sensitivity of U ’s price to d∗D, the change in the
market’s valuation of S’s future variance, but also its second order sensitivity
to S’s immediate change—its sensitivity to (dS/S)2.

4.2 The Greeks for multiple maturities and securities

Consider now a finite set of securities, say SJ for J in a finite index set J .
Consider also a finite set of different maturities, say T . Suppose that a version

8



of our dividend-paying instrument, say DJT , is marketed for each SJ and each
maturity T ∈ T .

Suppose further that PJT , for each J ∈ J and T ∈ T , is a portfolio con-
sisting of units of DJT and European options on SJ with maturity T (including
perhaps shares of SJ and units of the risk-free bond with maturity T ). Set

∆JT := total Delta for PJT ;

ΥJT := total Upsilon for PJT ;

For each J , let PJ· be the portfolio obtained by pooling the portfolios PJT for
that J and all T ∈ T , and set

∆J· :=
∑

T∈T
∆JT .

This is the total number of shares of SJ that one needs to short in order to
make PJT Delta-neutral for all T ∈ T . Because this total does not change if we
move long or short positions in SJ that happen to be in these portfolios from
one of them to another, we risk no confusion if we say this more simply: ∆J·

is the number of shares of SJ that one needs to short in order to make PJ·

Delta-neutral.
To summarize: monitoring the Greeks for a portfolio of European options

on many securities with many maturities means monitoring the total Delta for
each security and the total Upsilon for each (security,maturity) pair.

5 Black-Scholes pricing in dollars

This section translates the picture into dollar terms. The translation is routine
with respect to the investor’s capital and the prices of the securities. But the
instrument D poses novel issues, because the dollar value of its dividend is
affected by changes in the value of the bond.

5.1 The protocol

The protocol in §3.1, which lays out how Investor can trade in S and D during
N trading periods, does not mention interest, because the prices Sn and Dn and
Investor’s capital process Kn are all measured in units of a zero-coupon bond.
But the bond’s returns plays an important implicit role, because Investor’s
residual (positive or negative) capital during each period, the capital he is not
holding in S or D, remains in the bond.

To translate the story into dollar terms, we must say explicitly that the
Investor is constantly (in discrete time) rebalancing a portfolio consisting of
shares of S, D and a zero-coupon bond B with maturity N . The bond is
supposed to be risk-free in the usual sense—it will not default. We may assume
that each unit of the bond pays $1 at maturity.

9



Let us write bn for the price of B in dollars at the end of the nth trading
period, and let us also use lower-case letters for other dollar amounts:

kn := bnKn, sn := bnSn, dn := bnDn, un := bnUn.

Let us also set
rn :==

dbn−1

bn−1
.

This is the return earned by B during the nth trading period.
The dividend paid by D at the end of the nth trading period is

(
dSn−1

Sn−1

)2

in units of B, or

bn

(
dSn−1

Sn−1

)2

=
b2
n−1

bn

(
dsn−1

sn−1
− rn

)2

(16)

in dollars.
Typically bn ≈ bn−1, and so (16) is approximately equal to

bn

(
dsn−1

sn−1
− rn

)2

,

which is the dollar value of a number of units of B equal to the squared difference
between S’s and B’s returns. This is another way of saying that D’s dividend
is the S’s squared return relative to the bond.

The rule for updating Investor’s capital in the discrete Black-Scholes protocol
can be written in the form

Kn := (Kn−1 −MnSn−1 − VnDn−1) + (MnSn + VnDn) + Vn

(
dSn−1

Sn−1

)2

.

In dollar terms, this becomes

kn := (kn−1−Mnsn−1−Vndn−1)
bn

bn−1
+(Mnsn+Vndn)+Vn

b2
n−1

bn

(
dsn−1

sn−1
− rn

)2

.

The quantity kn−1−Mnsn−1−Vndn−1 is the dollar amount Investor holds in B
during the nth trading period; it is multiplied by bn/bn−1 or 1 + rn to account
for the change in the value of B from the beginning to the end of the period.
The second term, Mnsn + Vndn, is the dollar amount Investor receives or pays
when he liquidates his positions in S and D at the end of the period, and the
third term represents his dividends from D.

So the discrete Black-Scholes protocol looks like this in dollar terms:

Discrete Black-Scholes protocol in dollar terms
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Parameters: N , K0 > 0, δ ∈ (0, 1)
Players: Market, Investor
Protocol:

Market announces b0 > 0, s0 > 0, and d0 > 0.
FOR n = 1, . . . , N :

Investor announces Mn ∈ IR and Vn ∈ IR.
Market announces bn > 0, sn > 0, and dn ≥ 0.
kn := (kn−1 −Mnsn−1 − Vndn−1) bn

bn−1
+ (Mnsn + Vndn)

+ Vn
b2n−1
bn

(
dsn−1
sn−1

− dbn−1
bn−1

)2

. (16)

Additional Constraints on Market: Market must set bN = 1 and DN =
0 and must choose the other bn, sn, and dn so that varrel

S (2 + γ) < δ and
varD(2− γ) < δ for some γ ∈ (0, 1), where Sn := sn/bn and Dn := dn/bn.

5.2 The Black-Scholes formula and the Greeks

Because bN = 1, the shift from pricing in units of B to pricing in dollars makes
no difference in how we describe a European option U with maturity at the end
of the Nth period; its payoff function U gives its payoff in units of B, which is
the same as its payoff in dollars, and this can be described as U(SN ) or U(sN );
the two are the same.

Proposition 1 tells us that U ’s initial price in units of B is

U0 = U(S0, D0).

with accuracy 40cδ1/4. So its initial price in dollars is

u0 = b0U(S0, D0) = b0U

(
s0

b0
,
d0

b0

)
.

with accuracy b040cδ1/4. More generally, the price in dollars just after bn, sn,
and dn are announced is approximately

un = bnU

(
sn

bn
,
dn

bn

)
= bn

∫
U(

sn

bn
ez) N−dn/2bn, dn/bn

(dz). (17)

This is the Black-Scholes equation in dollar terms.
The Greeks ∆, Υ, and Γ, defined in §4.1, can be obtained by differentiating

the function u defined by

u(s, d, b) := bU

(
s

b
,
d

b

)
= bn

∫
U

(s

b
ez

)
N−d/2b, d/b(dz).

Indeed,

∆ =
∂u

∂s
(s, d, b) ,

Υ =
∂u

∂d
(s, d, b) ,
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and

Γ = b
∂2u

∂s2
(s, d, b) .

Moreover, we can use the derivative with respect to b to tell us how many units
of the bond to hold, for

∂u

∂b
(s, d, b) = U(S,D)−∆S −ΥD,

which is the part of Investor’s capital U(S,D) that remains in the bond when
he holds ∆ units of S and Υ units of D.

In order to understand why Delta and Upsilon come out the same when
we measure value in dollars as when we measure value in units of a bond, we
must remember that the Greeks are ratios of prices and hence are dimensionless.
Delta, for example, is the ratio

change in the value of U
change in the value of a share of S ,

and this ratio does not depend on whether value is being measured in units of
a bond, dollars, or units of some other currency.

5.3 The picture with a constant interest rate

The usual Black-Scholes theory assumes that the interest rate is constant. So
it is instructive to consider how the theory of this article looks under this as-
sumption.

If we write r for a constant short-term interest rate with continuous com-
pounding, then the corresponding notional bond paying $1 at maturity N has
the price

bn := e−r(T−t) (18)

at the end of the nth trading period, where t = ndt.
If we define the instrument D using this notional bond, then D’s dollar

dividend at the end of the nth period will be

e−r(N−n+2)dt

(
dsn−1

sn−1
− ln(1 + r)

dt

)2

. (19)

Our formula for un, Equation (17), becomes

un = e−r(T−t)U(sner(T−t), dner(T−t))

= e−r(T−t)

∫
U(snez+r(T−t)) N−dner(T−t)/2, dner(T−t)(dz).

So we can discuss hedging in terms of the function u† defined by

u†(s, d, t, r) := e−r(T−t)

∫
U(sez+r(T−t)) N−der(T−t)/2, der(T−t)(dz).

12



Our hedges in S and D can of course be found from u†:

∆ =
∂u†

∂s
(s, d, t, r) and Υ =

∂u†

∂s
(s, d, t, r). (20)

We might also use u† to examine the sensitivity of U ’s value to changes in the
interest rate r and the time t.

Because r is not really constant, Proposition 1’s bound on the error of repli-
cation will not be valid when the hedges (20) are financed with a money market
account. It would be helpful to have bounds on the additional error introduced
by variation in r; presumably it is substantial.

Variation in the interest rate also invalidates the usual Black-Scholes theory.
Here, however, we encounter a question that does not arise in the usual theory.
Were we to establish a market in D on the assumption of a constant interest
rate, should we define its dividend (19) for all N periods using the short rate r
in effect at the outset? Or should we acknowledge reality and change r in the
formula as the short rate changes? Presumably we should to the latter, always
using the current short rate in the formula, because this will make subsequent
hedging as effective as possible.

Dynamic Black-Scholes hedging is presently treated as a rather idealized and
heuristic idea; theory and practice agree, for example, that dynamic hedging of
a call or a put is not practical. On the theoretical side, we find that bounds on
the hedging error are much too loose to be useful [3]. On the practical side, we
see that calls and puts are actually priced by markets, and these are used to
hedge other options statically as much as possible. The purpose of setting up a
market in D would be to get a little more mileage out of dynamic hedging. Calls
and puts would actually be hedged dynamically, to a substantial degree, from
S and D. In this context, error bounds such as the one in Proposition 1 take on
real importance, and the additional error added by the assumption of a constant
interest rate is no longer tolerable. Traders in the proposed market could not
make do with money market accounts; they would really need a liquid market
in bonds with maturities matching those of the options they want to hedge.

6 Questions

There is reason to think that exchange trading of the variance instrument D
could substantially improve the efficiency of option markets. Existing option
exchanges market a two dimensional array of calls and puts for each underlying
security S; one dimension is the strike price and the other the maturity. Market-
ing D means marketing only a one-dimensional array of instruments; we market
DT for a range of maturities T , and according to Proposition 1, this determines
prices for calls and puts for all strikes, with no volatility smile. Thus a liquid
market would be achieved with a much smaller overall level of trading activity.

But the project of creating an exchange in D raises questions. Who is in a
position to do this? Under what circumstances will it be feasible for participants
in such an exchange to finance their trades in D and its underlying security S

13



using a risk-free bond rather than money market accounts? One purpose of this
paper is to stimulate thought about these questions by those most knowledgeable
about option and bond markets.

6.1 How can an exchange in D be created?

Creating an exchange in D will require organizing a group of option traders
and brokers who agree on a risk-free zero-coupon bond with which to define
D’s dividends and who can move in and out of such a bond with negligible
transaction costs. This suggests that the exchange might best be organized by
an institution strong enough that it itself can issue bonds considered risk free.
It also suggests that the major participants in the exchange may tend to be
traders who have other reasons for trading in bonds with the same maturities
as the options being traded.

In the past few years, an increasingly vigorous over-the-counter market has
developed in variance swaps for stock indices. When they were introduced,
these instruments were priced and hedged statically using calls and puts, but
their increasing liquidity has encouraged consideration of their use in pricing
other options [4]. Could this increasingly liquid over-the-counter market be
transformed into an an exchange?

Similar questions can be asked about the exchange the Chicago Board Op-
tions Exchange has organized in the volatility of the S&P 500 [5]. It presently
trades in options and futures on VIX, a volatility index. Could the demand for
futures on VIX be shifted to a demand for forwards on the variance of individual
securities?

6.2 Should D’s dividends be deferred?

Instead of paying the dividend dSn−1/Sn−1 at the end of the nth trading period,
the instrument D could accumulate these dividends and pay them at the end of
the N trading periods. It would then look much more like a variance swap.

In the theoretical picture, this seems to be a distinction without a differ-
ence. The dividend is denominated in units of a risk-free zero-coupon bond
that matures at the end of the N trading periods, and Investor, it is assumed,
can move his capital freely in and out of this bond, incurring no trading cost as
he goes long or short in the bond in order to buy or sell S and D. So there is
no difference between giving Investor units of the bond and holding these units
for him until they mature.

In practice, there must be some cost involved in trading in the bond, and it
would be useful to discuss both how this can be minimized and how its impact
on our error bound can be assessed.

6.3 Options on bonds?

Options on bonds are now usually priced by different methods than options
on equity, because the different scope for variation in bond prices mandates

14



different stochastic models. But the approach of this paper, which does not
require a stochastic model, can be applied to options on bonds just as easily as
to options on equity.

The volatility of bonds is now comparable to the volatility of equity [10], and
the approach being considered here seems to point towards a greater integration
of markets in the two types of volatility. The merits and demerits of such
integration should be discussed.
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A Proof of Proposition 1

Proposition 1 appears in §10.5 of [12]. Unfortunately, its proof is spread over
several chapters of [12]. The proof given here is self contained.

Before giving the proof, we review some mathematical tools it uses. After
giving the proof, we explain how its techniques can be used to obtain tighter
bounds for particular European options.

A.1 Mathematical prerequisites

Inequalities. The proof uses two well-known inequalities involving nonnegative
sequences Xn and Yn and nonnegative real numbers a and b. The first, Hölder’s
inequality, says that if 1/a + 1/b = 1, then

N∑
n=1

XnYn ≤
(

N∑
n=1

Xa
n

)1/a (
N∑

n=1

Y b
n

)1/b

. (21)

The other, associated with the names Pringsheim and Jensen, says that if a ≤ b,
then (

N∑
n=1

Xa
n

)1/a

≥
(

N∑
n=1

Xb
n

)1/b

. (22)

For proofs, see, for example, [1, 8].
The inequality (22) can also be written in the form

N∑
n=1

Xb
n ≤

(
N∑

n=1

Xa
n

)b/a

. (23)

The Hölder and Pringsheim-Jensen inequalities together imply that (21) holds
whenever 1/a + 1/b ≥ 1. In particular,

N∑
n=1

XnYn ≤
(

N∑
n=1

X2+γ
n

)1/(2+γ) (
N∑

n=1

Y 2−γ
n

)1/(2−γ)

. (24)
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The gamma function. The gamma function is defined by

Γ(x) :=
∫ ∞

0

tx−1e−tdt

for every positive real number x. Important values of the function are Γ(1) = 0
and Γ(1/2) =

√
π. These two values, together with the recursion Γ(x + 1) =

xΓ(x), allow one to calculate Γ(n) and Γ(n/2) when n is a positive integer; we
get Γ(n) = n! for all n and

Γ(
3
2
) =

1
2
√

π, Γ(
5
2
) =

3
4
√

π, Γ(
7
2
) =

15
8
√

π, etc. (25)

The proof requires evaluation of the integral
∫∞
0

txe−t2/2dt for several small
integer values of x. A simple change of variables shows that

∫ ∞

0

txe−t2/2dt = 2(x−1)/2Γ(
x + 1

2
), (26)

which combines with (25) to produce the needed evaluations.

Hermite polynomials. The Hermite polynomials used in the proof can be
defined by

H0(x) := 1 and H1(x) := x, (27)

together with the recursion

Hn+1(x) = xHn(x)− nHn−1(x). (28)

See, e.g., [14], Example II.11.1. In addition to H0 and H1, the proof also uses
three more of these polynomials:

H2(x) := x2 − 1, H3(x) := x3 − 3x, and H4(x) := x4 − 6x2 + 3.

Using (27) and (28), one may prove by induction that

H ′
n(x) = nHn−1(x),

and it follows from this and (28) that

Hn+1(x) = xHn(x)−H ′
n(x). (29)

The following lemma shows how these polynomials arise when we calculate
derivatives of a function g obtained from Gaussian smoothing of another func-
tion f .

Lemma 1 Suppose f is a c-Lipschitzian function, and set

g(x) :=
∫

f(x + z)N0,σ2(dz).

Then

g(n)(x) =
1√

2πσn+1

∫

IR

e−(z−x)2/(2σ2)Hn

(
z − x

σ

)
f(z)dz. (30)

for n = 0, 1, . . . .
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The lemma can established by induction on n. The case n = 0 follows from
the fact that H0(x) = 1, and once we have (30) we can obtain the analogous
relation for n + 1 by differentiating (30) and using (29):

g(n+1)(x)

=
1√

2πσn+1

∫

IR

e−(z−x)2/(2σ2)

(
z − x

σ2
Hn

(
z − x

σ

)
− 1

σ
H ′

n

(
z − x

σ

))
f(z)dz

=
1√

2πσn+2

∫

IR

e−(z−x)2/(2σ2)Hn+1

(
z − x

σ

)
f(z)dz.

A.2 The proof proper

The function U was defined by Equation (6). It is the only solution of the
differential equation (7) satisfying the initial condition U(S, 0) = U(S) and
the polynomial growth condition (see [7], Appendix E). As explained in §3.3,
Proposition 1 is proven by showing that if Investor begins with the capital
U(S0, D0) and plays the strategy given by (10) and (11), then his capital will
be close to U(Sn, Dn) at the end of each trading period n, finally arriving at the
end of trading at a value close to U ’s payoff U(SN , DN ) = U(SN , 0) = U(SN ).

The only assumption concerning U is that it is log-Lipschitzian with coeffi-
cient c. But let us first analyze the situation under the alternative assumption
that U has at least four derivatives, all tending to zero fast enough as S increases
that the quantities

cm := sup
S∈(0,∞)

|SmU (m)(S)| (31)

are finite for m = 2, 3, 4.

Lemma 2 Under the assumption just stated, U(S0, D0) is the price of U with
accuracy

δ (1.75c2 + 2.5c3 + 0.375c4) . (32)

Proof First expand U in a Taylor’s series at the point (Sn, Dn) as follows:

dU(Sn, Dn) =
∂U

∂S
(Sn, Dn)dSn +

∂U

∂D
(Sn, Dn)dDn

+
1
2

∂2U

∂S2
(S′n, D′

n)(dSn)2 +
∂2U

∂S∂D
(S′n, D′

n)dSndDn

+
1
2

∂2U

∂D2
(S′n, D′

n)(dDn)2 (33)

for n = 0, . . . , N − 1, where (S′n, D′
n) is a point strictly between (Sn, Dn) and

(Sn+1, Dn+1). Then expand ∂2U/∂S2 in a Taylor’s series:

∂2U

∂S2
(S′n, D′

n) =
∂2U

∂S2
(Sn, Dn)+

∂3U

∂S3
(S′′n, D′′

n)dS′n+
∂3U

∂D∂S2
(S′′n, D′′

n)dD′
n, (34)
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where (S′′n, D′′
n) is a point strictly between (Sn, Dn) and (S′n, D′

n). Since dS′n =
S′n−Sn and dSn = Sn+1−Sn, we have |dS′n| < |dSn|; similarly, |dD′

n| < |dDn|.
Plugging (34) and (7) into (33) gives

dU(Sn, Dn) =
∂U

∂S
(Sn, Dn)dSn +

∂U

∂D
(Sn, Dn)

(
dDn +

(
dSn

Sn

)2
)

+
1
2

∂3U

∂S3
(S′′n, D′′

n)dS′n(dSn)2 +
1
2

∂3U

∂S2∂D
(S′′n, D′′

n)dD′
n(dSn)2

+
∂2U

∂S∂D
(S′n, D′

n)dDndSn +
1
2

∂2U

∂D2
(S′n, D′

n)(dDn)2. (35)

Because Investor plays the strategy given by (10) and (11), the first two
terms on the right-hand side of (35) are the capital increment dKn. So by
summing over n and recalling that U(S0, D0) = K0, one obtains

∣∣U(SN , DN )−KN

∣∣

≤ 1
2

sup
∣∣∣∣S3 ∂3U

∂S3

∣∣∣∣varrel
S (3) +

1
2

sup
∣∣∣∣S2 ∂3U

∂S2∂D

∣∣∣∣
∑

n

|dDn|
∣∣∣∣
dSn

Sn

∣∣∣∣
2

+ sup
∣∣∣∣S

∂2U

∂S∂D

∣∣∣∣
∑

n

|dDn|
∣∣∣∣
dSn

Sn

∣∣∣∣ +
1
2

sup
∣∣∣∣
∂2U

∂D2

∣∣∣∣varD(2), (36)

with all suprema over the convex hull of {(Sn, Dn) | 0 ≤ n ≤ N}.
The right-hand side of (36), which we want to bound from above, is composed

of suprema and sums. The suprema involve partial derivatives; we can bound
them using the norms c2, c3, and c4 together with the differential equation (7).
The sums are values of varrel

S and varD or can be related to these variations by
classical inequalities; we can bound them using the constraint (3) on Market’s
moves.

To bound the suprema from above, first use Leibniz’s differentiation rule to
obtain

∣∣∣∣Sn ∂nU

∂Sn

∣∣∣∣ =
∣∣∣∣Sn

∫

IR

U (n)(Sez)enz N−D/2, D(dz)
∣∣∣∣

=
∣∣∣∣
∫

IR

(Sez)nU (n)(Sez) N−D/2, D(dz)
∣∣∣∣ ≤

∣∣∣∣
∫

IR

cn N−D/2, D(dz)
∣∣∣∣ = cn. (37)

Then use (7) to express the partial derivatives in (36) as partial derivatives with
respect to S alone:

∂3U

∂S2∂D
=

1
2

∂2

∂S2

(
S2 ∂2U

∂S2

)
=

∂2U

∂S2
+ 2S

∂3U

∂S3
+

1
2
S2 ∂4U

∂S4
, (38)

∂2U

∂S∂D
=

1
2

∂

∂S

(
S2 ∂2U

∂S2

)
= S

∂2U

∂S2
+

1
2
S2 ∂3U

∂S3
, (39)
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∂2U

∂D2
=

1
2

∂

∂D

(
S2 ∂2U

∂S2

)
=

1
2
S2 ∂3U

∂D∂S2
=

1
2
S2 ∂2U

∂S2
+S3 ∂3U

∂S3
+

1
4
S4 ∂4U

∂S4
; (40)

the last step in (40) uses (38). It follows from (37)–(40) that
∣∣∣∣S3 ∂3U

∂S3

∣∣∣∣ ≤ c3, (41)

∣∣∣∣S2 ∂3U

∂S2∂D

∣∣∣∣ ≤ c2 + 2c3 +
1
2
c4, (42)

∣∣∣∣S
∂2U

∂S∂D

∣∣∣∣ ≤ c2 +
1
2
c3, (43)

∣∣∣∣
∂2U

∂D2

∣∣∣∣ ≤
1
2
c2 + c3 +

1
4
c4. (44)

Now consider the variations. Set p := 2 + γ and q := 2 − γ, and note that
p/(p− 2) ≥ q. Using (23) and the fact that p ≤ 3, one obtains

∑
n

∣∣∣∣
dSn

Sn

∣∣∣∣
3

≤
(∑

n

∣∣∣∣
dSn

Sn

∣∣∣∣
p
)3/p

= (varrel
S (p))3/p ≤ δ3/p ≤ δ. (45)

Using first Hölder’s inequality with 2/p + (p − 2)/p = 1 and then (22) with
p/(p− 2) ≥ q, one obtains

∑
n

|dDn|
∣∣∣∣
dSn

Sn

∣∣∣∣
2

≤
(∑

n

∣∣∣∣
dSn

Sn

∣∣∣∣
p
)2/p (∑

n

|dDn|
p

p−2

) p−2
p

≤
(∑

n

∣∣∣∣
dSn

Sn

∣∣∣∣
p
)2/p (∑

n

|dDn|q
) p

(p−2)q
p−2

p

= (varrel
S (p))2/p(varD(q))1/q ≤ δ2/p+1/q ≤ δ1+1/p ≤ δ. (46)

Using (24), one obtains

∑
n

|dDn|
∣∣∣∣
dSn

Sn

∣∣∣∣ ≤
(∑

n

∣∣∣∣
dSn

Sn

∣∣∣∣
p
)1/p (∑

n

|dDn|q
)1/q

= (varrel
S (p))1/p(varD(q))1/q ≤ δ1/pδ1/q ≤ δ. (47)

Finally, using (23), one obtains.

∑
n

|dDn|2 ≤
(∑

n

|dDn|q
)2/q

= (varD(q))2/q ≤ δ2/q ≤ δ. (48)

Combining (36) with (41)–(44) and (45)–(48), one obtains the bound (32).
This completes the proof of the lemma.
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To complete the proof of Proposition 1, one must show that U can be ap-
proximated by a smooth function V that has norms c2, c3, and c4 small enough
that 40cδ1/4 bounds the sum of (32) and the additional error caused by the
difference between U and V .

Let us define V by smoothing U on a logarithmic scale for the security price
S. Formally, this involves three steps:

• Define f : IR → IR by f(x) := U(ex).

• Define g : IR → IR by g(x) :=
∫

f(x + z)N0,σ2(dz) for some σ2 > 0.

• Define V : (0,∞) →: IR by V (S) := g(lnS).

Because U is log-Lipschitzian with coefficient c, f is Lipschitzian with coefficient
c.

First let us check that U(S) is close to V (S) or, equivalently, that f is close
to g. Using f ’s being Lipschitzian, we obtain

|V (S)− U(S)| = |g(lnS)− f(lnS)| =
∣∣∣∣
∫

IR

f(lnS + z)− f(ln S) N0,σ2(dz)
∣∣∣∣

≤
∫

IR

|f(lnS + z)− f(lnS)| N0,σ2(dz) ≤ c

∫

IR

|z| N0,σ2(dz)

= cσ

∫

IR

|z| N0,1(dz) =
√

2/πcσ; (49)

the last equality can be obtained using (25) and (26) to evaluate the integral.
We also obtain

|V (S, D)− U(S, D)| =
∣∣∣∣
∫

IR

V (Sez)− U(Sez) N−D/2, D(dz)
∣∣∣∣

≤
∫

IR

|V (Sez)− U(Sez)| N−D/2, D(dz) ≤
√

2/π cσ; (50)

the last inequality follows from (49).
Now we find upper bounds for the derivatives of g. Assuming, without loss

of generality, that f(lnS) = 0 for the particular value of S we are considering,
and using Lemma 1, we obtain for n = 1, 2, . . . :

|g(n)(ln S)| ≤ 1√
2πσn+1

∫

IR

e−(x−ln S)2/(2σ2)

∣∣∣∣Hn

(
x− ln S

σ

)∣∣∣∣ c|x− ln S| dx

=
c√

2πσn−1

∫

IR

e−y2/2|Hn(y)||y| dy, (51)

Since the last expression does not involve S, we see that the norm ‖g(n)‖ :=
supx∈(0,∞) is bounded by

‖g(n)‖ ≤ c√
2πσn−1

∫

IR

e−y2/2|Hn(y)||y| dy. (52)
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Evaluating the integral using (25) and (26), we find

‖g(1)‖ ≤ c√
2π

∫

IR

e−y2/2|y|2 dy = c,

‖g(2)‖ ≤ c√
2πσ

∫

IR

e−y2/2|y2 − 1||y| dy

≤ 2c√
2πσ

∫ ∞

0

e−y2/2(y3 + y) dy =
2c√
2πσ

(2 + 1) =
3
√

2c√
πσ

,

‖g(3)‖ ≤ c√
2πσ2

∫

IR

e−y2/2|y3 − 3y||y| dy

≤ c√
2πσ2

∫

IR

e−y2/2(y4 + 3y2) dy =
6c

σ2
,

and

‖g(4)‖ ≤ c√
2πσ3

∫

IR

e−y2/2|y4 − 6y2 + 3||y| dy

≤ 2c√
2πσ3

∫ ∞

0

e−y2/2(y5 + 6y3 + 3y) dy =
2c√
2πσ3

(8 + 12 + 3) =
23
√

2c√
πσ3

;

Using these bounds on ‖g(n)‖, we obtain for V ’s norms (in the sense of (31)):

∣∣∣S2V (2)
∣∣∣ =

∣∣∣∣S2 d2

dS2
g(ln S)

∣∣∣∣ = |g′′(lnS)− g′(lnS)| ≤ 3
√

2c√
πσ

+ c,

∣∣∣S3V (3)
∣∣∣ =

∣∣∣∣S3 d3

dS3
g(ln S)

∣∣∣∣ =
∣∣∣g(3)(lnS)− 3g′′(lnS) + 2g′(ln S)

∣∣∣

≤ 6c

σ2
+ 3

3
√

2c√
πσ

+ 2c,

∣∣∣S4V (4)
∣∣∣ =

∣∣∣∣S4 d4

dS4
g(ln S)

∣∣∣∣ =
∣∣∣g(4)(lnS)− 6g(3)(ln S) + 11g′′(ln S)− 6g′(lnS)

∣∣∣

≤ 23
√

2c√
πσ3

+ 6
6c

σ2
+ 11

3
√

2c√
πσ

+ 6c.

Lemma 2 tells us that if Investor plays the strategy computed from V starting
with the capital V (S0, D0), he will hit the target payoff V (SN ) with error at
most

δ

(
0.375

23
√

2c√
πσ3

+ 4.75
6c

σ2
+ 13.375

3
√

2c√
πσ

+ 9c

)
.
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Equation (49) tells us that V (SN ) will differ from U(SN ) by at most
√

2/πcσ,
and Equation (50) tells us that V (S0, D0) will differ from U(S0, D0) by at most√

2/πcσ. So the strategy computed from V misses by at most

2
√

2/πcσ + δ

(
0.375

23
√

2c√
πσ3

+ 4.75
6c

σ2
+ 13.375

3
√

2c√
πσ

+ 9c

)

when it starts with U(S0, D0) and tries to hit U(SN ).
This expression has the form

Aσ + Bσ−3 + Cσ−2 + Dσ−1 + E. (53)

Let us set

σ :=
(

A

3B

)−1/4

(this is the value of σ minimizing Aσ+Bσ−3); the expression (53) then becomes

(31/4 + 3−3/4)A3/4B1/4 + 3−1/2A1/2B−1/2C + 3−1/4A1/4B−1/4D + E

= (31/4 + 3−3/4)
(
2
√

2/πc
)3/4

(
0.375

23
√

2√
π

cδ

)1/4

+3−1/2
(
2
√

2/πc
)1/2

(
0.375

23
√

2√
π

cδ

)−1/2

4.75× 6cδ

+3−1/4
(
2
√

2/πc
)1/4

(
0.375

23
√

2√
π

cδ

)−1/4

13.375
3
√

2√
π

cδ + 9cδ

≤ δ1/4c
(
(31/4 + 3−3/4)25/4π−1/20.3751/4231/4

+23/231/20.375−1/223−1/24.75 + 23/433/4π−1/20.375−1/423−1/413.375 + 9
)

≤ 37.84cδ1/4.

This completes the proof.

A.3 Using the proof

For relatively smooth payoff functions, the bound provided by Lemma 2,
δ (1.75c2 + 2.5c3 + 0.375c4) , is much tighter than the general bound 40cδ1/4.
It may be possible to improve the latter by improving the approximations in
the proof, but it seems likely that any bound that applies to so wide a class of
payoff functions will be too loose to be useful.

As a practical matter, one does not want to hedge all possible options; one
wants to hedge particular options. So instead of seeking a general bound, one
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should use the lemma to find a tight bound for each particular option. This
means finding a smooth function that comes close to the option’s payoff func-
tion but has a small value for δ (1.75c2 + 2.5c3 + 0.375c4) . The error for the
particular option can then be bounded by this bound plus twice the maximum
distance between the two functions.

This should work even for an option, such as the European call, that has an
infinite value for the log-Lipschitzian c.

B Clarifications

The following notes attempt to clarify the relation between the ideas of this
article and other ideas in the literature.

B.1 Why do security prices scale as
√

dt?

The assumption of
√

dt scaling for price fluctuations can justified by an arbi-
trage argument. Were the fluctuations to scale in any other way with time, an
arbitrageur could make money with a simple strategy—a momentum strategy if
the average magnitude of fluctuations decreases slower than

√
dt does as dt gets

smaller, a contrarian strategy if it decreases faster. In recent years this has been
explained by several authors under probabilistic assumptions. It is known for
example, that arbitrage is possible if a price process follows fractional Brownian
motion with scaling different from

√
dt [6].

It might be thought that this arbitrage argument depends in some way on
the assumption that the prices are random or even on the assumption that the
prices follow a particular probability model such as fractional Brownian motion.
Recent work shows, however, that the arbitrage argument can be formulated in
discrete non-probabilistic terms, in the spirit of this article. So we can say that
approximate

√
dt scaling is required in order to avoid arbitrage in discrete time

[15].
The argument for

√
dt scaling does not apply to D, because of its constant

stream of dividends. Indeed, D’s price changes should be dominated by its
decline in value as it pays out its dividends. Since these payouts themselves
scale as dt, we can expect D’s price changes to scale as dt. This is only a
plausibility argument, but it gains empirical support from data presented on
pp. 254–275 of [12]. It would be interesting to see if an arbitrage argument
could be made for the scaling of D’s price changes.

B.2 What is the role of probability theory?

The established theory of option pricing depends only superficially on the as-
sumption that security prices are stochastic. In order to demonstrate mathemat-
ically that an option can be replicated dynamically by trading in the underlying
security, one usually assumes that the path followed by the price of the security
is governed by a specific probability measure. But the demonstration uses little
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of the information in the probability measure. It uses only the fact that a par-
ticular set of paths (all with

√
dt scaling) is assigned probability one. How the

probabilities are distributed over the paths within this set does not matter.
Some effort has been made to clarify this point by formulating the idea of

√
dt

scaling independent of probability theory. Bick and Willinger [2], for example,
formalize the idea of

√
dt scaling in continuous time non-probabilistically, using

non-standard analysis, and show that an option on S can be replicated at a cost
equal to its Black-Scholes price if S’s returns scale exactly as

√
dt and varS(2) is

constant. But the appeal to non-standard analysis makes this continuous-time
result seem as remote as the probabilistic results. What relation does it have
to discrete-time financial reality?

It appears that continuous-time theory, whether probabilistic or not, is mis-
leading. The limits of arbitrage in discrete time are too broad for delta-hedging
alone to achieve what it can do theoretically in continuous time. Additional
help is needed from supply and demand. We need the market to help by pricing
additional instruments, either calls and puts as it does now, or a battery of
variance instruments such as those proposed in this article.
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