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Question

Kolmogorov’s measure-theoretic framework for probability includes an axiom of
continuity, which is equivalent to countable additivity once finite additivity is
assumed. Does the game-theoretic framework require a similar axiom?

Brief Answer

No axiom of continuity was assumed in our book, Probability and Finance: It’s
Only a Game! Because the axiom of continuity for measure-theoretic probabili-
ties is not well motivated, our being able to prove the classical limit theorems of
probability without it should count as an advantage of our framework over the
measure-theoretic framework. On the other hand, as we have shown in Work-
ing Paper #5 for the Game-Theoretic Probability and Finance Project,
an alternative definition of game-theoretic upper probability that does satisfy
the axiom of continuity can play a useful simplifying role in the game-theoretic
treatment of continuous-time processes.

∗This document can be downloaded from www.probabilityandfinance.com, the web site for
the Game-Theoretic Probability and Finance Project. Look for Question 1 in the list
of Frequently Asked Questions.
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1 Fuller Statement of the Question

In his celebrated 1933 treatise on the foundations of probability, Grundbegriffe
der Wahrscheinlichkeitsrechnung [4], Kolmogorov began with a field F of sub-
sets of a set Ω. He considered a real-valued function P on F that satisfies two
axioms:

• P(Ω) = 1.

• If A and B are in F and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

These axioms imply that P (∅) = 0 and that

P (A1 ∪ . . . ∪An) = P (A1) + . . . + P (An) (1)

whenever A1, . . . , An are disjoint sets in F . Equation (1) expresses the condition
that the set function P be finitely additive.

For infinite Ω, Kolmogorov further required that F be a σ-field (i.e., that it
be closed under countably infinite unions and intersections) and that P satisfy
an axiom of continuity :

• If A1, A2, . . . is a decreasing sequence of elements of F , and ∩∞i=1Ai = ∅,
then limi→∞ P (Ai) = 0.

In the presence of the other axioms and assumptions, this axiom is equivalent
to each of the following statements:

• If A1, A2, . . . is a decreasing sequence of elements of F , then

P

( ∞⋂

i=1

Ai

)
= lim

i→∞
P (Ai). (2)

• If A1, A2, . . . is an increasing sequence of elements of F , then

P

( ∞⋃

i=1

Ai

)
= lim

i→∞
P (Ai). (3)

• If A1, A2, . . . is a sequence of disjoint elements of F , then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai) . (4)

Equation (4) expresses the condition that P be countably additive.
The game-theoretic framework does not necessarily produce probabilities in

the usual sense. In general, it produces only lower and upper probabilities, pairs
P (A) and P (A) satisfying 0 ≤ P (A) ≤ P (A) ≤ 1 and

P (A) + P (Ac) = 1, (5)
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where Ac is the complement of A. In general, P (∅) = P (∅) = 0, and P (Ω) =
P (Ω) = 1, but neither P nor P need be finitely additive. So there is no question
of requiring that they be countably additive. It does make sense, however, to
ask about condition (2) for P or condition (3) for P . Should P satisfy

P

( ∞⋂

i=1

Ai

)
= lim

i→∞
P (Ai) (6)

when A1, A2, . . . is a decreasing sequence of sets? Equivalently, should P satisfy

P

( ∞⋃

i=1

Ai

)
= lim

i→∞
P (Ai) (7)

when A1, A2, . . . is a increasing sequence of sets? These are the questions we
are considering here.

A reader who comes to this discussion with no sense whatsoever of the
intuitive meaning of P and P might ask why we are considering the condition
with decreasing sets for P and the condition for increasing sets with P . Why
not the other way around? The reason why the conditions make no sense the
other way around is that P (A) measures the degree to which we expect A to
happen, while P (A) measures the plausibility of its happening. In the extreme
case where we have no evidence at all, we have no reason to expect anything
in particular: P (A) = 0 for all A 6= Ω. And everything is plausible: P (A) = 1
for all A 6= ∅. Since P (Ω) = 1 and P (∅) = 0, this example violates (3) for P
and (2) for P .

Equation (5) tells us that P and P can each be defined in terms of the other,
and hence that it is unnecessary to study them both. Here, as in our book, we
single out P for study. So the question we discuss is whether P should satisfy (7)
when the sequence A1, A2, . . . is increasing.

2 Why is Countable Additivity Controversial?

Countable additivity for probability has always been controversial. Émile Borel,
who introduced it, and Andrei Kolmogorov, who confirmed its role in measure-
theoretic probability, were both ambivalent about it. They saw no concep-
tual argument for requiring probabilities to be countably additive. It is merely
mathematically convenient to assume they are. As Kolmogorov explained in his
Grundbegriffe, countable additivity has no meaning for empirical experience,
which is always finite, but it is mathematically useful. Kolmogorov did not list
examples where it is useful, but many such examples were already known at the
time, the foremost being the strong law of large numbers. Kolmogorov did not
know how to prove this theorem without first assuming countable additivity.

We can elaborate Kolmogorov’s explanation by pointing out that infini-
ties enter into applied mathematics not as representation but as simplification.
Though finite, our experience of reality is often too complicated to understand
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easily. We move to infinity to smooth away some of the complications, leaving
structures that are easier to understand. Kolmogorov’s axiom of continuity can
be thought of as part of this simplifying or smoothing process.

We would like, of course, as much justification as possible for the particular
ways we use infinities to simplify. That an infinitary axiom enables us to prove
theorems we cannot otherwise prove is one argument for adopting it, but not by
itself a fully satisfying argument when the mathematics we are doing is supposed
to be applied. We would also like to understand as well as possible the nature of
the simplification imposed by the axiom. If the axiom suppresses certain messy
details, we may want to know something about how these details re-emerge
when we translate the theorems the axiom enables back into finitary terms. If
the axiom is completely irrelevant to finitary reality, we may be puzzled about
how the theorems it enables can be useful. These questions seem not to have
been answered in a fully satisfying way within the measure-theoretic framework,
and this may be why debate over countable additivity still continues.

Kolmogorov was a frequentist. He justified finite additivity by the fact that
it is satisfied by relative frequencies in a real and therefore finite experiment. He
was hesitant about countable additivity because it is irrelevant to such a finite
experiment. The most criticism of countable additivity has come, however,
from scholars who see probability as an idealization of belief rather than as
an idealization of frequency. The subjectivist Bruno De Finetti was already
objecting to countable additivity in the early 1930s [3].

3 Questions for the Game-Theoretic Framework

Instead of starting with an assignment of numbers to sets, the game-theoretic
framework starts with a perfect-information game between two players, Skeptic
and Reality. It then defines upper probabilities in terms of Skeptic’s opportu-
nities to increase his capital in this game. We believe that this deeper starting
point provides opportunities to see more clearly when and how continuity is
useful.

Because game-theoretic upper probabilities are defined quantities, not prim-
itives, it makes no sense to impose (7) on them as axiom. But we can ask two
questions:

• Can we impose simple and natural conditions on the details of the game
(the move spaces of Skeptic and Reality and the rule for calculating Skep-
tic’s capital at each step) or on the rule for defining the upper probabilities
that guarantee (7)?

• Are such conditions useful? Do they help us prove interesting theorems
or simplify the statement of theorems in useful ways?

This gives us a lot to talk about.
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4 Definitions of Upper Probability

Although we cannot completely review the game-theoretic framework here, it
may be useful to give some basic terminology:

• The sample space, for which we write Ω, is the set of all permitted se-
quences of moves by Reality.

• An event is a subset of Ω. In other words, an event is something Reality
does.

• A strategy for Skeptic is risk-free if Skeptic does not risk bankruptcy when
he follows the strategy starting with unit capital. This means his capital
will never become negative no matter what Reality does.

• Given an event A and a constant C > 1, Skeptic can refute A at level C
if he has a risk-free strategy that guarantees him at least C at the end of
the game if he starts with unit capital and Reality does A.

In our book, we define the upper probability of an event A by

P (A) := inf
{

1
C
| Skeptic can refute A at level C

}
.

In Working Paper #5, where we are concerned with continuous-time processes,
we define it instead by

P
†
(A) := inf

{
1
C
| there is a sequence A1 ⊆ A2 . . . of events such that

(a) A ⊆ ⋃∞
i=1 Ai and (b) for each i Skeptic can refute Ai at level C

}

= inf

{
lim

i→∞
P (Ai) |A1 ⊆ A2 ⊆ · · · and A ⊆

∞⋃

i=1

Ai

}
.

If Ω is finite, then P
†
(A) = P (A). But if Ω is infinite, we can only say that

P
†
(A) ≤ P (A).
It is easy to check that the set function P

†
satisfies the axiom of conti-

nuity (7). But nothing equally general can be said about the set function P ;
whether it satisfies (7) depends on the details of the probability game—the par-
ticular move spaces available to Skeptic and Reality and the rule for calculating
Skeptics gain from their moves.

We can offer the following comments:

• In the simple bounded forecasting game we study in Chapter 3
of Probability and Finance (this chapter may be downloaded from
www.probabilityandfinance.com), the axiom (7) is satisfied by P . This is
because the possible moves by Skeptic are bounded in each situation in
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the game, and hence we can always form a convex linear combination of
a countable number of strategies for Skeptic, without worrying about the
convergence of the linear combination. (See the proof of Lemma 3.2 on
page 68.)

• If we define the general concept of a probability game as in §8.3 of Prob-
ability and Finance, then it is easy to construct artificial examples of
probability games that do not satisfy (7).

• We do not know interesting examples where (7) is not satisfied.

• As for the other interesting examples of probability games in our book
(interesting because they correspond to classical theorems), we do not
know whether these examples satisfy (7). We have not studied the question
exhaustively, because nothing seems to turn on it.

5 Definitions of “Almost Surely”

To gain more insight, let us leave upper probabilities aside for a moment and
merely consider some alternative definitions of “almost surely”:

1. A happens almost surely in our first sense if Skeptic has a risk-free strategy
that guarantees him infinite capital at the end of the game if he begins
with unit capital and Reality does not make A happen (our events are
always statements about what Reality does).

2. A happens almost surely in our second sense if P (Ac) = 0. This is equiv-
alent to saying that Skeptic can refute Ac at level C for every C > 1, no
matter how large C is. In other words, for every C > 1, Skeptic has a
risk-free strategy that guarantees him capital C at the end of the game if
he begins with unit capital and Reality does not make A happen.

3. A happens almost surely in our third sense if P
†
(Ac) = 0. This is equiva-

lent to saying that there is a sequence of events A1 ⊆ A2 ⊆ · · · such that
(1) A ⊆ ∪∞i=1Ai and (2) for any C > 1 and any i, i = 1, 2, . . ., Skeptic has
a risk-free strategy that guarantees him capital C at the end of the game
if he begins with unit capital and Reality does not make Ai happen.

These are successively weaker definitions:

A happens almost surely in our first sense

=⇒ A happens almost surely in our second sense

=⇒ A happens almost surely in our third sense.

When we consider only what happens “almost surely”, the question of
whether upper probabilities are continuous is replaced by the question of
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whether

Ai happens almost surely, i = 1, 2, . . . =⇒
∞⋂

i=1

Ai happens almost surely. (8)

Because P
†
is continuous, the implication (8) holds for the third sense of “almost

surely”. It does not always hold for the other two senses.
As it turns out, the first sense is most useful for studying the classical strong

laws of probability, where one considers an infinitely long sequence of trials.
The third sense is most useful, on the other hand, for studying processes that
are continuous in time, where the asymptotics is concerned not with successive
trials but with successively finer descriptions of what happens over a possibly
finite period of time.

6 The Classical Strong Laws

The strong law of strong numbers, as we formulated it in our book, says that
the average error of certain predictions in a certain game tends to zero almost
surely. It turns out that we can prove this in the first sense of almost surely:
Skeptic has a risk-free strategy that makes him infinitely rich if the convergence
to zero does not take place.

Notice how this statement is weakened when we use the second sense of
almost surely: now we are saying that for any wealth C Skeptic has a risk-free
strategy for getting C if the convergence to zero does not take place. If this
were all we knew, we could say that Skeptic can get as rich as he wants if the
convergence does not take place, but we would not know that there a single
strategy that works for him no matter what goal C he chooses.

In the simple case of coin tossing, the game-theoretic strong law of large
numbers reduces to a theorem that Borel first formulated in 1909 [1]. Borel’s
proof of this theorem, which tried to avoid the use of countable additivity as an
axiom, was not convincing to later mathematicians, who replaced it with proofs
that do use countable additivity [6]. The fact that we have been able to prove
the theorem without an appeal to countable additivity can be regarded as a
vindication, after over 80 years, of Borel’s intuition.

We can do without countable additivity as an axiom in our proofs of the
strong laws because we can replace it with an argument using the convex com-
bination of a countable number of strategies. This may not always work; in gen-
eral convergence needs to be checked. (If the strategies Pi, i = 1, 2, . . ., call for
Skeptic to make the move Mi in a particular situation, and the magnitude of Mi

increases without bound, then an effort to form the strategy α1P1 +α2P2 + . . .,
where α1, α2, . . . is a sequence of nonnegative numbers adding to one, will fail if
the series α1M1 + α2M2 + . . . diverges.) But as we show in our book, strategies
that converge as required can be found to prove all the classical strong laws. No
artificial appeal to countable additivity or continuity is needed.
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All the classical limit theorems concern what happens in the limit in a count-
able number of successive trials. Borel called the study of such countable se-
quences of trials the theory of “denumerable probability.” Our results can be
said to vindicate Borel’s intuition not just for coin tossing but for the whole
topic of denumerable probability.

7 Continuous-Time Processes

The study of continuous-time processes goes beyond denumerable probability; as
we have already explained, it concerns a limit of successively finer descriptions of
a process over a possibly finite time period rather than the limit of a successively
longer sequences of trials.

Continuous-time processes are studied game-theoretically in Part II of our
book. As the reader of the book will see, we put continuous-time into the game-
theoretic framework using an ultraproduct of finitary games, analogous to the
ultraproduct of copies of the real numbers that is used in nonstandard analysis.
This is a relatively unfamiliar but powerful way of producing a smooth infinitary
picture. Most of the continuous-time results in Part II are concerned with
hedging, however, not with probability. Continuous-time probability appears
only in Chapter 14, where we discuss diffusion processes from the game-theoretic
point of view.

We have now studied game-theoretic continuous-time probability further, in
Working Paper #5 [7]. This paper establishes a result that seems fundamental
and prototypical: if a speculator in a continuous-time market has no risk-free
strategy that will make him infinitely rich in a finite period of time, then the
price of a security being traded in the market must either (1) be constant or
(2) have the same fractal dimension as Brownian motion (this means its incre-
ments must have the order of magnitude

√
dt). This result is well known in

the measure-theoretic literature, where it is proven under particular stochastic
assumptions (usually one assumes that the process is fractal Brownian motion).
It also has messy but well known nonstochastic finitary counterparts (in connec-
tion with R/S analysis). Like these finitary counterparts, our game-theoretic
version makes no stochastic assumptions.

What we want to explain here is how the statement of our game-theoretic
result depends on how we define “almost surely”. If we use the second sense
of infinitesimal, we obtain the result that the price of the security, if it does
not have increments of order

√
dt, can vary only by an amount that we can

make as small as we want. But if we use the third sense, we obtain the simpler
statement that the variation must be infinitesimal. Simplicity is what we want
here; messiness belongs in the finitary version of the story. So we are led to adopt
the third definition of “almost surely”, along with the corresponding definition
of upper probability, denoted by P

†
in our preceding discussion. (Although this

adoption is, at this stage, of experimental nature; we have not as yet convinced
ourselves that the axiom of continuity will not lead to contradictions or awkward
implications in the game-theoretic framework.)
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8 Summary

As we have explained, continuity is not a condition we can simply impose on
game-theoretic upper probabilities. Whether it is satisfied depends on how the
probability game is constructed and how upper probabilities are then defined.

Upper probabilities in fully finitary games are necessarily continuous, though
in an uninteresting way. So the question of continuity arises only for infinitary
games, which are constructed to simplify finitary reality. As it turns out, the
infinitary games that interest us do satisfy the condition of continuity, either
because infinitely many strategies can be combined or because the continuity is
assured by the definition of upper probability that is most convenient. This is
hardly surprising, because a story where such continuity holds is simpler than
one where it does not. Continuity of upper probabilities is not an important
end in itself, however, and there seems to be no reason to go out of our way
merely to make it hold.
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Recherche Scientifique, Paris, 1972. Four volumes.

[3] Donato Michele Cifarelli and Eugenio Regazzini. De Finetti’s contribution
to probability and statistics. Statistical Science, 11:253-282, 1996.

[4] Andrei N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Springer, Berlin, 1933. An English translation by Nathan Morrison ap-
peared under the title Foundations of the Theory of Probability (Chelsea,
New York) in 1950, with a second edition in 1956. A Russian translation,
by G. M. Bavli, appeared under the title Osnovnye pon�ti� teorii
vero�tnoste� (Nauka, Moscow) in 1936, with a second edition, slightly
expanded by Kolmogorov with the assistance of Albert N. Shiryaev, in
1974.

[5] Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a
Game! Wiley, 2001.

[6] Glenn Shafer and Vladimir Vovk. The sources of Kolmogorov’s Grundbe-
griffe. Working Paper #4. The Game-Theoretic Probability and Finance
Project. www.probabilityandfinance.com.

[7] Vladimir Vovk and Glenn Shafer. A game-theoretic explanation of the
√

dt
effect. Working Paper #5. The Game-Theoretic Probability and Finance
Project. www.probabilityandfinance.com.

10


