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A Bird-Eye view of Learning Theory

We want to design algorithms that take data as input and
return predictions as output. But there are fundamental
limits to our ability to predict and how quickly we can
achieve good performance.
Two driving questions

I How well can we learn given very limited data?

I What are the computational challenges of prediction?
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An Economic Translation

Thinking in terms of the economic tradeoffs, our goal is to
determine the equilibrium point among the following:

I The marginal cost of additional data

I The marginal value of performance improvement (i.e.
better decision making)

I The marginal cost of computational resources

I The marginal value of time
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In 6 Slides



Learning, Markets,
and Exponential

Families

Jacob Abernethy

Intro: Economics
Learning

Learning ≈ Tradeoffs

Financialization of ML

Outline

Market Making ≈
OLO

Exp. Families ≈
Markets

1. Data Brokerage

In the world of Big Data, buying and selling information is a
growing industry.
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2. Algorithms as a Service

All-purpose ML algorithms are being provided as a web
service and sold to developers.
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3. Information Markets

Markets built entirely for speculative purposes, where traders
can buy/sell securities on elections results to football
matches, have flourished in recent years.
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4. A Market for Cycles

There is an emerging competitive market where unit of
computation are sold like a commodity
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5. A Market for Solutions
Companies are starting to turn towards the prize-driven
competition to solve big data challenges, rather than hiring
in-house data scientists.
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6. Market for Academics

ML Practitioners (including many academics and graduate
students) have apparently risen in value in recent years.
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This Talk

We will discuss some recent results connecting
learning-theoretic ideas to finance and economic questions.

I Intro

I Quick review of regret minimization

I Regret in the context of market making

I Exponential family distributions viewed as a prediction
market mechanism
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The Typical Regret-minimization Framework

We imagine an online game between Nature and Learner.
Learner has a (typically convex) decision set X ⊂ Rd , and
Nature has an action set Z, and there is a loss function
` : X × Z → R defined in advance.

Online Convex Optimization

For t = 1, . . . ,T :

I Learner chooses xt ∈ X
I Nature chooses zt ∈ Z
I Learner suffers `(xt , zt)

Learner is concerned with the regret:∑T
t=1 `(xt , zt)−minx∈X

∑T
t=1 `(x , zt)

This talk we assume ` is linear in x ; WLOG `(xt , zt) = x>zt .
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Follow the Regularized Leader

FTRL – Primal Version
1: Input: learning rate η > 0, regularizer R : X → R

2: for t = 1 . . .T , xt ←− arg min
x∈X

R(x) + η

t−1∑
s=1

x>ls .

FTRL – Dual Version

1: for t = 1 . . .T , xt ←− ∇R∗

(
−η

t−1∑
s=1

ls

)
.

FTRL is essentially the “only” algorithm we have.
(This COLT: even Follow the Perturbed Leader is a special
case of FTRL [Abernethy, Lee, Sinha, and Tewari, 2014b]
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Regret Bounds on FTRL

Theorem (now classical)

Let l1, . . . , lT be an arbitrary sequence of vectors, and let Lt :=
l1 + . . . lt . Assume R(x0) = 0. Then

RegretT ≤ R(x∗)

η
+

T∑
t=1

DR(xt , xt+1)

≤ R(x∗)

η
+ η

T∑
t=1

(xt − xt+1)>lt

=⇒ RegretT ≤ O

(√∑T
t=1 ‖lt‖2

)
where DR(·, ·) is the Bregman divergence w.r.t. R, and the
last line follows from tuning η and assuming some curvature
properties of R.
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Market Making as Regret Minimization

A lot of the big money in finance is made through market
making: a market maker (MM) is an agent always willing to
buy and sell shares/securities at sequentially-set prices.

Assume we have a stock/bond/derivative for sale. For
t = 1, . . . ,T :

I MM sets bid and ask prices pt , pt
∈ R+

I A trader purchases rt ∈ R shares (short sale ≡ rt < 0)

I MM receives gt = $ptrt if rt > 0 or gt = $p
t
rt if rt ≤ 0

All shares eventually liquidate at a price of p∗.

Loss of MM =
T∑
t=1

rtp
∗ −

T∑
t=1

rt(pt1[rt > 0] + p
t
1[rt ≤ 0])

(More at Abernethy and Kale [2013])
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Market Making for Complex Security Spaces

Often we want to sell shares in multiple related securities
and we want to price these securities jointly.

I Traders can purchase bundles of shares r ∈ Rd .

I Payout function φ : X → Rd

I In event of x , payout for purchasing bundle r is r>φ(x).

The canonical pricing strategy, which has now been
well-studied, is the following:

I Construct a convex C : Rd → R in order that {∇C}
coicides with the rel.int. of Hull({φ(x) : x ∈ X})

I Market maker maintains cumulative outstanding share
vector q, announces marginal price vector ∇C (q)

I Trader buying r is charged C (q + r)− C (q)
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Market Making ≈ Online Learning

How to construct C ? Choose a “liquidity function”
R : Hull({φ(x) : x ∈ X})→ R, and let

C (q) = sup
µ∈Hull({φ(x):x∈X})

µ>q − R(µ)

Loss of MM = C (qT )−C (0)−q>Tφ(x) = Pricing Regret!

With this connection, we get a set of natural equivalences:

Market Making Online Learning

Market Maker Loss Learning Regret
Seq. Pricing Strat. FTRL
Liquidity at price p ∇2R(p)

Please see Chen and Vaughan [2010] and Abernethy, Chen,
and Vaughan [2013] for details
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Exp. Family Distributions and Prediction Markets

Let’s now switch gears and see how exp families relate can
be viewed through an entirely probability-free lens.
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Exponential Family Distributions

Many dist. families we encounter are exponential families.
Let β ∈ Rd be params, φ : X → Rd some “statistics”. The
pdf of dist. corresponding to β is

For x ∈ X : Pβ(x) ∝ exp(β>φ(x))

For x ∈ X : Pβ(x) = exp(β>φ(x)−Ψ(β))

Where Ψ(β) = log

∫
X

exp(β>φ(x ′))dx ′

I φ(x) is called the “sufficient statistics” of x

I Ψ(β) is called the “log partition function”

I A wonderful fact: EX∼Pβ
[φ(X )] = ∇Ψ(β)
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Forget That: Exponential Family Market

I Imagine x ∈ X is some future uncertain outcome, and a
firm wants predictions on φ(x).

I firm will create a prediction market

I Prices should corresp. to aggregate belief

Ex∼crowd belief[φ(x)]

I firm will sell bundles of shares δ ∈ Rd to trader

I Upon outcome x , reward for purchasing δ:

payoff(δ|x) = φ(x)>δ

I Let sum of all outstanding shares be Θ := δ1 + . . .+ δm
I The price of buying δ:

Ψ(Θ + δ)−Ψ(δ)
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Benefits of the Market Interpretation

I Given that Θ represents market state

Marginal prices = ∇Ψ(Θ),

which correspond to mean parameters in PΘ!

I If the true distribution over x is Q, then

ETraderProfit(δ) = KL(Q; PΘ)− KL(Q; PΘ+δ)

I firm has to pay

EFirmCost(Θfinal) = KL(Q; P0)− KL(Q; PΘfinal
)

(Results in Abernethy, Kutty, Lahaie, and Sami [2014a])
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Interpreting Market Behavior

Let us imagine traders in such a market that has a belief on
the outcome x distributed according to Pβ. Assume trader
has exponential utility (with risk-aversion param a):

Utility($99) = 1− exp(−a · 99)

Proposition: Belief ≡ Investment

In terms of optimal trading behavior

Buying δ shares ⇐⇒ updating belief β ← β + δ

Proposition: Equilibrium ≡ MAP-estimate for Gaussian

Assume we have n traders with belief parameters β1, . . . , βn
with risk aversion parameters a1, . . . , an. If they all trade to
maximize expected utility, then in equilibrium we have:

EquilibriumState Θfinal :=
Θinit +

∑
i βia

−1
i

1 +
∑

i a−1
i
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The Vision

We would have a number of major benefits if we were able
to cast a broader class of ML algorithms through the lens of
market equilibria.

I Robustness on solution

I Real decentralization of learning tasks

I Possible model for distributed computing
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THANK YOU
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