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Outline

Prediction markets:

Setting and challenges

Addressing the challenges:

constraint generation

Empirical evaluation:

U.S. Elections 2008

Field experiment:

U.S. Elections 2012
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Traders buy shares for some price: $0.45 per share

For each share of a security receive:

$1 if true

$0 if false



Market implementation:

(automated) market maker

market maker

sets prices

if more shares bought,

price increases

the price equals the 

consensus probability

of the event

buy/sell

buy/sell

buy/sell

market

maker



Combinatorial securities:

more information

payoff is a function of common variables

e.g., 50 states elect Obama or Romney



Combinatorial securities:

more information

Obama to lose FL, but win election

Obama to win >8 of 10

Northeastern states



Industry standard:

ignore relationships

Treat them as independent markets:

Las Vegas sports betting

Kentucky horse racing

Wall Street stock options
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Arbitrage

trading with guaranteed profits

possible if prices incoherent

prices cannot be realized

as probabilities

Pricing without arbitrage: #P-hard

Industry standard = Ignore arbitrage

traders rewarded for computation

instead of information

poor information sharing

-
-

price $0.40 price $0.50



Our approach:

partial arbitrage removal

Separate pricing (must be fast)
and information propagation

• fast pricing in independent markets
for tractably small groups of securities

• in parallel: constraint generation
to find and remove arbitrage

Embedded in convex optimization
(with many nice properties).

• (Dudík et al. 2011)
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Can we just use

existing approaches

from graphical models?

MCMC—randomized, slow convergence

mean field—non-convex

belief propagation—lack of convergence

Problematic for pricing:

poor convergence  volatility

non-determinism     distorted incentives

and user experience



Our approach

implement a coherent pricing scheme
on small groups of securities; e.g.,

detect incoherence between groups

act as an arbitrageur to restore coherence

caveat:
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– we detect only a subset of violations

priced
𝑒𝑞1

𝑒𝑞1 + 𝑒𝑞2
priced

𝑒𝑞2

𝑒𝑞1 + 𝑒𝑞2

number of shares

bought so far



Our approach

implement a coherent pricing scheme
on small groups of securities; e.g.,

detect incoherence between groups

act as an arbitrageur to restore coherence

caveat:

– difficult to detect incoherence in general

– we detect only a subset of violations

priced
𝑒𝑞1

𝑒𝑞1 + 𝑒𝑞2
priced

𝑒𝑞2

𝑒𝑞1 + 𝑒𝑞2



Our approach

implement a coherent pricing scheme
on small groups of securities; e.g.,

detect incoherence between groups

act as an arbitrageur to restore coherence

caveat:

– difficult to detect incoherence in general

– we detect only a subset of violations

priced
𝑒𝑞1

𝑒𝑞1 + 𝑒𝑞2
priced

𝑒𝑞2

𝑒𝑞1 + 𝑒𝑞2



Our approach

implement a coherent pricing scheme
on small groups of securities; e.g.,

detect incoherence between groups

act as an arbitrageur to restore coherence

caveat:

– difficult to detect incoherence in general

– we detect only a subset of violations

priced
𝑒𝑞1

𝑒𝑞1 + 𝑒𝑞2
priced

𝑒𝑞2

𝑒𝑞1 + 𝑒𝑞2



For U.S. Elections:

conjunction market

create 50 states (groups of size 2)
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in parallel:
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Local coherence

Pairs:

𝑃 𝐴 ∧ 𝐵 + 𝑃 𝐴 ∧  𝐵 = 𝑃 𝐴

Larger conjunctions:

𝑃 𝐴1 ∧ 𝐴2 ∧ ⋯∧ 𝐴𝑚 ≤ 𝑃 𝐴𝑖
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pick a subset 𝐴𝑖1 ∨ ⋯∨ 𝐴𝑖𝑘
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𝑘 𝑃 𝐴𝑖𝑗 −  1≤𝑗<𝑙≤𝑘 𝑃 𝐴𝑖𝑗 ∧ 𝐴𝑖𝑙

#clique constraints exponential

 find only the tightest one!

(approximate submodular maximization

via Feige et al. 2007)
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Tree constraints

For a disjunction 𝐴1 ∨ ⋯∨ 𝐴𝑚,

𝑃 𝐴1 ∨ ⋯∨ 𝐴𝑚 ≤  𝑖=1
𝑚 𝑃 𝐴𝑖 −  𝑖,𝑗 ∈𝑇𝑃 𝐴𝑖 ∧ 𝐴𝑗

where 𝑇 is a spanning tree on nodes 1,… ,𝑚

(Galambos and Simoneli 1996)



Does it work?

Tested using a survey of Election 2008:

singletons, pairs, triples

Small data set—compare with exact:

10 states, 30k trades

Large data set—compare with independent:

50 states, 300k trades
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No really,
does it work?



WiseQ Game
(launched September 16, 2012)









WiseQ by numbers 

437 active users

3,137 trades

514 distinct bundles traded

1033 possible outcomes

44.5 million possible bundles allowed by our menu

17,222 securities in 2,840 small markets

20,983 coherence constraints
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Job Numbers for September 2012

(4-Oct-2012)

initialization

prediction

(20-Sep-2012)

Numerical predictions:

job numbers
actual outcome

(5-Oct-2012)



Summary

independent markets + constraints:

tractable and accurate

combinatorial markets can succeed with

moderate numbers of users

even on huge outcome spaces

meaningful forecasts for

challenging, but relevant outcomes:

combinatorial and numerical


