
On a Review by V. N. Tutubalin

Glenn Shafer
Rutgers School of Business - Newark and New Brunswick
180 University Avenue, Newark, New Jersey 07102 USA

gshafer@andromeda.rutgers.edu

http://www.andromeda.rutgers.edu/~gshafer/

Vladimir Vovk
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey TW20 0EX UK

vovk@cs.rhul.ac.uk

March 28, 2002

Valery Nikolaevich Tutubalin, of the Department of Probability Theory at
Moscow University, has recently reviewed our book, Probability and Finance:
It’s Only a Game! (Wiley, 2001). It is our understanding that his review
will appear in Russian in “Teori� vero�tnoste� i ee primeneni�”,
the Russian journal that is regularly translated into English as Theory of
Probability and Its Applications.

Professor Tutubalin raises important questions about the range of useful-
ness of our book’s game-theoretic framework for probability. In this response,
we discuss his questions in some detail.

We have translated the review into English, and with Professor Tu-
tubalin’s permission we have posted both the Russian text and our transla-
tion at the web site for our book, http://www.cs.rhul.ac.uk/~vovk/book/.
This response can also be downloaded from there.
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1 Introduction

We are pleased that Professor Tutubalin has reviewed our book, and we are
doubly delighted that he thinks so highly of it. We hope that his perceptive,
informative, and highly complimentary review will be widely read.

Tutubalin takes issue with us on one important point. Although he feels
that our game-theoretic conception of probability is perfectly adapted to the
study of financial markets, where probability games are actually played and
money changes hands, he is not convinced that this conception fits other
applications of mathematical probability. So he issues a challenge: “Naq-
nu nekotoru� polemiku s togo utver�deni�, qto, skoree vsego,
vr�d li vozmo�na taka� koncepci� vero�tnosti, kotora� udovlet-
vorit vse vozmo�nye prilo�eni�.” In our translation: “I will start a
controversy by asserting that a single conception of probability suitable for all
possible applications may scarcely be possible.” We are delighted to take up
this offer of further discussion, and we anticipate a more amicable discussion
than the words “polemika” and “controversy” might suggest, for we find
much with which to agree in Tutubalin’s position. We completely agree,
in fact, that there is more than one useful conception of probability, and
that no single conception is suitable for all applications. We do think that
Tutubalin is mistaken to restrict the game-theoretic conception to situations
where money actually changes hands (see the quote in §3).

The starting point of our framework for probability is a story—a story
about a game where money does change hands. We may call it the probability
story. The key to appreciating how widely the probability story can be used
is to step back and think in general about the different ways any story can
be used. We can use a story as a straightforward description of what is
happening in front of our eyes, but we can also use it in other ways. We
can compare what happens in front of our eyes with the story—we can use
the story as a standard against which to compare what we see. We can also
try to understand what we see in front of our eyes by studying ways it can
fit into the story. When we use the probability story as a straightforward
description of a something happening in front of our eyes, money must be
changing hands in front of our eyes. But we can use the story in other ways
in situations where money does not change hands.

In [2], Shafer elaborates on this point in order to show how broad the
game-theoretic framework for probability really is. Here we do not dwell
further on the general point, but we discuss three specific examples where
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the probability story is used without money actually changing hands: prob-
abilistic weather forecasting (§2), quantum mechanics (§4), and the theory
of errors (§3). We conclude, in §5, with comments on another issue that
Tutubalin raises: the scaling of the efficient market hypothesis.

2 Evaluating a Probability Forecaster

The discussion of probability forecasting in our book is spread over several
different passages (pp. 7–8, 57–58, 162–164, and 177–182). We will draw
together the basic points before quoting and responding to Tutubalin’s com-
ments.

2.1 The game-theoretic treatment

Suppose a weather forecaster gives probabilities each day for some event, say
rain, on the following day.

Players: Forecaster, Reality
Protocol:

FOR n = 1, 2, . . . , N :
Forecaster announces pn ∈ [0, 1].
Reality announces xn ∈ {0, 1}.

On each round, Forecaster gives a probability for rain (pn), and then Reality
decides whether it rains (xn = 1) or not (xn = 0).

What do Forecaster’s pn mean? Forecaster is not literally offering to bet,
but the pn are most often understood in terms of betting. We can imagine
Forecaster issuing this challenge to his listeners:

I don’t have the time or money to make bets with you, but if I
did really offer you the opportunity to bet with me at the odds I
set, you couldn’t make a lot of money from me.

To make sense of this, we can introduce an imaginary third player, Skeptic,
who is allowed to bet:

Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . . , N :
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Forecaster announces pn ∈ [0, 1].
Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 + Mn(xn − pn).

If Skeptic chooses Mn positive, he is betting on rain at odds pn : (1 − pn)
(he loses Mnpn if it does not rain but gains Mn(1− pn) if it does rain). If he
chooses Mn negative, he is betting against rain at these same odds.

We make more precise the idea that an opponent cannot make a lot of
money betting against the weather forecaster by adopting Cournot’s principle
for this protocol: if Skeptic does not risk bankruptcy, then he will not achieve
a very large final capital KN . This is our way of giving meaning to the pn.
There may be other ways of interpreting these numbers, but we do not know
of any that are equally clear and precise. And because Cournot’s principle
can also be used to give a very natural interpretation of the classical limit
theorems of probability theory (this is the main topic of the first half of our
book), we can argue that our way of interpreting the pn is fully in the spirit
of classical probability.

This protocol gives an example where the probability story is used in-
directly: no real money changes hands, and Skeptic’s betting in imaginary
money is nothing more than a means of testing Forecaster’s claim.

Once we adopt Cournot’s principle, testing Forecaster’s probabilities be-
comes a matter of trying out strategies for Skeptic. Because Skeptic makes
his move Mn just after Forecaster makes his move pn, Skeptic can use any
information that is available in the world at this point in order to choose Mn.
If we find a rule, a computer program, or even a rival weather expert whose
choices of the Mn using such information produces a large KN , then we have
empirically refuted Forecaster’s probabilities.

A weather forecaster may, of course, make only a more modest claim for
his probabilities. Instead of defying all comers to beat his odds, he might
limit his challenge to people who have no more information than he has. If
he is working in the United States, for example, he might claim that no one
can beat his odds working only with information supplied by the National
Weather Service. In this case, we would test his claim using only strategies
based on this information.

In Chapter 7 of our book, we show that the strategy that establishes
Lindeberg’s central limit theorem can be used to test Forecaster’s pn. In this
context, the number of rounds N depends on Forecaster: we continue the
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game until
∑N

n=1 pn(1− pn) is sufficiently large. The strategy that establishes
Lindeberg’s theorem will produce a large final capital KN for Skeptic, thus
refuting Forecaster’s pn, if

∑N
n=1(xn − pn)√∑N
n=1 pn(1− pn)

(1)

has a value that would be extreme for the standard normal distribution. So
if the absolute value of (1) exceeds 3, say, we may argue that the pn have
been falsified. As we mention in the book, this procedure tests a particular
aspect of the pn—their overall calibration. It rejects the pn when their aver-
age,

∑
pn/N , is too different from the empirical frequency of rain,

∑
xn/N .

In this case, Skeptic can make money from Forecaster based on very little
knowledge indeed; all he needs to know is the previous moves in the game.

2.2 Tutubalin’s comments on weather forecasting

Tutubalin writes as follows (in our translation) in reference to our test of
calibration:

In the matter of weather forecasting, the authors propose to test
the soundness of a calculation of probabilities for rain on suc-
cessive days using a statistic that can also be obtained from the
frequentist conception of probability, normalized as if the dif-
ferences xi − pi were statistically independent, where xi is the
indicator of the event “presence of rain on day i”, and pi is the
forecasted probability of rain. Since nothing guarantees the in-
dependence of such differences, I would also recommend thinning
out the sequence of observations in different ways, so as to see
how the statistic comes out just on Mondays, just on Tuesdays,
etc., and then comparing these values with the common value
of the statistic. Who will convince me that such an attempt to
weaken the assumed statistical dependence1 is meaningless? Yet
it is not, for some reason, recommended under the game-theoretic
approach.

1Perhaps our translation should be improved here. Apparently, what Tutubalin pro-
poses to weaken is an assumption about statistical dependence, namely, the assumption
that the errors in the forecasts are statistically independent of each other or of the day of
the week.
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This passage is misleading, we feel, in several respects.
Most importantly, contrary to the last sentence of the quotation, we do

recommend the additional tests recommended by Tutubalin and many other
additional tests as well. Overall calibration is only one of many aspects of
the pn that can be tested. We regret that we did not make this point more
clearly and emphatically in Chapter 7.

Tutubalin’s comments about statistical independence are also potentially
misleading. The first source of confusion is that several different concepts
of independence and dependence seem to be in play in the quoted passage.
This is true even if we take a purely measure-theoretic point of view—i.e.,
if we assume that the xn − pn have a joint probability distribution. First,
we can discuss independence of the xn − pn of each other, in the sense that
their joint distribution equals the product of their marginal distributions.
Second, we can talk about their independence of the day of the week; one
interpretation of this is that their marginal distributions coincide. Let us say
that the xn− pn are identically distributed when the second notion is meant,
and that the xn − pn are iid when both are meant.

We do not assume that the differences xn − pn are independent in any of
these senses. Tutubalin seems at first to acknowledge this; he asserts only
that the result we derive “can also be obtained” from an argument relying
on statistical independence (presumably he has the iid assumption in mind
here). But by the end of the passage, the assumption that the xn − pn are
independent of the day of the week appears as something belonging to our
approach, which needs to be weakened.2

In our story, Skeptic is entitled to use any information he has when Fore-
caster announces pn, including his information about the day of the week, in
deciding on his move Mn. He can decide that he will bet only on Mondays,
and hence the game-theoretic argument that leads to the asymptotic normal-
ity of (1) when this statistic is calculated over all days also applies when it is

2The passage also seems to suggest that one needs the iid assumption, or at least mutual
independence of the xn − pn, in order to derive the asymptotic normality of (1) within
the measure-theoretic framework, and this too is misleading. The asymptotic normality
of (1) can indeed be derived assuming that the xn are independent of each other and that
pn is the expected value of xn, and under these assumptions the xn − pn are certainly
independent of each other. But it can also be derived assuming only that pn is the
conditional expected value of xn given x1, . . . , xn−1, with no assumption of independence.
Under this assumption, the pn are random, and the xn − pn are uncorrelated with each
other but not independent of each other.
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calculated only for Mondays. It also applies when the statistic is calculated
only for days with some other property that occurs sufficiently often and is
known by the time Forecaster announces pn. In this sense, the statistical
behavior of

∑
(xn− pn)/

√∑
pn(1− pn) should be independent of whether it

is calculated for all days, only for Mondays, or only for days with some other
property. This is a kind of independence (a third notion of independence) of
the xn − pn from everything else. But it is a consequence of our adoption of
Cournot’s principle, not an assumption we make directly. And it does not in-
volve the xn− pn being stochastically independent, in any measure-theoretic
or frequentist sense, from each other or from anything else.3

3 The Theory of Errors

In the example of the weather forecaster, Forecaster and Reality were playing
in front of our eyes, and we invented a third player, Skeptic. Now we consider
an example where Forecaster is hidden from us.

3.1 Averaging out the errors

Consider, for simplicity, the case of repeated measurements of an unknown
physical quantity θ, such as the distance to the sun. Suppose the error of
each measurement is bounded in absolute value by a known quantity C, and
suppose further that we consider the measurements unbiased, in the sense
that a person who is given the opportunity to buy and sell the errors (which
may turn out positive or negative) at price zero would not be able to multiply
his initial stake substantially without risking bankruptcy. Writing y1, . . . , yN

for the measurements, we can describe this situation with the following game:

Players: Forecaster, Skeptic, Reality
Parameters: N , C > 0, α > 0, ε > 0
Protocol:

Forecaster announces θ ∈ R.
K0 := α.
FOR n = 1, 2, . . . , N :

3Professor Tutubalin has informed us that the only notion of independence used in
the quoted passage is the standard statistical independence (the one implying that the
variance of the total number of successes in a series of trials equals the sum of variances
in the individual trials).
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Skeptic announces Mn ∈ R.
Reality announces yn ∈ [θ − C, θ + C].
Kn := Kn−1 + Mn(yn − θ).

Rule for Winning: Skeptic wins if Kn is never negative and either KN ≥ 1
or |y − θ| < ε, where y :=

∑N
n=1 yn.

This game is a variant of the game for the weak law of large numbers on
p. 124 of our book. Proposition 6.1 on p. 125, adapted to this variant, tells
us that Skeptic has a winning strategy if N ≥ C2/(αε)2.

To use this result, we choose the initial stake α and the error bound
ε small. Because α is small, the result KN ≥ 1 means that Skeptic has
multiplied his initial stake by the large factor 1/α, and this is ruled out if we
adopt Cournot’s principle. So the fact that Skeptic has a winning strategy,
together with Cournot’s principle, tells us that we can expect |y − θ| to be
small when N is sufficiently large. In other words, the errors average out,
and the average measurement y will be close to θ.

It should be kept in mind that this is a perfect information game; Skeptic
sees the move θ even though we, as outsiders to the game, do not see it.
What is important is that even we outsiders have all information to compute
the estimate y of θ.

3.2 Tutubalin on the theory of errors

Tutubalin expresses his skepticism about the ability of our framework to
handle errors of measurement as follows:

. . . Here the devil’s move xn is not a change in the price of an asset
but rather an error in the measurement of a physical quantity in
some experiment. It would be very good to be able to study
conditions under which the law of large numbers is satisfied, i.e.,
the error disappears as the result of averaging a great number of
observations. But who is in a position to make monetary bets on
the errors of experiments? The game-theoretic conception clearly
has nothing to do with this situation.

The key part of this quotation is the question: “. . . who is in a position to
make monetary bets on the errors of experiments?” If we write xn for the
error, as Tutubalin suggests, then xn = yn− θ. We observe the measurement
yn when it is made, but we do not know θ, and therefore the error xn remains
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unknown to us. So Tutubalin’s assertion that no one is in a position to bet
on xn is correct: no one can bet on xn, because as long as θ is unknown, the
bet cannot be settled.

In some cases the physical quantity θ is eventually known with enough
accuracy that bets on the errors could eventually be settled, but this does
not really affect Tutubalin’s point, because our game requires that xn should
become known to the bettor (Skeptic) in the course of the game, before he
decides how to bet on xn+1.

Our response to Tutubalin is rather that Skeptic does not need to be a
real player here, just as he does not need to be a real player in the case of
weather forecasting. Skeptic is theoretical, and so he may see things that we
do not see. The quantity θ is theoretical, in the sense that we do not know
its value. If it makes sense to reason about this theoretical quantity, then it
makes sense to consider the theoretical hypothesis that someone who knows
its value cannot multiply his capital substantially without risking bankruptcy.

4 Quantum Mechanics

In our book (pp. 189–191), we explained how the game-theoretic framework
accommodates one version of John von Neumann’s axioms for quantum me-
chanics. Tutubalin appears to feel that this venture into physics was overly
ambitious. Probably we should have emphasized more that our remarks
have very little to do with most discussions of the philosophical foundations
of quantum mechanics (see, e.g., [1]); we are only concerned with its well-
established core. Our goal was to attract the reader’s attention to the fact
that measure-theoretic probability has to be stretched uncomfortably to ac-
commodate this core.

4.1 A quantum-mechanical law of large numbers

Consider, for example, the following law of large numbers, which is the only
statement we prove in this context (p. 191 of the book):

Corollary 8.5 Suppose Observer repeatedly measures observables bounded
by some constant C. Skeptic can force the event

lim
N→∞

1

N

N∑
n=1

(
an(in)−

∫
andpn

)
= 0. (2)

9



How can we express this statement in terms of measure-theoretic probability?
The only way we can see is to define some underlying probability space
(Ω,F ,P) and random elements an, in, and pn and to assert that the event (2)
happens P-almost surely. This can be done, of course, but just think what
an unattractive object P would be. This probability measure will have to
answer very different kinds of questions, such as:

• What is the probability that the observer will observe his particle (with
wave function φ) in the region V ?

• What is the probability that the observer will decide to measure the
position of his particle, rather than its momentum?

Probabilities of the first kind are uncontroversial; indeed, they are supplied
by quantum mechanics itself. Probabilities of the second kind, even if they
exist, cannot be derived from the primitive version of quantum mechanics
(Axioms 8.1–8.5) that we consider. One might hope to derive it from the ob-
server’s psychology, or maybe from a more sophisticated theory of everything,
but why should it be necessary to go so far afield?

The fact that our game-theoretic theoretic framework permits a quantum-
mechanical law of large numbers without any appeal to the existence of
probabilities other than those given by the core theory is, in our view, a
significant advantage over the measure-theoretic framework.

4.2 Tutubalin’s comments on quantum mechanics

Tutubalin explains his dissatisfaction with our discussion of quantum me-
chanics as follows:

In connection with quantum mechanics, I will note that testing
a physical theory is a complicated matter and goes rather deep
in physics. Testing is never done directly by observing the results
of an experiment: one must first put forward alternatives to the
theory being tested. This problem cannot be solved by making
game-theoretic bets.

We have no deep disagreement with these comments, but it is not clear to
us how they bear on the points we made in our book.

We could quibble with the assertion that a theory cannot be tested with-
out an alternative being put forward. From our point of view, any strategy
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for Skeptic that avoids risking bankruptcy is a test. We agree with Tutubalin,
however, about how science is and should be practiced. Even if it fails certain
tests, and even if it fails them repeatedly, an established physical theory will
not be rejected until there is a better theory to take its place—a theory that
can correct the established theory’s failures while replicating its successes.

The probabilistic predictions of quantum mechanics have been thoroughly
tested, and the consistency with which they have been confirmed is one
important aspect of the theory’s success. But as Tutubalin points out, there
is much more to be said about testing a theory. Moreover, once a theory is
well confirmed, its predictions interest us primarily because they tell us what
to expect, not because they offer new opportunities for testing.

5 Scaling the Efficient Market Hypothesis

We conclude by discussing a question that Tutubalin raises concerning the
scaling of the efficient market hypothesis.

5.1 A market game

We are now concerned with the game played by a speculator in a financial
market. To fix a setting for our rather general discussion, we consider just two
players: Market, who replaces both Forecaster and Reality, and Speculator,
who replaces Skeptic:

Players: Market, Speculator
Protocol:

K0 := α.
FOR day n = 1, 2, . . . , N :

Market announces opening prices.
Speculator announces his purchases at these prices.
Market announces closing prices.
Speculator liquidates his holdings.
Kn := Kn−1 + Speculator’s net gain or loss for the day.

In the context of this game, we speak of the “efficient market hypothesis”
rather than of “Cournot’s principle”. As usual, it says that if Speculator’s
initial capital α is positive, then he cannot multiply it by a large factor
without risking bankruptcy. We usually adopt this hypothesis for a financial
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market only if prices and capital are measured relative to the value of some
market index such as the S&P 500. In this case, multiplying one’s initial
capital by a large factor without risking bankruptcy can be called “beating
the market”. Multiplying initial capital by a factor of ten without risking
bankruptcy, for example, can be called “beating the market by a factor of
ten”. We will use this terminology here, without always specifying the market
index that serves as our numéraire.

5.2 How large is too large?

When we look at an actual financial market and undertake to draw practical
conclusions from our efficient market hypothesis, we must face a thorny ques-
tion: just exactly how large a factor of success for Speculator do we want to
rule out with our efficient market hypothesis? Do we say only that Specula-
tor will not beat the market by a factor of 10? Or do we go further? Would
it be reasonable, for example, to predict that he will not even beat it by a
factor of 1.25—i.e., that he will not even do 25% better than the market?

This evidently depends on the circumstances. Several important ques-
tions must be considered, such as:

• How mature is the market? How much effort is being put into finding,
exploiting, and thereby eliminating opportunities for enrichment?

• How sophisticated is the particular speculator we are considering? Does
he use only relatively commonplace strategies, based on widely held
information? Or is he a well-financed and well-connected hedge fund?

• How far out are we willing to stick our necks? No matter how high
the limit we place on the possible success of a speculator, we may be
proven wrong. How much risk of being proven wrong do we want to
take? If we look at many speculators, over many time periods, follows
how often are we willing to be proven wrong?

The astute reader will spot the informal probability and frequency ideas in
the last question, and he may protest that our so-called “game-theoretic”
framework is based on frequency ideas after all. Fair enough, but frequency
is only one consideration here, and it does not enter into the formalism, which
begins only after we decide how large a factor of success for Speculator we will
rule out. The game-theoretic mathematics is always relative to this factor; it
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says that if Speculator cannot beat the market by more than the factor K,
then certain events will not happen, and the larger K the fewer such events
there are.

In practice, conclusions that are substantively interesting may require
that we be very skeptical about Speculator’s potential for success. In [3],
for example, we found that the assumption that Speculator cannot beat the
S&P 500 by a factor of 2 is not strong enough to yield a well-fitting game-
theoretic capital asset pricing model for the average returns of stocks and
simple portfolios. In order to get good results in this case, we may need
an efficient market hypothesis that says that a speculator who is limited to
buying or shorting stocks and simple portfolios cannot beat the S&P 500 even
by a factor of 1.25 or 1.1. In any given period, a fair number of portfolios will
beat the S&P 500 by more than this, and so we know that our assumption
and therefore our prediction about average returns will sometimes be wrong.
But they may still be right most of the time.

On p. 369 of our book, we note that a prediction based on the assumption
that Speculator cannot beat the S&P 500 by a factor of 10 would have been
violated by a speculator who held Microsoft stock between 1986 and 2000,
and we excuse this violation with the following sentence:

The violation is hardly surprising, because Microsoft’s perfor-
mance between 1986 and 2000 was in the top tenth of anyone’s
range of expectations.

Tutubalin expresses some puzzlement about our choice of words:

The authors explain [the violation] by saying that Microsoft is
clearly in the top 10% of all companies with respect to the growth
rate of share prices, but it is not quite clear how game-theoretic
probability is related to such a comparison, which probably refers
to frequentist probability.

His puzzlement is justified, for “top tenth of anyone’s range of expectations”
hardly has a clear meaning and may suggest a stronger connection with
frequency ideas than we want to advocate.

We hope, however, that the explanations we have just given make our
meaning clear. Buying stock in a small firm such as Microsoft and holding
it for 15 years would have been a very long shot in 1986, and we do not
find it disturbing for our predictions to be violated by events so rare as the
spectacular success of this particular long shot.
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5.3 Upper probability and frequency

We can clarify this matter further using the notion of upper probability. The
upper probability of a property E of Market’s moves is

PE := inf{α | Speculator has a strategy that guarantees

KN ≥ 1 if Market satisfies E and KN ≥ 0 otherwise}.
The strategies considered in this definition do not risk bankruptcy. So Mar-
ket can allow E to happen only at the price of permitting Speculator to beat
the market by 1/PE. An upper probability of 0.1 corresponds to letting
Speculator beat the market by a factor of 10, an upper probability of 0.8
corresponds to letting Speculator beat the market by a factor of 1.25, etc.
We can summarize this point by saying that under the efficient market hy-
pothesis, a small value of PE means E is unlikely to happen. Now we see
that “small” is a relative term. If we do not think Speculator can do 25%
better than the market, then 0.8 is a “small” upper probability.

We can derive a one-sided connection between upper probability and fre-
quency from the efficient market hypothesis. Consider a sequence of suc-
cessive events, each with upper probability not exceeding some threshold δ.
(When we say events are successive, we mean that each is settled before the
upper probability of the next is assessed.) Then the one-sided strong law
of large numbers (Proposition 3.4, on p. 73 of our book) implies that the
proportion of the events that happen will not exceed δ if the efficient market
hypothesis is not violated (cf. Proposition 15.6 on p. 365). So we may say
that successive events with upper probability of 0.1 should happen no more
than 10% of the time.

This thought lay behind our vague and evidently misleading explanation
of why we should not be surprised that Microsoft’s performance happened in
spite of having upper probability of only 10%. The point is that on general
principles we can claim that successive events with upper probability 10%
should not happen more than 10% of the time; we have no general argument
that implies they will happen less often than this. So when an event with
upper probability 10% happens we should be no more surprised, in the ab-
sence of any more specific information about its improbability, than we would
be by the happening of an event that happens 10% of the time in repeated
trials. (We did not compare Microsoft with other stocks in the same time
period, as Tutubalin’s words might suggest. The simultaneous performance
of different stocks does not constitute successive events.)
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In a specific context, however, we may feel that certain events will be
much rarer than indicated by their upper probability. We have already given
one example: in very efficient markets, we might expect that it will be rare
for a stock or portfolio to beat the market by more than 25%, even though
this event has an upper probability of 0.8.

References

[1] Roland Omnes. Quantum Philosophy: Understanding and Interpreting
Contemporary Science. Princeton University Press, Princeton, 1999.

[2] Glenn Shafer. Additional comments on Tutubalin’s review. In prepa-
ration. Game-Theoretic Probability Project Working Paper No. 3. To
appear at http://www.cs.rhul.ac.uk/~vovk/book/, 2002.

[3] Vladimir Vovk and Glenn Shafer. The game-theoretic capital asset pricing
model. Game-Theoretic Probability Project Working Paper No. 1. Can
be downloaded from http://www.cs.rhul.ac.uk/~vovk/book/, 2001.

15


