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Abstract

We consider the problem of on-line prediction of real-valued labels, assumed
bounded in absolute value by a known constant, of new objects from known
labeled objects. The prediction algorithm’s performance is measured by the
squared deviation of the predictions from the actual labels. No stochastic as-
sumptions are made about the way the labels and objects are generated. Instead,
we are given a benchmark class of prediction rules some of which are hoped to
produce good predictions. We show that for a wide range of infinite-dimensional
benchmark classes one can construct a prediction algorithm whose cumulative
loss over the first N examples does not exceed the cumulative loss of any predic-
tion rule in the class plus O(

√
N); the main differences from the known results

are that we do not impose any upper bound on the norm of the considered pre-
diction rules and that we achieve an optimal leading term in the excess loss of
our algorithm. If the benchmark class is “universal” (dense in the class of con-
tinuous functions on each compact set), this provides an on-line non-stochastic
analogue of universally consistent prediction in non-parametric statistics. We
use two proof techniques: one is based on the Aggregating Algorithm and the
other on the recently developed method of defensive forecasting.
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1 Introduction

The traditional, and still dominant, approach to the problem of regression is
statistical: the objects and their real-valued labels are assumed to be generated
independently from the same probability distribution, and a typical goal is to
find a prediction rule with a small expected loss. A newer approach is “compet-
itive on-line regression”, in which the goal is to perform almost as well as the
best rules in a given benchmark class of prediction rules. (See, e.g., [37], §1, or
[55], §4, for reviews of some relevant literature.) Unlike the statistical theory of
regression, no stochastic assumptions are made about the data.

A great impetus for the development of the statistical theories of regression
and pattern recognition (see, e.g., [29] and, especially, [18], Preface and Chapter
1) has been Stone’s 1977 result [50] that there exists a “universally consistent”
prediction algorithm: an algorithm that asymptotically achieves, with probabil-
ity one (or high probability), the best possible expected loss. The property of
universal consistency is very attractive, but it is asymptotic and does not tell
us anything about finite data sequences. Stone’s result provided a direction in
which more practicable results have been sought.

Surprisingly, it appears that universal consistency has not been even defined
in competitive on-line learning theory. We propose such a definition in §2; in
§5 we will see how close papers such as [15, 6] came to constructing universally
consistent algorithms. However, our Corollary 1 in §2 appears to be the first
explicit statement about the existence of the latter.

As in the case of statistical regression, universal consistency is only a minimal
requirement; one also wants good rates of convergence, ideally not involving
unknown constants, for universal benchmark classes. The notion of universality
is discussed, formally and informally, at the end of §2 and in §4; we will argue
that universality for benchmark classes is a matter of degree. Our main results,
Theorems 1–3, are stated in §2 and proved in §§6–8. They describe properties of
universality of our prediction algorithms, some of which are described explicitly
in the last section, §10. In §3, Theorem 1 is applied to the case where the objects
and their labels are drawn independently from the same distribution. In §4 we
consider some interesting benchmark classes of prediction rules, and in §5 we
compare our results to some related ones in the literature.

In this paper we use two very different proof techniques: the old one in-
troduced in [54, 55] and the one developed in [57]; we are especially interested
in the latter since it appears much more versatile, and competitive on-line re-
gression is a good testing ground to develop it. This technique has its origin
in Foster and Vohra’s paper [25], which demonstrated the existence of a ran-
domized forecasting strategy that produces asymptotically well-calibrated fore-
casts with probability one. Foster and Vohra’s result was translated into the
game-theoretic foundations of probability (see, e.g., [46]) in [59]. In June 2004
Akimichi Takemura further developed the method of [59] showing that for any
continuous game-theoretic law of probability there exists a forecasting strat-
egy that perfectly satisfies this law of probability; such a strategy was called a
“defensive forecasting strategy” in [60]. An important special case of defensive
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forecasting is where the law of probability asserts good calibration and resolution
of the forecasts; it was explored in [58], where, in particular, a non-asymptotic
version of Foster and Vohra’s result was proved. In [57] it was shown that the
corresponding forecasting strategies lead to a small cumulative loss in a fairly
wide class of decision protocols. That paper only dealt with the case of binary
classification, and in this paper similar results are proved for on-line regression.
As the loss function we use square-loss, which leads to significant simplifications
as compared with [57]. (Despite [25] being the source of our approach, our proof
technique appears to have lost all connections with that paper and papers, such
as [38, 43, 44, 33], further developing it.)

Our results are closely related to those of Cesa-Bianchi et al. [15] and Auer
et al. [6], but we postpone a detailed discussion to §5.

2 Main results

The simple perfect-information protocol of this section is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Predictor announces µn ∈ R.
Reality announces yn ∈ [−Y, Y ].

END FOR.

At the beginning of each round n Predictor is shown an object xn whose label yn

is to be predicted. The set of a priori possible objects is called the object space
and denoted X; of course, we always assume X 6= ∅. After Predictor announces
his prediction µn for the object’s label he is shown the actual label yn ∈ R. We
assume known an a priori upper bound Y ∈ (0,∞) on the absolute values of
the labels yn. We will sometimes refer to pairs (xn, yn) as examples. By an
on-line prediction algorithm we mean a strategy for Predictor in this protocol;
in this paper, however, we are not concerned with computational complexity of
our prediction algorithms.

Predictor’s loss on round n is measured by (yn−µn)2, and so his cumulative
loss after N rounds of the game is

∑N
n=1(yn − µn)2. His goal is “universal

prediction”, in the following, rather vague, sense. If D : X → R is a “prediction
rule” (i.e., the function D is interpreted as a rule for choosing the prediction
based on the current object), he would like to have

N∑
n=1

(yn − µn)2 /
N∑

n=1

(yn −D(xn))2 (1)

(/ meaning “not much greater than”) provided D is not “too complex”. Tech-
nically, we will be interested in the case where the prediction rule D is assumed
to belong to a large reproducing kernel Hilbert space (to be defined shortly) and
the complexity of D is measured by its norm.
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As already mentioned, the results of this section are closely related to several
results in [15] and [6]; see §5.

Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) on a set Z (such as Z = X) is a
Hilbert space F of real-valued functions on Z such that the evaluation functional
f ∈ F 7→ f(z) is continuous for each z ∈ Z. We will use the notation cF (z) for
the norm of this functional:

cF (z) := sup
f :‖f‖F≤1

|f(z)| .

Let
cF := sup

z∈Z
cF (z); (2)

we will be interested in the case cF < ∞.
Examples of RKHS will be given in §4.

Main theorems

Suppose Predictor’s goal is to compete with prediction rules D from an RKHS F
on X. The three theorems that we state in this subsection bound the difference
between the left-hand and right-hand sides of (1); this bound will be called the
regret term. The simplest regret term, given in the first theorem, is in terms of
cF , ‖D‖F , and N .

Theorem 1 Let F be an RKHS on X. There exists an on-line prediction al-
gorithm producing µn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2 + 2Y
√

c2
F + 1 (‖D‖F + Y )

√
N (3)

for all N = 1, 2, . . . and all D ∈ F .

The regret term in the second theorem is in terms of cF , ‖D‖F , and the cumu-
lative loss of D (which can be significantly less than N).

Theorem 2 Let F be an RKHS on X. There exists an on-line prediction al-
gorithm producing µn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2

+ 2
√

c2
F + 1 (‖D‖F + Y )

√√√√
N∑

n=1

(yn −D(xn))2 + (c2
F + 1) (‖D‖F + Y )2

+ 2
(
c2
F + 1

)
(‖D‖F + Y )2 (4)

for all N and all D ∈ F .
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The regret term of Theorem 2 is close to being stronger than that of Theorem 1:
the former is at most twice as large as the latter plus an additive constant, if
we restrict our attention to the prediction rules D such that ‖D‖F is bounded
by a constant and |D(x)| ≤ Y , ∀x ∈ X.

On-line prediction algorithms achieving (3) and (4) will be stated explicitly in
§10. They are based on the idea of defensive forecasting. However, the regression
problem considered in this paper is very well studied, and one can hardly hope
to beat the known techniques. The next theorem gives an upper bound of the
regret term achievable by using the procedure (“Aggregating Algorithm”, or
AA) described in [54] and applied to the problem of regression in [55] and [26].
A popular alternative technique based on the gradient descent method could
also be used, but it tends to lead to worse leading constants: see §5 for details.

Theorem 3 Let F be a separable RKHS on X. There exists an on-line predic-
tion algorithm producing µn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2

− 2Y 2 ln

(
Γ

(
N

2
+ 1

)
U

(
N

2
+ 1, 0,

c2
F ‖D‖2F
2Y 2

))

≤
N∑

n=1

(yn −D(xn))2 + 2Y max
(
cF ‖D‖F , Y δN−1/2+δ

)√
N + 2

+
3
2
Y 2 ln N +

c2
F ‖D‖2F

4
+ O(Y 2) (5)

for all N = 1, 2, . . . and all D ∈ F , where δ > 0 is an arbitrarily small constant,
Γ is the gamma function ([1], Chapter 6), and U is Kummer’s U function ([1],
Chapter 13). The constant implicit in O(Y 2) depends only on δ.

The bound of Theorem 3 is even closer to being stronger than that of The-
orem 1 as N → ∞: the leading constant is the same, 2Y cF ‖D‖F (assuming
‖D‖F À Y and cF À 1), but the other terms are considerably better. The
main disadvantage of the bound (5) is the asymptotic character of (namely, the
presence of the O term in) its more explicit version. The version involving the
gamma and Kummer’s U functions is not intuitive, but it can be evaluated using
standard libraries; the function

f(N, d) := − ln
(

Γ
(

N

2
+ 1

)
U

(
N

2
+ 1, 0,

d2

2

))

is plotted in Figure 1.
The condition of separability in Theorem 3 does not appear restrictive; in

particular, it is satisfied for all examples considered in §4.
Finally, we give a lower bound (a version of Theorem VII.2 in [15]) showing

that the leading constant 2Y cF ‖D‖F is optimal.
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Figure 1: The graph of the function f(N, d) for N = 1, . . . , 100 and d ∈ [1, 3].
The two final values at the corners are f(100, 1) ≈ 12.37 and f(100, 3) ≈ 30.15.

Theorem 4 Suppose the object space is X = R. For any positive constant
c there exists an RKHS F on X with cF = c and a strategy for Reality sat-
isfying the following property. For any N = 1, 2, . . ., any positive constant
d ≤ (Y/cF )

√
N , and any on-line prediction algorithm, there exists a prediction

rule D ∈ F such that ‖D‖F = d and

N∑
n=1

(yn − µn)2 ≥
N∑

n=1

(yn −D(xn))2 + 2Y cF ‖D‖F
√

N − c2
F ‖D‖2F , (6)

where, as usual, µn are the predictions produced by the on-line prediction algo-
rithm and (xn, yn) are Reality’s moves.

Theorems 3 and 4 are proved in §8 and §9, respectively. From the proof of
Theorem 4 it will be clear that similar lower bounds also hold when X = R is
replaced by any regular (e.g., open) subset of a Euclidean space.

Remark If cF = ∞ but it is known in advance that all objects xn, n = 1, 2, . . .,
will be chosen from a set A ⊆ X satisfying X := supx∈A cF (x) < ∞, Theorem
1–4 will continue to hold when cF is replaced by X.

Universal consistency

We say that an RKHS F on Z is universal if Z is a topological space and for
every compact subset A of Z every continuous function on A can be arbitrarily
well approximated in the metric C(A) by functions in F ; in the case of compact
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Z this coincides with the definition given in [49] (Definition 4). All examples of
RKHS given in §4 are universal.

Suppose the object space X is a topological space; as in the rest of the paper,
we are assuming that |yn| are bounded by a known constant Y . Let us say that
an on-line prediction algorithm is universally consistent if its predictions µn

always satisfy

(xn ∈ A, ∀n ∈ {1, 2, . . .})

=⇒ lim sup
N→∞

(
1
N

N∑
n=1

(yn − µn)2 − 1
N

N∑
n=1

(yn −D(xn))2
)
≤ 0 (7)

for any compact subset A of X and any continuous decision rule D (cf. (1)).
By the Tietze–Uryson theorem ([19], Theorem 2.6.4 on p. 65), if X is a normal
topological space, we will obtain an equivalent definition allowing D to be any
continuous function from A to R.

The definitions of this subsection are most intuitive in the case of compact
X, and in our informal discussion we will be making this assumption. The
main remaining difference of our definition of universal consistency from the
statistical one [50] is that we require D to be continuous. If D is allowed to be
discontinuous, (7) is impossible to achieve: no matter how Predictor chooses his
predictions µn, Reality can choose

xn :=
n−1∑

i=1

sign(µi)
3i

, yn :=

{
1 if µn < 0
−1 otherwise

(assuming X ⊇ [−1, 1] and Y ≥ 1), foiling (7) for the prediction rule

D(x) :=

{
−1 if x <

∑∞
i=1 sign(µi)/3i

1 otherwise.

A positive argument in favor of the requirement of continuity of D is that
it is natural for Predictor to compete only with computable prediction strat-
egy, and continuity is often regarded as a necessary condition for computability
(Brouwer’s “continuity principle”).

The existence of universal RKHS on Euclidean spaces Rm (see §4) implies
the following proposition.

Corollary 1 If X ⊆ Rm for some m = 1, 2, . . ., there exists a universally
consistent on-line prediction algorithm.

Proof Any on-line prediction algorithm satisfying (3) of Theorem 1 for a uni-
versal RKHS F on Rm will be universal. Indeed, let A ⊆ X be compact, f be a
continuous function on X, and ε > 0. Suppose xn ∈ A, n = 1, 2, . . . . Our goal
is to prove that

1
N

N∑
n=1

(yn − µn)2 ≤ 1
N

N∑
n=1

(yn − f(xn))2 + ε

6



from some N on. It suffices to choose D ∈ F at a distance at most ε/(8Y ) from
f in the metric C(A), apply (3) to D, and notice that

∣∣∣∣∣
1
N

N∑
n=1

(yn −D(xn))2 − 1
N

N∑
n=1

(yn − f(xn))2
∣∣∣∣∣ ≤ 4Y

ε

8Y
=

ε

2

(this calculation assumes that f and D take values in [−Y, Y ]; we can always
achieve this by truncating f and D: truncation does not lead outside the uni-
versal RKHS described in §4).

Remark It is easy to extend Corollary 1 to the case where X is a separable
metric space or a compact metric space: indeed, by Theorem 4.2.10 in [20]
the Hilbert cube is a universal space for all separable metric spaces and for
all compact metric spaces, and every continuous function on the Hilbert cube
(we are interested in continuous extensions of continuous functions on compact
subsets), being uniformly continuous (see, e.g., [19], Corollary 2.4.6 on p. 52),
can be arbitrarily well approximated by functions that only depend on the first
m coordinates of their argument; it remains to notice that the on-line prediction
algorithms satisfying the condition of Theorem 1 for universal RKHS on [0, 1]m

can be merged into one on-line prediction algorithm using, e.g., the Aggregating
Algorithm.

So far in this subsection we have only discussed the asymptotic notion of uni-
versal consistency, although it is clear that one needs universality in a stronger
sense. In practical problems, it is not enough for the benchmark class F to be
universal; we also want as many prediction rules D as possible to belong to F ,
or at least to be well approximated by the elements of F ; we also want ‖D‖F
to be as small as possible. The Sobolev spaces on [0, 1]m discussed in §4 are not
only universal RKHS but also include all functions that are smooth in a fairly
weak sense. However, the Hilbert-space methods have their limitations: it is
not clear, e.g., how to apply them to functions that are as “smooth” as typical
trajectories of the Brownian motion. These larger benchmark classes seem to
require Banach-space methods: see [56].

3 Implications for the statistical theory of re-
gression

So far we have not made any stochastic assumptions about the way the exam-
ples are produced. In this section we derive simple implications from Theorem
1 for the statistical learning framework, assuming that the examples (xn, yn)
are drawn independently from some probability distribution on X × [−Y, Y ].
Similar implications can be derived from the results of [15], [6], and some other
papers (see the next section); the corollary stated in this section, however, has
somewhat better constants.
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Generalization bounds

The risk of a prediction rule D : X → R with respect to a probability distribu-
tion P on X× [−Y, Y ] is defined as

riskP (D) :=
∫

X×[−Y,Y ]

(y −D(x))2P (dx, dy).

Our goal in this section is to construct, from a given sample, a prediction rule
whose risk is competitive with the risk of small-norm prediction rules in a given
RKHS. As shown in [13] (with similar results obtained earlier in [11] and before
that in [39]), this can be easily done once we have a competitive on-line algorithm
(such as those in Theorems 1–3).

Fix an on-line prediction algorithm and a sequence of examples

(x1, y1), (x2, y2), . . . .

For each n = 1, 2, . . ., let Hn : X → R be the function that maps each
x ∈ X to the prediction µn ∈ R output by the algorithm when fed with
(x1, y1), . . . , (xn−1, yn−1), x. We will say that the prediction rule

HN (x) :=
1
N

N∑
n=1

Hn(x)

is obtained by averaging from the on-line prediction algorithm.

Corollary 2 Let F be an RKHS on X, let D ∈ F be such that D(x) ∈ [−Y, Y ]
for all x ∈ X, and let HN , N = 1, 2, . . ., be the prediction rules obtained by
averaging from some on-line prediction algorithm guaranteeing (3). For any
probability distribution P on X× [−Y, Y ], any N = 1, 2, . . ., and any δ > 0,

riskP (HN ) ≤ riskP (D) +
2Y√
N

(√
c2
F + 1 (‖D‖F + Y ) + 2Y

√
2 ln

2
δ

)
(8)

with probability at least 1− δ.

Proof For a suitable choice of ε > 0, we will have

riskP (HN ) ≤ 1
N

N∑
n=1

riskP (Hn) (9)

≤ 1
N

N∑
n=1

(yn −Hn(xn))2 + ε (10)

≤ 1
N

N∑
n=1

(yn −D(xn))2 +
2Y√
N

√
c2
F + 1 (‖D‖F + Y ) + ε (11)

≤ 1
N

N∑
n=1

riskP (D) +
2Y√
N

√
c2
F + 1 (‖D‖F + Y ) + 2ε (12)
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= riskP (D) +
2Y√
N

√
c2
F + 1 (‖D‖F + Y ) + 2ε

with probability at least 1 − δ. The inequalities (9) and (11) always hold: the
first follows from the convexity of the function t 7→ t2, and the second from
Theorem 1. By Hoeffding’s martingale inequality ([32], Theorem 1 and the
remark at the end of §2; see also [18], Theorem 9.1 on p. 135), (10) and (12) will
hold with probability at least 1− e−ε2N/(8Y 4); to make the probability of their
conjunction at least 1− δ, it suffices to find ε from the equation e−ε2N/(8Y 4) =
δ/2, which gives

ε =
2Y 2

√
N

√
2 ln

2
δ
.

In Corollary 2 we only consider prediction rules taking values in [−Y, Y ];
this is not a real restriction if the RKHS F satisfies D ∈ F =⇒ |D| ∈ F , as the
examples of RKHS considered in §4 do.

Universally consistent procedures

Suppose the object space X is the Euclidean space Rm for some m. It is easy to
see that Corollary 2 implies the existence of universally consistent procedures in
the sense of Stone [50] for a known upper bound Y on |yn|. Indeed, by Luzin’s
theorem ([19], Theorem 7.5.2 on p. 244; see also Theorem 7.1.3 on p. 225) for
any Borel measurable prediction rule f : X → [−Y, Y ] and any ε > 0 there exist
a closed set F ⊆ X of probability at least 1− ε such that the restriction of f to
A is continuous; it is obvious that we can also assume that F is compact. Let
D be a function in a universal RKHS on X (the existence of the latter is shown
in §4) taking values in [−Y, Y ] and close to f in the metric C(F ). It remains to
apply Corollary 2.

Intuitively, the statistical assumption that the examples are produced inde-
pendently from the same distribution is strong enough for the requirement of
continuity to be superfluous: as Cover mentioned in his discussion of Stone’s
paper, it holds automatically with high probability.

4 Examples of RKHS and reproducing kernels

The usefulness of the results stated in the previous two sections depends on the
availability of suitable RKHS. In this section I will only give simplest examples;
for numerous other examples see, e.g., [53], [45], and [47].

The Sobolev spaces

The Sobolev norm ‖f‖H1 of an absolutely continuous function f : [0, 1] → R is
defined by

‖f‖2H1 :=
∫ 1

0

(f(t))2 dt +
∫ 1

0

(f ′(t))2 dt. (13)
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The Sobolev space H1([0, 1]) on [0, 1] is the set of absolutely continuous f :
[0, 1] → R satisfying ‖f‖H1 < ∞ equipped with the norm ‖·‖H1 . It is easy to
see that H1([0, 1]) is an RKHS.

In fact, H1([0, 1]) is only one of a range of Sobolev spaces; see, e.g., [2] for the
definition of the full range (denoted W s,p(Ω) there; we are interested in the case
s = 1, p = 2, and Ω = (0, 1), with the elements of W 1,2((0, 1)) extended to [0, 1]
by continuity). The space H1([0, 1]) is the “least smooth” among the Sobolev
spaces Hs([0, 1]) if we ignore the slightly less natural case of a fractional s. All
of Hs([0, 1]) are universal RKHS, but H1([0, 1]) is a proper superset of all other
Hs([0, 1]), and so is the “most universal” Sobolev space of this type.

It is easy to see that neither of the two addends in (13) can be omitted: if
the first addend is omitted, the square root of the right-hand side of (13) ceases
to be a norm (since it becomes zero for every constant), and if the second ad-
dend is omitted, the function space ceases to be an RKHS (since the evaluation
functionals become unbounded). We can, however, “partially omit” the first
addend replacing (13) with the Fermi–Sobolev norm ‖f‖FS defined by

‖f‖2FS :=
(∫ 1

0

f(t) dt

)2

+
∫ 1

0

(f ′(t))2 dt (14)

for absolutely continuous functions f : [0, 1] → R. The Fermi–Sobolev space on
[0, 1] is the set of absolutely continuous f : [0, 1] → R satisfying ‖f‖FS < ∞
equipped with the norm ‖·‖FS. It is clear that it is still an RKHS, and it is still
universal.

Of course, the underlying set Z of an RKHS does not have to be a com-
pact topological space: we can define the Sobolev norm ‖f‖H1 of an absolutely
continuous function f : R→ R by essentially the same formula

‖f‖2H1 :=
∫ ∞

−∞
(f(t))2 dt +

∫ ∞

−∞
(f ′(t))2 dt (15)

and define the Sobolev space H1(R) on R as the set of absolutely continuous
f : R→ R satisfying ‖f‖H1 < ∞.

To apply Theorems 1–3 to these RKHS we need to know the value of cF for
them; later in this section we will see that

cF = cH1([0,1]) =
√

coth 1 ≈ 1.15

for the Sobolev space H1([0, 1]),

cF = cFS = 2/
√

3 ≈ 1.15

for the Fermi–Sobolev space on [0, 1], and

cF = cH1(R) = 1/
√

2 ≈ 0.71

for the Sobolev space H1(R).
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Remark The term “Sobolev space” usually serves as the name for a topo-
logical vector space; all these spaces are normable, but different norms are
not considered to lead to different Sobolev spaces as long as the topology
does not change. The norms given by (13) and (15) are the most standard
ones. It is easy to see that the norm (14) leads to the same topology as (13):
‖f‖FS ≤ ‖f‖H1 follows from the standard inequality between the L1 and L2

norms, and ‖f‖H1 = O(‖f‖FS) follows from Wirtinger’s inequality (which im-
plies that

∫ π

0
f2 ≤ ∫ π

0
(f ′)2 for every function f on [0, π] such that f ′ is in L2

and
∫ π

0
f = 0; for the statement and a proof of Wirtinger’s inequality, see [30],

Theorem 258).

We are often interested in the case where the objects xn are vectors in a
Euclidean space Rm; if their components are bounded, we can scale them so
that xn ∈ [0, 1]m. In any case, we can take the mth tensor power F of one of
the three RKHS we have just defined as our benchmark class. (For the definition
and properties of tensor products of RKHS see, e.g., [4], §I.8.) We will see later
that cF for the mth tensor power is the mth power of the cF for the original
RKHS. The mth tensor power of the Sobolev and Fermi–Sobolev spaces on [0, 1]
are universal on [0, 1]m and the mth tensor power of H1(R) is universal on Rm

(this can be seen from the construction given in [4], §I.8).
Theorem 3 requires separable RKHS; the separability of Sobolev spaces Hs

for integer s is proved in, e.g., [2], Theorem 3.6 (and it also remains true for
fractional s).

Reproducing kernels

An equivalent language for talking about RKHS is provided by the notion of a
reproducing kernel; this subsection defines reproducing kernels and summarizes
some of their properties. For a detailed discussion, see, e.g., [3]–[4] or [42].

Let F be an RKHS on Z. By the Riesz–Fischer theorem, for each z ∈ Z
there exists a function kz ∈ F such that

f(z) = 〈kz, f〉F , ∀f ∈ F . (16)

The next lemma asserts that ‖kz‖F is the norm cF (z) of the evaluation func-
tional f 7→ f(z).

Lemma 1 Let F be an RKHS on Z. For each z ∈ Z,

‖kz‖F = cF (z).

Proof Fix z ∈ Z. We are required to prove

sup
f :‖f‖F≤1

|f(z)| = ‖kz‖F .

The inequality ≤ follows from

|f(z)| = |〈f,kz〉F | ≤ ‖f‖F ‖kz‖F ≤ ‖kz‖F ,

11



where ‖f‖F ≤ 1. The inequality ≥ follows from

|f(z)| = kz(z)
‖kz‖F

=
〈kz,kz〉F
‖kz‖F

= ‖kz‖F ,

where f := kz/ ‖kz‖F and ‖kz‖F is assumed to be non-zero.

The reproducing kernel of F is the function k : Z2 → R defined by

k(z, z′) := 〈kz,kz′〉F
(equivalently, we could define k(z, z′) as kz(z′) or as kz′(z)). The origin of this
name is the “reproducing property” (16).

There is a simple internal characterization of reproducing kernels of RKHS.
First, it is easy to check that the function k(z, z′), as we defined it, is symmetric,

k(z, z′) = k(z′, z), ∀(z, z′) ∈ Z2,

and positive definite,

m∑

i=1

m∑

j=1

αiαjk(zi, zj) ≥ 0,

∀m = 1, 2, . . . , (α1, . . . , αm) ∈ Rm, (z1, . . . , zm) ∈ Zm.

On the other hand, for every symmetric and positive definite k : Z2 → R there
exists a unique RKHS F such that k is the reproducing kernel of F ([3], Theorem
2 on p. 143).

We can see that the notions of a reproducing kernel of RKHS and of a
symmetric positive definite function on Z2 have the same content, and we will
sometimes say “kernel on Z” to mean a symmetric positive definite function on
Z2. Kernels in this sense are the main source of RKHS in learning theory: cf.
[53, 45, 47]. Every kernel on X is a valid parameter for our prediction algorithms;
to apply Theorems 1–3 we can use the equivalent definition of cF ,

cF = ck := sup
x∈X

√
k(x, x), (17)

k being the reproducing kernel of F .
It was convenient to start from RKHS in stating the theorems of §2, but our

prediction algorithms, two of which are explicitly described in §10, use the more
constructive representation of RKHS via their reproducing kernels.

Norm vs. the reproducing kernel in RKHS

Finding the norm given the reproducing kernel and vice versa are often nontriv-
ial problems for specific RKHS. The most popular methods appear to be the
following.

12



• As we saw in the proof of Lemma 1, kz/ ‖kz‖F is the function at which

sup
f :‖f‖F≤1

|f(z)|

is attained (assuming that ‖kz‖F 6= 0 and that this optimization problem
has a unique solution). Solving this optimization problem we can find the
kernel k given the norm f 7→ ‖f‖F . For application of this method to
the Fermi–Sobolev space on [0, 1], see [58], Appendix C of the last arXiv
version.

• One can use expansions into Fourier series of functions in a given RKHS.
For examples see, e.g., [28], §4.2.1, or, for the Fermi–Sobolev space on
[0, 1], [58] (version 2 of the arXiv technical report).

• If Z is a Euclidean space and the reproducing kernel k(z, z′) only depends
on the difference z − z′ (is “translation-invariant”), an explicit formula
for the reproducing kernel can sometimes be obtained by applying the
Fourier transform to both sides of (16) (similar methods are applied to
the Sobolev space H1(R) in [52] and [48]).

The reproducing kernel of the Sobolev space H1([0, 1]), as given in [10] (§7.4,
Example 13; Exercise 3.12.7) with a reference to [5], is

k(t, t′) =
coshmin(t, t′) cosh min(1− t, 1− t′)

sinh 1
.

This implies Marti’s [41] result that

c2
k = sup

t∈[0,1]

cosh t cosh(1− t)
sinh 1

=
cosh 0 cosh 1

sinh 1
= coth 1,

as stated above.
The reproducing kernel of the Fermi–Sobolev space on [0, 1] was found in

[16] (see also [61], §10.2, or [28], §2.3.3); it is given by

k(t, t′) = k0(t)k0(t′) + k1(t)k1(t′) + k2(|t− t′|)

= 1 +
(

t− 1
2

)(
t′ − 1

2

)
+

1
2

(
|t− t′|2 − |t− t′|+ 1

6

)

=
1
2

min2(t, t′) +
1
2

min2(1− t, 1− t′) +
5
6
, (18)

where kl := Bl/l! are scaled Bernoulli polynomials Bl. So, for the Fermi–Sobolev
space on [0, 1] we have

c2
k = max

t∈[0,1]

(
1
2
t2 +

1
2
(1− t)2 +

5
6

)
=

4
3
.

The reproducing kernel of the Sobolev space H1(R) is

k(t, t′) =
1
2

exp (− |t− t′|)

13



(see [52], [48], or [10], §7.4, Example 24). From the last equation we can see
that cH1(R) = 1/

√
2.

It is the general fact that the reproducing kernel of the m-fold product of
RKHS can be obtained as the m-fold product of the reproducing kernels of the
components ([4], §I.8, Theorem I). For example, the reproducing kernel of the
mth power of H1([0, 1]) is

k ((t1, . . . , tm), (t′1, . . . , t
′
m)) =

m∏

i=1

coshmin(ti, t′i) coshmin(1− ti, 1− t′i)
sinh 1

.

We can see that

cF = (coth 1)m/2
, cF =

(
2/
√

3
)m

, cF = 2−m/2

for the mth power of the Sobolev space H1([0, 1]), of the Fermi–Sobolev space
on [0, 1], and of the Sobolev space H1(R), respectively.

An extensive list of RKHS together with their reproducing kernels is given
in [10], §7.4.

5 Some comparisons

The first paper about competitive on-line regression is [24]; for a brief review
of the work done in the 1990s, see [55], §4. Our results are especially close to
those of [15] and [6].

There are two main proof techniques in the existing theory of competitive
on-line regression: various generalizations of gradient descent (used in, e.g., [15],
[37], and [6]) and the Bayes-type Aggregating Algorithm (proposed in [54] and
described in detail in [31]; for a streamlined presentation, see [55]). In this
subsection we will only discuss the former; some information about the latter
will be given in §8.

Comparison between our results and the known ones is somewhat compli-
cated by the fact that most of the existing literature only deals with the Eu-
clidean spaces Rm. Typically, when loss bounds do not depend on m, they
can be carried over to Hilbert spaces (perhaps satisfying some extra regularity
assumptions, such as separability), and so to some RKHS. To understand what
such known results say in the case of RKHS, the upper bound on the size ‖xn‖
of the objects (if present) has to be replaced by cF (cf. the remark on p. 5), and
the upper bound on the size ‖w‖ of the weight vector has to be interpreted as
an upper bound on ‖D‖F .

With such replacements, Theorem IV.4 on p. 610 of Cesa-Bianchi et al. [15]
becomes

N∑
n=1

(yn − µn)2 ≤ inf
D:‖D‖F≤Y/X

N∑
n=1

(yn −D(xn))2

14



+ 9.2


Y

√√√√ inf
D:‖D‖F≤Y/X

N∑
n=1

(yn −D(xn))2 + Y 2


 ,

where µn are their algorithm’s predictions. This result is of the same type as
(4), but ‖D‖F is bounded by Y/X; because of such a bound (present in all other
results reviewed here) the corresponding prediction algorithm is not guaranteed
to be universally consistent.

Auer et al. [6] make the upper bound on ‖D‖F more general: their Theorem
3.1 (p. 66) implies that, for their algorithm,

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2

+ 8c2
FU2 + 8cFU

√√√√1
2

N∑
n=1

(yn −D(xn))2 + c2
FU2,

where U is a known upper bound on ‖D‖F and Y is assumed to be 1. This is
remarkably similar to (4) and (5).

This type of results was extended by Zinkevich ([62], Theorem 1) to a general
class of convex loss functions.

The main differences of these results from our Theorems 1–3 are that their
leading constants are somewhat worse and that they assume a known upper
bound on ‖D‖F . The last circumstance might appear especially serious, since it
prevents universal consistency even when the Hilbert space used is a universal
RKHS. However, there is a simple way to achieve universal consistency: the Ag-
gregating Algorithm, or a similar procedure, may be used on top of the existing
algorithm (the unknown upper bound may be considered to be an “expert”, and
the predictions made by all “experts”, say of the form 2k, k = 1, 2, . . ., can be
merged into one prediction on each round). This was noticed by Auer et al. [6],
although they did not develop this idea further.

The remaining minor component in achieving universal consistency is using
a universal function class as the benchmark class. It is interesting that Cesa-
Bianchi et al. used an “almost universal” function class in their pioneering paper
[15] (§V; their class was not quite universal because of the requirement f(0) = 0).
A very interesting early paper about on-line regression competitive with function
spaces (although not universal) is [35] (continued by [40]); it, however, assumes
that the benchmark class contains a perfect prediction rule, and its results are
very different from ours.

A major advantage of the methods based on gradient descent is their sim-
plicity and computational efficiency. The technique of defensive forecasting,
which we emphasize in this paper, appears closer to gradient descent than to
the Bayes-type algorithms. There has been a mutually beneficial exchange of
ideas between the gradient descent and Bayes-type approaches, and combining
gradient descent and defensive forecasting might turn out even more productive.
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Results such as Corollary 2 can be obtained by a routine application of
well-known results in competitive on-line learning, but they might not be easy
to obtain by the traditional methods of statistical learning theory. The closest
results of this kind in statistical learning theory that I am aware of are Theorem
C∗ (applied to Sobolev spaces and smooth kernels in Examples 3 and 4) of [17]
and Corollary 6.7 of [8]. These results, however, use balls in RKHS as benchmark
classes, and therefore, do not guarantee even universal consistency.

Corollary 2 can be strengthened by using the results of [14] instead of those
of [13].

6 Proof of Theorem 1

This section is essentially a simplified (and to some degree cut-and-pasted) ver-
sion of §§5–7 of [57]. First we modify the protocol of §2 introducing a third
player, Skeptic, who is allowed to bet at the odds implied by Predictor’s moves.

Forecasting Game I
Players: Reality, Predictor, Skeptic
Protocol:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Predictor announces µn ∈ R.
Skeptic announces sn ∈ R.
Reality announces yn ∈ [−Y, Y ].
Kn := Kn−1 + sn(yn − µn).

END FOR.

In this protocol, the prediction µn is interpreted as the price Predictor charges
for a ticket paying yn; sn is the number of tickets Skeptic decides to buy. (We
sometimes refer to predictions interpreted this way as forecasts, although the
difference between forecasts and the decision-type predictions of §2 is not as
important here as for the more general loss functions considered in [57].) The
protocol describes not only the players’ moves but also the changes in Skeptic’s
capital Kn; its initial value K0 can be an arbitrary real number. Protocols of
this type are studied extensively in [46].

For any continuous strategy for Skeptic there exists a strategy for Predictor
that does not allow Skeptic’s capital to grow, regardless of Reality’s moves.
To state this observation in its strongest form, we make Skeptic announce his
strategy for each round before Predictor’s move on that round rather than
announce his full strategy at the beginning of the game. Therefore, we consider
the following perfect-information game:

Forecasting Game II
Players: Reality, Predictor, Skeptic
Protocol:

16



FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Skeptic announces continuous Sn : R→ R.
Predictor announces µn ∈ R.
Reality announces yn ∈ [−Y, Y ].
Kn := Kn−1 + Sn(µn)(yn − µn).

END FOR.

Lemma 2 Predictor has a strategy in Forecasting Game II that ensures µn ∈
[−Y, Y ], for all n = 1, 2, . . ., and K0 ≥ K1 ≥ K2 ≥ · · · .

Proof Predictor’s goal is achieved by the following strategy:

• if the function Sn takes value 0 on the interval [−Y, Y ], choose µn ∈
[−Y, Y ] such that Sn(µn) = 0;

• if Sn is always positive on [−Y, Y ], take µn := Y ;

• if Sn is always negative on [−Y, Y ], take µn := −Y .

Algorithm of Large Numbers

We say that a kernel k on [−Y, Y ] × X is forecast-continuous if the function
k((µ, x), (µ′, x′)) is continuous in (µ, µ′) ∈ [−Y, Y ]2, for all fixed (x, x′) ∈ X2.
For such a kernel the function

Sn(µ) :=
n−1∑

i=1

k
(
(µ, xn), (µi, xi)

)
(yi − µi)− k

(
(µ, xn), (µ, xn)

)
µ (19)

is continuous in µ ∈ [−Y, Y ].

The algorithm of large numbers (ALN)
Parameter: forecast-continuous kernel k on [−Y, Y ]×X

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define Sn : [−Y, Y ] → R by (19).
Output any root µ ∈ [−Y, Y ] of Sn(µ) = 0 as µn;

if there are no roots, set µn := Y sign Sn.
Read yn ∈ [−Y, Y ].

END FOR.

(Notice that sign Sn is well defined in this context.) It is well known that for
each kernel k on [−Y, Y ] ×X there exists a function Φ : [−Y, Y ] ×X → H (a
feature mapping taking values in a Hilbert space H) such that

k(a, b) = 〈Φ(a), Φ(b)〉H , ∀a, b ∈ [−Y, Y ]×X. (20)
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(For example, we can take the RKHS on [−Y, Y ] ×X with reproducing kernel
k as H and take a 7→ ka as the feature mapping Φ; there are, however, easier
and more transparent constructions.) It can be shown that Φ(µ, x) is forecast-
continuous, i.e., continuous in µ ∈ [−Y, Y ] for each fixed x ∈ X, if and only if
the kernel k defined by (20) is forecast-continuous (see, e.g., [58], Appendix B,
where [0, 1] should be replaced with [−Y, Y ]).

Theorem 5 Let k be the kernel defined by (20) for a forecast-continuous feature
mapping Φ : [−Y, Y ] × X → H, where H is a Hilbert space. The ALN with
parameter k outputs µn ∈ [−Y, Y ] such that

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
≤

N∑
n=1

(
Y 2 − µ2

n

) ‖Φ(µn, xn)‖2H (21)

always holds for all N = 1, 2, . . . .

Proof Following the ALN, Predictor ensures that Skeptic will never increase
his capital with the strategy

sn :=
n−1∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yi − µi)− k

(
(µn, xn), (µn, xn)

)
µn. (22)

Using the inequalities

(yn − µn)2 + 2µn (yn − µn) ≤ Y 2 − µ2
n

and
k
(
(µn, xn), (µn, xn)

) ≥ 0

we can see that the increase in Skeptic’s capital when he follows (22) is

KN −K0 =
N∑

n=1

sn(yn − µn)

=
N∑

n=1

n−1∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yn − µn)(yi − µi)

−
N∑

n=1

k
(
(µn, xn), (µn, xn)

)
µn(yn − µn)

=
1
2

N∑
n=1

N∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yn − µn)(yi − µi)

− 1
2

N∑
n=1

k
(
(µn, xn), (µn, xn)

)
(yn − µn)2

−
N∑

n=1

k
(
(µn, xn), (µn, xn)

)
µn(yn − µn)
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≥ 1
2

N∑
n=1

N∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yn − µn)(yi − µi)

− 1
2

N∑
n=1

k
(
(µn, xn), (µn, xn)

) (
Y 2 − µ2

n

)

=
1
2

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
− 1

2

N∑
n=1

(
Y 2 − µ2

n

) ‖Φ(µn, xn)‖2H ,

which immediately implies (21).

Resolution

This subsection makes the next step in our proof of Theorem 1. Our goal is to
prove the following result (although we will need a slight modification of this
result rather than the result itself).

Theorem 6 Let F be an RKHS on X with reproducing kernel k. The forecasts
µn ∈ [−Y, Y ] output by the ALN with parameter k always satisfy

∣∣∣∣∣
N∑

n=1

(yn − µn)D(xn)

∣∣∣∣∣ ≤ Y cF ‖D‖F
√

N

for all N and all functions D ∈ F .

Proof Using (21) with Φ being the feature mapping x ∈ X 7→ kx ∈ F , we
obtain

∣∣∣∣∣
N∑

n=1

(yn − µn)D(xn)

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

(yn − µn) 〈kxn , D〉F
∣∣∣∣∣

=

∣∣∣∣∣

〈
N∑

n=1

(yn − µn)kxn , D

〉

F

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
n=1

(yn − µn)kxn

∥∥∥∥∥
F
‖D‖F

≤ ‖D‖F

√√√√
N∑

n=1

Y 2k(xn, xn) ≤ Y cF ‖D‖F
√

N (23)

for any D ∈ F .

Theorem 6 can be interpreted as asserting that the ALN has a good “reso-
lution” when F is a universal RKHS; for details, see [58].

Mixing feature mappings

In the proof of Theorem 1 we will mix the feature mapping Φ0(µ, x) := µ (into
H0 := R) and the feature mapping Φ1(µ, x) := kx used in the proof of Theorem
6 (we will have to achieve two goals simultaneously). This can be done using
the following corollary of Theorem 5.
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Corollary 3 Let Φj : [−Y, Y ] × X → Hj, j = 0, 1, be forecast-continuous
mappings from [−Y, Y ]×X to Hilbert spaces Hj, and let a0, a1 be two positive
constants. The forecasts µn ∈ [−Y, Y ] output by the ALN with a suitable kernel
parameter always satisfy

∥∥∥∥∥
N∑

n=1

(yn − µn)Φj(µn, xn)

∥∥∥∥∥

2

Hj

≤ Y 2

aj

N∑
n=1

(
a0 ‖Φ0(µn, xn)‖2H0

+ a1 ‖Φ1(µn, xn)‖2H1

)

for all N and for both j = 0 and j = 1.

Proof Define the “weighted direct sum” H of H0 and H1 as the Cartesian
product H0 ×H1 equipped with the inner product

〈g, g′〉H = 〈(g0, g1), (g′0, g
′
1)〉H :=

1∑

j=0

aj〈gj , g
′
j〉Hj .

Now we can define Φ : [−Y, Y ]×X → H by

Φ(µ, x) := (Φ0(µ, x),Φ1(µ, x)) ;

the corresponding kernel is

k((µ, x), (µ′, x′)) := 〈Φ(µ, x), Φ(µ′, x′)〉H

=
1∑

j=0

aj 〈Φj(µ, x), Φj(µ′, x′)〉Hj
=

1∑

j=0

ajkj((µ, x), (µ′, x′)),

where k0 and k1 are the kernels corresponding to Φ0 and Φ1, respectively. It
is clear that this kernel is forecast-continuous. Applying the ALN to it and
using (21), we obtain

aj

∥∥∥∥∥
N∑

n=1

(yn − µn)Φj(µn, xn)

∥∥∥∥∥

2

Hj

≤
∥∥∥∥∥

(
N∑

n=1

(yn − µn)Φ0(µn, xn),
N∑

n=1

(yn − µn)Φ1(µn, xn)

)∥∥∥∥∥

2

H

=

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
≤ Y 2

N∑
n=1

‖Φ(µn, xn)‖2H

= Y 2
N∑

n=1

1∑

j=0

aj ‖Φj(µn, xn)‖2Hj
.
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Merging Φ0(µ, x) = µ and Φ1(µ, x) = kx by Corollary 3, we obtain

∣∣∣∣∣
N∑

n=1

(yn − µn)µn

∣∣∣∣∣ =

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ0(µn, xn)

∥∥∥∥∥
R

≤ Y√
a0

√√√√
N∑

n=1

(
a0µ2

n + a1k(xn, xn)
)

(24)

and, using (23),

∣∣∣∣∣
N∑

n=1

(yn − µn)D(xn)

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
n=1

(yn − µn)kxn

∥∥∥∥∥
F
‖D‖F

=

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ1(µn, xn)

∥∥∥∥∥
F
‖D‖F

≤ Y√
a1
‖D‖F

√√√√
N∑

n=1

(
a0µ2

n + a1k(xn, xn)
)
, (25)

for each function D ∈ F .

Proof proper

The proof is based on the elementary inequality

N∑
n=1

(yn − µn)2

=
N∑

n=1

(yn −D(xn))2 + 2
N∑

n=1

(D(xn)− µn)(yn − µn)−
N∑

n=1

(D(xn)− µn)2

≤
N∑

n=1

(yn −D(xn))2 + 2
N∑

n=1

(D(xn)− µn)(yn − µn) (26)

(the intermediate equality follows from a2 = (a − b)2 + 2ab − b2). Using this
inequality and (24)–(25), we obtain for the µn ∈ [−Y, Y ] output by the ALN
with the merged kernel as parameter:

N∑
n=1

(yn − µn)2

≤
N∑

n=1

(yn −D(xn))2 + 2

∣∣∣∣∣
N∑

n=1

µn(yn − µn)

∣∣∣∣∣ + 2

∣∣∣∣∣
N∑

n=1

D(xn)(yn − µn)

∣∣∣∣∣
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≤
N∑

n=1

(yn −D(xn))2 + 2Y

(
1√
a1
‖D‖F +

1√
a0

) √√√√
N∑

n=1

(
a0µ2

n + a1k(xn, xn)
)

≤
N∑

n=1

(yn −D(xn))2 + 2Y

(
1√
a1
‖D‖F +

1√
a0

) √
a0Y 2 + a1c2

F
√

N.

It remains to set a1 := 1 and a0 := 1/Y 2.

7 Proof of Theorem 2

In this section we will modify (essentially, further simplify) the proof of Theorem
1 given in the previous section to obtain the proof of Theorem 2.

K29 algorithm

A kernel k on [−Y, Y ]×X is K29-admissible if the function k((µ, x), (µ′, x′)) is
continuous in µ ∈ [−Y, Y ] for all fixed µ′ ∈ [−Y, Y ], x ∈ X, and x′ ∈ X. For
such a kernel the function

Sn(µ) :=
n−1∑

i=1

k
(
(µ, xn), (µi, xi)

)
(yi − µi) (27)

is continuous in µ ∈ [−Y, Y ].

The K29 algorithm
Parameter: K29-admissible kernel k on [−Y, Y ]×X

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define Sn : [−Y, Y ] → R by (27).
Output any root µ ∈ [−Y, Y ] of Sn(µ) = 0 as µn;

if there are no roots, set µn := Y sign Sn.
Read yn ∈ [−Y, Y ].

END FOR.

Let us say that a feature mapping Φ(µ, x) is K29-admissible if the kernel k
defined by (20) is K29-admissible.

Theorem 7 Let k be the kernel defined by (20) for a K29-admissible feature
mapping Φ : [−Y, Y ] ×X → H. The K29 algorithm with parameter k outputs
µn ∈ [−Y, Y ] such that

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
≤

N∑
n=1

(yn − µn)2 ‖Φ(µn, xn)‖2H (28)

always holds for all N = 1, 2, . . . .
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Proof Following the K29 algorithm Predictor ensures that Skeptic will never
increase his capital with the strategy

sn :=
n−1∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yi − µi),

which implies

0 ≥ KN −K0 =
N∑

n=1

sn(yn − µn)

=
N∑

n=1

n−1∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yn − µn)(yi − µi)

=
1
2

N∑
n=1

N∑

i=1

k
(
(µn, xn), (µi, xi)

)
(yn − µn)(yi − µi)

− 1
2

N∑
n=1

k
(
(µn, xn), (µn, xn)

)
(yn − µn)2

=
1
2

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
− 1

2

N∑
n=1

(yn − µn)2 ‖Φ(µn, xn)‖2H ,

which in turn implies (28).

Mixing feature mappings

Now we have the following corollary of Theorem 7.

Corollary 4 Let Φj : [−Y, Y ] × X → Hj, j = 0, 1, be forecast-continuous
mappings from [−Y, Y ]×X to Hilbert spaces Hj, and let aj, j = 0, 1, be positive
constants. The forecasts µn ∈ [−Y, Y ] output by the K29 algorithm with a
suitable kernel parameter always satisfy

∥∥∥∥∥
N∑

n=1

(yn − µn)Φj(µn, xn)

∥∥∥∥∥

2

Hj

≤ 1
aj

N∑
n=1

(yn − µn)2
(
a0 ‖Φ0(µn, xn)‖2H0

+ a1 ‖Φ1(µn, xn)‖2H1

)

for all N and for both j = 0 and j = 1.

Proof Being forecast-continuous, the kernel k defined in the proof of Corollary
3 is a fortiori K29-admissible. Applying the K29 algorithm to it and using (28),
we obtain
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aj

∥∥∥∥∥
N∑

n=1

(yn − µn)Φj(µn, xn)

∥∥∥∥∥

2

Hj

≤
∥∥∥∥∥

N∑
n=1

(yn − µn)Φ(µn, xn)

∥∥∥∥∥

2

H
≤

N∑
n=1

(yn − µn)2 ‖Φ(µn, xn)‖2H

=
N∑

n=1

(yn − µn)2
1∑

j=0

aj ‖Φj(µn, xn)‖2Hj
.

Merging Φ0(µ, x) = µ and Φ1(µ, x) = kx by Corollary 4, we obtain

∣∣∣∣∣
N∑

n=1

(yn − µn)µn

∣∣∣∣∣ =

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ0(µn, xn)

∥∥∥∥∥
R

≤

√√√√ 1
a0

N∑
n=1

(yn − µn)2
(
a0µ2

n + a1k(xn, xn)
)

≤ 1√
a0

√
a1c2

F + a0Y 2

√√√√
N∑

n=1

(yn − µn)2 (29)

and, using (23),

∣∣∣∣∣
N∑

n=1

(yn − µn)D(xn)

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
n=1

(yn − µn)kxn

∥∥∥∥∥
F
‖D‖F

=

∥∥∥∥∥
N∑

n=1

(yn − µn)Φ1(µn, xn)

∥∥∥∥∥
F
‖D‖F

≤ ‖D‖F

√√√√ 1
a1

N∑
n=1

(yn − µn)2
(
a0µ2

n + a1k(xn, xn)
)

≤ 1√
a1
‖D‖F

√
a1c2

F + a0Y 2

√√√√
N∑

n=1

(yn − µn)2, (30)

for each function D ∈ F .

Proof proper

Using (26) and (29)–(30) with a0 := a and a1 := 1, we obtain for the µn output
by the K29 algorithm with the merged kernel as parameter:

N∑
n=1

(yn − µn)2
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≤
N∑

n=1

(yn −D(xn))2 + 2

∣∣∣∣∣
N∑

n=1

µn(yn − µn)

∣∣∣∣∣ + 2

∣∣∣∣∣
N∑

n=1

D(xn)(yn − µn)

∣∣∣∣∣

≤
N∑

n=1

(yn −D(xn)2 + 2
√

c2
F + aY 2

(
‖D‖F +

1√
a

) √√√√
N∑

n=1

(yn − µn)2.

The inequality between the extreme terms of this chain is quadratic in
√√√√

N∑
n=1

(yn − µn)2;

solving it, we obtain
√√√√

N∑
n=1

(yn − µn)2 ≤

√√√√
N∑

n=1

(yn −D(xn))2 + (c2
F + aY 2)

(
‖D‖F +

1√
a

)2

+
√

c2
F + aY 2

(‖D‖F + 1/
√

a
)
,

which is equivalent to (4) when a = 1/Y 2.

8 Bayes-type competitive on-line regression and
proof of Theorem 3

The first result in the Bayes-style competitive on-line regression appears to be
the following: if the benchmark class F consists of the linear functions D(x) =
〈θ, x〉 on X = Rm whose “complexity” is measured by the L2 norm ‖θ‖2 :=√∑m

i=1 θ2
i of θ’s components θi and if a is a positive constant, some on-line

prediction algorithm (namely, the Aggregating Algorithm) ensures

N∑
n=1

(yn − µn)2

≤
N∑

n=1

(yn − 〈θ, xn〉)2 + a ‖θ‖22 + Y 2 ln det

(
I +

1
a

N∑
n=1

xnx′n

)
(31)

≤
N∑

n=1

(yn − 〈θ, xn〉)2 + a ‖θ‖22 + Y 2
m∑

i=1

ln

(
1 +

1
a

N∑
n=1

x2
n,i

)
,

for all N and all θ ∈ Rm ([55], Theorem 1; different proofs are given in [7],
Theorem 4.6, and [23]). In particular, if ‖θ‖2 and all components xn,i of all xn

are bounded by a constant,

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn − 〈θ, xn〉)2 + O (ln N) ;

25



it is interesting that the regret term is now O(ln N), rather than O(
√

N) as in
(3).

We are, however, interested in the infinite-dimensional benchmark classes.
The result (31) was carried over to separable RKHS in [26]: there is an on-line
prediction algorithm that ensures

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2 + a ‖D‖2F + Y 2 ln det
(

I +
1
a
K

)
(32)

for all N and all prediction rules D in a separable RKHS F on X, where K is
the N × N Gram matrix with the elements Ki,j := k(xi, xj), i, j = 1, . . . , N ,
and k is F ’s reproducing kernel. (Actually this result is stated in [26] only for
prediction rules D of the form

∑k
i=1 cikzi

, where k ∈ {1, 2, . . .}, c1, . . . , ck ∈ R,
and z1, . . . , zk ∈ X; but the result is true in general since such prediction rules
are dense in F : see [4], §I.2, (4). Alternatively, the general result follows by the
representer theorem, stated in, e.g., [36] and [45], Theorem 4.2 on p. 90.)

A disadvantage of the bound (32) is that, for a fixed a, the term

ln det
(

I +
1
a
K

)

(which also occurs in [34], Theorems 3.1 and 3.2, and [12]) can have order of
magnitude N : indeed, if

k(xi, xj) =

{
1 if i = j

0 otherwise,

this term becomes

ln
N∏

n=1

(
1 +

1
a

)
= N ln(1 + 1/a).

More generally, Minkowski’s result from [9], Chapter 2, Theorem 15, shows that

ln det
(

I +
1
a
K

)
≥ N ln

(
1 + det 1/N

(
1
a
K

))
,

and so this term will not be small as compared to N unless det K ≤ (aε)N for
a small ε > 0.

Our argument in the previous paragraph assumed that a was fixed. Let us
now see what (32) leads to when N and an upper bound d on ‖D‖F are given in
advance, which gives some scope for optimizing a. In conjunction with the fact
that the determinant of a positive definite matrix does not exceed the product
of its diagonal elements ([9], Chapter 2, Theorem 7), (32) implies

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2 + a ‖D‖2F + Y 2N ln
(

1 +
c2
F
a

)
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≤
N∑

n=1

(yn −D(xn))2 + ad2 +
Y 2c2

FN

a
. (33)

The minimum of ad2 + Y 2c2
FN/a is achieved at a = (Y cF/d)

√
N , and for this

value of a (33) becomes

N∑
n=1

(yn − µn)2 ≤
N∑

n=1

(yn −D(xn))2 + 2Y cFd
√

N.

We can see an analogue of the familiar term 2Y cF ‖D‖F
√

N . The expression

3
2
Y 2 ln N +

c2
F ‖D‖2F

4
+ O(Y 2)

in (5) can be interpreted as the price that we pay for not knowing ‖D‖F and
N in advance.

Kummer’s U function

In the proof of Theorem 3 we will need an approximation to Kummer’s U
function

U(a, b, z) :=
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt (34)

from [51], p. 44, (26a). A concise statement of this result is given in [21], p. 281,
§6.13.3, (22) (in fact, Taylor states his result in terms of the closely related
Whittaker function; [21] states it in terms of Kummer’s U function, which is,
however, denoted Ψ: cf. (2) on p. 255; in using the notation U we are following
[1], Chapter 13: cf. 13.2.5 on p. 505). The approximation is given by the formula

κ−κzb/2−1/4(z − 4κ)1/4eκ−z/2U(a, b, z)

= eiξ
(
1 + O

(
|κ|−r

)
+ O

(
|ξ|−1

))
, (35)

where r ∈ (0, 1],

κ := b/2− a,

iξ := κ ln

(
z1/2 + (z − 4κ)1/2

)2

4κ
− 1

2
z1/2(z − 4κ)1/2,

and it is assumed that ξ →∞ and

|z| > δ|κ|−1+2r (36)

for some constant δ > 0. We are only interested in the case z > 0, a ≥ 1, and
b ∈ [0, 1], which also implies κ < 0. Since ln(−1) = ±iπ, the expression for iξ
can be rewritten as

iξ = κ ln

(
z1/2 + (z + 4|κ|)1/2

)2

4|κ| − 1
2
z1/2(z + 4|κ|)1/2 ± κiπ, (37)
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and we can see that <(iξ) < 0 and, therefore, arg ξ ∈ (0, π); we have already
used this fact in choosing the expression (35) among the expressions given in
[21], p. 281, §6.13.3 ((21)–(24)). Using (37) and the fact that |ξ| ≥ |κ|π, we
deduce from (35):

ln U(a, b, z) = κ ln κ +
(

1
4
− b

2

)
ln z − 1

4
ln(z − 4κ)− κ +

z

2

+ iξ + O
(
|κ|−r

)

= κ ln|κ|+
(

1
4
− b

2

)
ln z − 1

4
ln(z − 4κ)− κ +

z

2

− 1
2
z1/2(z − 4κ)1/2 + κ ln

(
z1/2 + (z + 4|κ|)1/2

)2

4|κ| + O
(
|κ|−r

)

=
(

1
4
− b

2

)
ln z − 1

4
ln

(z

4
− κ

)
− 1

2
ln 2− κ +

z

2

− z1/2
(z

4
− κ

)1/2

+ 2κ ln
((z

4

)1/2

+
(z

4
− κ

)1/2
)

+ O
(
|κ|−r

)

=
(

1
4
− b

2

)
ln z − 1

4
ln

(
a− b

2
+

z

4

)
− 1

2
ln 2 + a− b

2
+

z

2

− z1/2

(
a− b

2
+

z

4

)1/2

+ 2
(

b

2
− a

)
ln

((z

4

)1/2

+
(

a− b

2
+

z

4

)1/2
)

+ O
(
|κ|−r

)
.

By Stirling’s formula ([1], p. 257, 6.1.41),

ln Γ(a) = −a +
(

a− 1
2

)
ln a +

1
2

ln(2π) + O
(
a−1

)
,

which for b ∈ [0, 1] gives

− ln (Γ(a)U(a, b, z)) =
(

b

2
− 1

4

)
ln z +

1
4

ln
(

a− b

2
+

z

4

)
+

b

2
− z

2

+ z1/2

(
a− b

2
+

z

4

)1/2

+ 2
(

a− b

2

)
ln

((
a− b

2
+

z

4

)1/2

+
(z

4

)1/2
)

−
(

a− 1
2

)
ln a− 1

2
ln π + O

(
a−r

)

=
(

b

2
− 1

4

)
ln z +

1
4

ln
(

a− b

2
+

z

4

)
+

b

2
− z

2

+ z1/2

(
a− b

2
+

z

4

)1/2

+ 2
(

a− b

2

)
ln

((
1− b

2a
+

z

4a

)1/2

+
( z

4a

)1/2
)

28



+
(

1
2
− b

2

)
ln a− 1

2
ln π + O

(
a−r

)
. (38)

Proof of Theorem 3

To get rid of the parameter a in the first inequality of (33), we will merge the
AA predictions (truncated to [−Y, Y ] if necessary) corresponding to all possible
a ∈ (0,∞) w.r. to the probability measure

Q(da) :=
εc2ε

(a + c2)1+ε
da

on (0,∞); here and in what follows we let c stand for cF and ε for a constant
in (0, 1] to be chosen later. Taking η := 1/(2Y 2) (see [55], towards the end
of §2.4) and β := e−η, making use of Lemmas 1 and 2 of [55], and letting d
stand for ‖D‖F , we obtain the following bound for the excess loss of the merged
predictions over D’s predictions over the first N rounds:

logβ

∫
βad2+Y 2N ln(1+c2/a)Q(da) = −1

η
ln

∫
e−ηad2

(
1 +

c2

a

)−ηY 2N

Q(da)

= −2Y 2 ln
∫

e−ad2/(2Y 2)

(
1 +

c2

a

)−N/2

Q(da)

= −2Y 2 ln
(

εc2ε

∫ ∞

0

e−ad2/(2Y 2)
(
a + c2

)−N/2−1−ε
aN/2da

)
.

Substituting c2t for a transforms this to

−2Y 2 ln
(

ε

∫ ∞

0

e−c2d2t/(2Y 2) (1 + t)−N/2−1−ε
tN/2dt

)
,

which, by (34) and (38), can be written as

− 2Y 2 ln
(

εΓ
(

N

2
+ 1

)
U

(
N

2
+ 1, 1− ε,

c2d2

2Y 2

))

= −2Y 2 ln ε + Y 2

(
1
2
− ε

)
ln

c2d2

2Y 2
+

Y 2

2
ln

(
N

2
+

1
2

+
ε

2
+

c2d2

8Y 2

)

+ Y 2(1− ε)− c2d2

2
+ Y cd

(
N + 1 + ε +

c2d2

4Y 2

)1/2

+ 2Y 2(N + 1 + ε) ln

((
1− 1− ε

N + 2
+

c2d2

4Y 2(N + 2)

)1/2

+
cd

2Y
√

N + 2

)

+ εY 2 ln
(

N

2
+ 1

)
− Y 2 ln π + Y 2O

(
N−r

)
. (39)

Remember that the validity of the approximation (35) requires the condition
(36). In the most interesting case 1 ¿ z ¿ κ we can take r := 1/2 to get the best
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bound, corresponding to the accuracy of O(N−1/2); unfortunately, such a bound
would be rather clumsy, and the following transformations (which sometimes
are inequalities rather than equalities) are performed to a much worse accuracy,
O(Y 2) (another reason being Grothers’s remarks in [27], p. 1681). To make sure
that (36) holds it is now sufficient to assume that

c2d2

Y 2
≥ δ2N−1+2δ (40)

for some constant δ; we will first assume that this condition holds, and at the
end of the proof will get rid of it (although not completely: it survives in the
presence of “max” in (5)).

The fourth addend from the end of (39) can be bounded above as follows:

2Y 2(N + 1 + ε) ln

((
1− 1− ε

N + 2
+

c2d2

4Y 2(N + 2)

)1/2

+
cd

2Y
√

N + 2

)

≤ 2Y 2(N + 1 + ε) ln
(

1 +
c2d2

8Y 2(N + 2)
+

cd

2Y
√

N + 2

)

≤ 2Y 2(N + 1 + ε)
(

c2d2

8Y 2(N + 2)
+

cd

2Y
√

N + 2

)

≤ c2d2

4
+ Y cd

√
N + 1 + ε.

This allows us to bound (39) from above by

(1− 2ε)Y 2 ln
cd

Y
+

Y 2

2
ln

(
N +

c2d2

Y 2

)
− c2d2

2
+ Y cd

(
N + 1 + ε +

c2d2

4Y 2

)1/2

+
c2d2

4
+ Y cd

√
N + 1 + ε + εY 2 ln N + O

(
Y 2

)

≤ (2− 2ε)Y 2 ln
cd

Y
+

(
1
2

+ ε

)
Y 2 ln N + 2Y cd

√
N + 1 + ε +

c2d2

4
+ O

(
Y 2

)
.

If we take ε = 1, this will give

3
2
Y 2 ln N + 2Y cd

√
N + 2 +

(cd)2

4
+ O

(
Y 2

)
, (41)

i.e., (5). The choice of ε = 1 appears to lead to the simplest regret term, but
notice that by choosing ε close to 0 we can improve the constant 3

2Y 2 in the
second leading addend in the regret term in (5) making it close to 1

2Y 2.
Returning to the condition (40), it is easy to check that the bound (41) will

remain valid without this condition if cd is replaced by

P := max
(
cd, Y δN−1/2+δ

)
;

indeed, this immediately follows from the monotonicity of Γ(a)U(a, b, z) in z.
It remains to notice that the difference between the addend (cd)2/4 in (41) and
P 2/4 can be accommodated in the O(Y 2) term, so this addend can be left as it
is.
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9 Proof of Theorem 4

Let F be the RKHS corresponding to the kernel on X = R defined by k(x, x′) :=
c2h(x−x′), where h : R→ R is the “triangular” function h(t) := max(1−|t|, 0);
the positive definiteness of k follows from Bochner’s theorem (see, e.g., [22],
§XIX.2) and Polya’s theorem ([22], Example (b) in §XV.3). Representation
(17) shows that cF = c.

Reality’s strategy is xn := 2n and yn := ±Y , with sign(yn) opposite to
sign(µn) (when µn = 0, sign(yn) is chosen arbitrarily). This will make sure that
the loss of the on-line prediction algorithm over the first N rounds is at least
Y 2N .

Let fn ∈ F be the function defined by fn(x) := ch(x− 2n), n = 1, 2, . . . . It
is clear that the functions fn, n = 1, 2, . . ., are orthogonal and ‖fn‖F = 1. Set
α := cd/(Y

√
N) and let the decision rule D ∈ F be defined by

D := α

N∑
n=1

yn

c
fn;

one of the conditions of the theorem ensures that α ≤ 1 and, therefore, D takes
values in [−Y, Y ]. The loss of D over the first N rounds is (1 − α)2Y 2N and
the norm of D is ‖D‖F = α(Y/c)

√
N = d. We can see that the excess loss of

the prediction algorithm as compared to D is

Y 2N − (1− α)2Y 2N = (2α− α2)Y 2N = (2− α)Y cd
√

N,

which completes the proof.

10 The algorithms

In this short section we extract the prediction strategies achieving (3) and
(4) from our proof of Theorems 1 and 2. Replacing in (19) the kernel
k((µ, x), (µ′, x′)) by the merged kernel µµ′/Y 2 + 〈kx,kx′〉F , we obtain

Sn(µ) =
n−1∑

i=1

(
µµi/Y 2 + k(xn, xi)

)
(yi − µi)−

(
µ2/Y 2 + k(xn, xn)

)
µ; (42)

this immediately leads to the following explicit description for the on-line pre-
diction algorithm we used in the proof of Theorem 1.

An algorithm achieving (3)
Parameter: the reproducing kernel k of F

FOR n = 1, 2, . . . :
Read xn ∈ X.
Define Sn(µ) by (42) for all µ ∈ [−Y, Y ].
Define µn as any root µ ∈ [−Y, Y ] of Sn(µ) = 0;

if there are no roots, set µn := Y sign Sn.
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Read yn ∈ [−Y, Y ].
END FOR.

To obtain an algorithm achieving (4), it suffices to replace (42) by

Sn(µ) =
n−1∑

i=1

(
µµi/Y 2 + k(xn, xi)

)
(yi − µi).

Acknowledgments
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