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Jean Ville and martingales



The original definition of a martingale

Étude critique de la notion de collectif, 1939, p. 83



In a (perhaps) more modern notation

Ville’s definition of a martingale
A martingale s is a sequence of real functions so, s1(X1), s2(X1,X2), . . .
such that

1 so = 1;
2 sn(X1, . . . ,Xn)≥ 0 for all n ∈ N;
3 E(sn+1(x1, . . . ,xn,Xn+1)|x1, . . . ,xn) = sn(x1, . . . ,xn) for all n ∈N0 and all

x1, . . . ,xn.

It represents the outcome of a fair betting scheme, without borrowing
(or bankruptcy).



Ville’s theorem
The collection of all (locally defined!) martingales determines the
probability P on the sample space Ω:

P(A) = sup{λ ∈ R : s martingale and limsup
n→+∞

λ sn(X1, . . . ,Xn)≤ IA}

= inf{λ ∈ R : s martingale and liminf
n→+∞

λ sn(X1, . . . ,Xn)≥ IA}

Turning things around
Ville’s theorem suggests that we could take a convex set of martingales
as a primitive notion, and probabilities and expectations as derived
notions.

That we need an convex set of them, elucidates that martingales are
examples of partial probability assessments.
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Imprecise probabilities:
dealing with partial probability

assessments



Partial probability assessments
lower and/or upper bounds for

– the probabilities of a number of events,
– the expectations of a number of random variables

Imprecise probability models
A partial assessment generally does not determine a probability
measure uniquely, only a convex closed set of them.

IP Theory
systematic way of dealing with, representing, and making conservative
inferences based on partial probability assessments
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Lower and upper expectations



Lower and upper expectations

A Subject is uncertain about the value that a variable X assumes in X .

Gambles:
A gamble f : X → R is an uncertain reward whose value is f (X).
G (X ) denotes the set of all gambles on X .

Lower and upper expectations:
A lower expectation is a real functional that satisfies:
E1. E( f )≥ inf f [bounds]
E2. E( f +g)≥ E( f )+E(g) [superadditivity]
E3. E(λ f ) = λE( f ) for all real λ ≥ 0 [non-negative homogeneity]
E( f ) :=−E(− f ) defines the conjugate upper expectation.
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Sub- and supermartingales



An event tree and its situations

Situations are nodes in the event tree, and the sample space Ω is the
set of all terminal situations:

t

ω

initial

terminal

non-terminal



Events

An event A is a subset of the sample space Ω:

s

Γ(s) := {ω ∈Ω : sv ω}



Local, or immediate prediction, models

In each non-terminal situation s, Subject has a belief model Q(·|s).

s

c2

c1

t

Q(·|s) on G (D(s)) Q(·|t) on G (D(t))

D(s) = {c1,c2} is the set of daughters of s.



Sub- and supermartingales

We can use the local models Q(·|s) to define sub- and
supermartingales:

A submartingale M

is a real process such that in all non-terminal situations s:

Q(M (s ·)|s)≥M (s).

A supermartingale M

is a real process such that in all non-terminal situations s:

Q(M (s ·)|s)≤M (s).



Lower and upper expectations

The most conservative lower and upper expectations on G (Ω) that
coincide with the local models and satisfy a number of additional
continuity criteria (cut conglomerability and cut continuity):

Conditional lower expectations:

E( f |s) := sup{M (s) : limsupM ≤ f on Γ(s)}

Conditional upper expectations:

E( f |s) := inf{M (s) : liminfM ≥ f on Γ(s)}



Test supermartingales and strictly null events

A test supermartingale T

is a non-negative supermartingale with T (�) = 1.
(Very close to Ville’s definition of a martingale.)

An event A is strictly null
if there is some test supermartingale T that converges to +∞ on A:

limT (ω) = lim
n→∞

T (ωn) = +∞ for all ω ∈ A.

If A is strictly null then

P(A) = E(IA) = inf{M (�) : liminfM ≥ IA}= 0.



A few basic limit results

Supermartingale convergence theorem [Shafer and Vovk, 2001]
A supermartingale M that is bounded below converges strictly almost
surely to a real number:

liminfM (ω) = limsupM (ω) ∈ R strictly almost surely.



A few basic limit results

Strong law of large numbers for submartingale differences [De
Cooman and De Bock, 2013]
Consider any submartingale M such that its difference process

∆M (s) = M (s ·)−M (s) ∈ G (D(s)) for all non-terminal s

is uniformly bounded. Then liminf〈M 〉 ≥ 0 strictly almost surely, where

〈M 〉(ωn) =
1
n
M (ωn) for all ω ∈Ω and n ∈ N



A few basic limit results

Lévy’s zero–one law [Shafer, Vovk and Takemura, 2012]
For any bounded real gamble f on Ω:

limsup
n→+∞

E( f |ωn)≤ f (ω)≤ liminf
n→+∞

E( f |ωn) strictly almost surely.



Imprecise Markov chains



A simple discrete-time finite-state stochastic process
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An imprecise IID model
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An imprecise Markov chain
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Stationarity and ergodicity
The lower expectation En for the state Xn at time n:

En( f ) = E( f (Xn))

The imprecise Markov chain is Perron–Frobenius-like if for all marginal
models E1 and all f :

En( f )→ E∞( f ).

and if E1 = E∞ then En = E∞, and the imprecise Markov chain is
stationary.

In any Perron–Frobenius-like imprecise Markov chain:

lim
n→+∞

1
n

n

∑
k=1

En( f ) = E∞( f )

and

E∞( f )≤ liminf
n→+∞

1
n

n

∑
k=1

f (Xk)≤ limsup
n→+∞

1
n

n

∑
k=1

f (Xk)≤E∞( f ) str. almost surely.



A more general ergodic theorem: the basics

Introduce a shift operator:

θω = θ(x1,x2,x3, . . .) := (x2,x3,x4, . . .) for all ω ∈Ω,

and for any gamble f on Ω a shifted gamble θ f := f ◦θ :

(θ f )(ω) := f (θω) for all ω ∈Ω.

For any bounded gamble f on Ω, the bounded gambles:

g = liminf
n→+∞

1
n

n−1

∑
k=0

θ
k f and g = limsup

n→+∞

1
n

n−1

∑
k=0

θ
k f

are shift-invariant: θg = g.



A more general ergodic theorem:
use Lévy’s zero–one law

In any Perron–Frobenius-like imprecise Markov chain, for any
shift-invariant gamble g = θg on Ω:

lim
n→+∞

E(g|ωn) = E∞(g) and lim
n→+∞

E(g|ωn) = E∞(g)

and therefore

E∞(g)≤ g≤ E∞(g) strictly almost surely.



New books
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