
9
Game-Theoretic

Probability in Finance

In this introductory chapter, we sketch our game-theoretic approach to some basic
topics of finance theory. We concentrate on how the Black-Scholes method for
pricing and hedging a European option can be made purely game-theoretic, but begin
with an examination of the apparently random behavior of stock-market prices, and
we conclude with a discussion of informational efficiency.

The usual derivation of the Black-Scholes formula for the price of an option relies
on the assumption that the market priceS(t) of the underlying securityS follows
a diffusion process. As we explain in the first two sections of this chapter, this
stochastic assumption is used in two crucial ways:

Taming the Market The diffusion model limits the wildness of fluctuations inS(t).
This is the celebrated

√
dt effect: the change inS(t) over an increment of time

of positive lengthdt has the order of magnitude(dt)1/2. This is wild enough,
because(dt)1/2 is much larger thandt whendt is small, but one can imagine
much wilder fluctuations—say fluctuations of order(dt)1/3.

Averaging Market Changes The diffusion model authorizes the use of the law of
large numbers on a relatively fine time scale. The model says that relative
changes inS(t) over nonoverlapping time intervals are independent, no matter
how small the intervals, and so by breaking a small interval of time[t1, t2] into
many even smaller intervals, we can use the law of large numbers to replace
certain effects by their theoretical mean values.

Our purely game-theoretic approach does not need the diffusion model for either of
these purposes.
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A limit on the wildness of price changes can be expressed straightforwardly in
our game-theoretic framework: as a constraint on the market, it can be listed among
the rules of the game between Investor and Market. Market simply is not allowed
to move too wildly. In§9.1, we discuss how such a constraint can be expressed.
In a realistic discrete-time framework, it can be expressed in terms of the variation
spectrum of the price seriesS(t). In a theoretical continuous-time framework, where
clearer and more elegant theorems can be proven, it can be expressed in terms of the
variation exponent or the Ḧolder exponent ofS(t).

The notion that the market is constrained in how it can change prices should, of
course, be taken with a grain of salt. The market can do what it wants. But no theory
is possible without some regularity assumptions, and the game-theoretic framework
can be credited for making clear the nature of the assumptions that the Black-Scholes
argument requires.

As we explain in§9.2, the use of the law of large numbers on a fine time scale
is more problematic. The problem is that the hedging of options must actually be
implemented on a relatively coarse time scale. Transaction costs limit the frequency
with which it is practical or desirable to trade inS, and the discreteness of actual
trades limits the fineness of the scale at which the price processS(t) is even well
defined. In practice, the intervaldt between adjustments in one’s holdings ofS is
more likely to be a day than a millisecond, and this makes the appeal to the law of
large numbers in the Black-Scholes argument appear pollyannaish, for this appeal
requires the total change inS(t) to remain negligible during enoughdts for the law
of large numbers to do its work.

In our judgment, the appeal to the law of large numbers is the weak point of the
Black-Scholes method and may be partly responsible for the substantial departures
from the Black-Scholes formula often observed when option prices are determined
by supply and demand. In any case, the appeal is unpersuasive in the game-theoretic
framework, and in order to eliminate it, we need a significant change in our under-
standing of how options should be priced and hedged.

When time is measured in days, acceptance of the Black-Scholes use of the law of
large numbers amounts, roughly speaking, to the assumption that a derivative security
that pays daily dividends equal to(dS(t)/S(t))2 should decrease in price linearly: its
price at timet should beσ2(T − t), whereσ2 is the variance rate of the processS(t)
andT is the date the commitment to pay the dividends expires. We propose to drop
this assumption and have the market actually price this dividend-paying derivative,
the variance derivative, as we shall call it. As we show in§9.3, this produces a
purely game-theoretic version of the Black-Scholes formula, in which the current
market price of the variance derivative replaces the statistical estimate ofσ2(T − t)
that appears in the standard Black-Scholes formula. A derivative that pays dividends
may not be very manageable, and in§12.2 we explain how it might be replaced with
a more ordinary derivative. But the variance derivative is well suited to this chapter’s
explanation of our fundamental idea: cure the shortcomings of the Black-Scholes
method and make it purely game-theoretic by asking the market to priceS ’s volatility
as well asS itself.
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Fig. 9.1 The graph on the left shows daily closing prices, in dollars, for shares of Microsoft
for 600 working days starting January 1, 1996. The graph on the right shows daily closing
values of the S&P 500 index for the same 600 days.

After discussing stochastic and game-theoretical models for the behavior of stock-
market prices and their application to option pricing, we move on, in§9.4, to a
more theoretical topic: the efficient-market hypothesis. This section serves as an
introduction to Chapter 15.

In an appendix,§9.5, we discuss various ways that the prices given by the Black-
Scholes formula are adjusted in practice to bring them into line with the forces of
supply and demand. In some cases these adjustments can be thought of as responses
to the market’s pricing of the volatility ofS(t). So our proposal is not radical with
respect to practice.

In a second appendix,§9.6, we provide additional information on stochastic option
pricing, including a derivation of the stochastic differential equation for the logarithm
of a diffusion process, a statement of Itô’s lemma, and a sketch of the general theory
of risk-neutral valuation.

9.1 THE BEHAVIOR OF STOCK-MARKET PRICES

The erratic and apparently random character of changes in stock-market prices has
been recognized ever since the publication of Louis Bachelier’s doctoral dissertation,
Théorie de la Sṕeculation, in 1900 [9, 60]. To appreciate just how erratic the behavior
of these prices is, it suffices to glance at a few time-series plots, as in Figure 9.1.

Bachelier proposed that the price of a stock moves like what is now calledBrownian
motion. This means that changes in the price over nonoverlapping intervals of time
are independent and Gaussian, with the variance of each price change proportional to
the length of time involved. Prominent among the several arguments Bachelier gave
for each change being Gaussian was the claim that it is sum of many smaller changes,
resulting from many independent influences; the idea that the Gaussian distribution
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appears whenever many small independent influences are at play was already widely
accepted in 1900 ([3], Chapter 6).

An important shortcoming of Bachelier’s model, which he himself recognized, is
that it allows the price to become negative. The price of a share of a corporation
cannot be negative, because the liability of the owner of the share is limited to what
he pays to buy it. But this difficulty is easily eliminated: we may assume that the
logarithm of the share price, rather than the price itself, follows a Brownian motion.
In this case, we say that the price follows ageometric Brownian motion.

Norbert Wiener (1894–1964) at MIT in the 1920s.
He was the first to put Brownian motion into the
measure-theoretic framework.

In this section, we study how
these stochastic models constrain the
jaggedness of the path followed by
the prices. In the next two chap-
ters, we will use what we learn
here to express these constraints di-
rectly in game-theoretic terms—as
constraints on Market’s moves in the
game between Investor and Market.
As we will see, this has many advan-
tages. One advantage is that we can
study the constraints in a realistically
finite and discrete setting, instead of
relying only on asymptotic theory ob-
tained by making the length of time
between successive price measure-

ments or portfolio adjustments infinitely small. A second advantage is that we
cannot avoid acknowledging the contingency of the constraints. At best, they are
expectations based on the past behavior of Market, or perhaps on our understanding
of the strategic interaction among the many players who comprise Market, and Mar-
ket may well decide to violate them if Investor, perhaps together with some of these
other players, puts enough money on the table.

Our main tool for describing constraints on Market’s moves in a discrete-time
game between Market and Investor is the variation spectrum. We define the variation
spectrum in this section, and we explain how it behaves for the usual stochastic models
and for typical price series such as those in Figure 9.1. We also discuss the variation
and Ḧolder exponents. These exponents can be defined only asymptotically, but once
we understand how they are related to the variation spectrum, which is meaningful in
the discrete context, we will be able to relate continuous-time theory based on them
to discrete games between Investor and Market.

Brownian Motion

Five years after Bachelier published his dissertation, which was concerned with the
motion of stock prices, the physicists Albert Einstein (1879–1955) and Marian von
Smoluchowski (1872–1917) proposed the same model for the motion of particles
suspended in a liquid (Einstein 1905, Smoluchowski 1906; see also [45, 110, 318]).
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Fig. 9.2 A realization of the Wiener process. Each of the 600 steps in this graph is
independent, with mean zero and variance one.

Because experimental study of the motion of such particles had been initiated by the
naturalist Robert Brown in 1828, and because Einstein’s and Smoluchowski’s pre-
dictions were promptly verified experimentally, the stochastic process that Bachelier,
Einstein, and Smoluchowski studied became known asBrownian motion.

Intuitively, Brownian motion is a continuous limit of a random walk. But as
Norbert Wiener showed in the early 1920s, it can be described directly in terms of a
probability measure over a space of continuous paths [102, 346]. As Wiener showed,
it is legitimate to talk about a random real-valued continuous functionW on [0,∞)
such that

• W (0) = 0,

• for eacht > 0, W (t) is Gaussian with mean zero and variancet, and

• if the intervals[t1, t2] and[u1, u2] do not overlap, then the random variables
W (t2)−W (t1) andW (u2)−W (u1) are independent.

We now call such a random function aWiener process. It is nowhere differentiable,
and its jaggedness makes it similar to observed price series like those in Figure 9.1.
If dt is a small positive number, then the incrementW (t + dt) −W (t) is Gaussian
with mean zero and variancedt. This means in particular that its order of magnitude
is (dt)1/2; this is the

√
dt effect.

One realization of the Wiener process (one continuous path chosen at random
according to the probabilities given by the Wiener measure) is shown in Figure 9.2.
Actually, this figure shows a random walk with 600 steps up or down, each Gaussian
with mean zero and variance one. In theory, this is not the same thing as a realization
of the Wiener process, which has the same jagged appearance no matter how fine the
scale at which it is viewed. But this finer structure would not be visible at the scale
of the figure.
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Diffusion Processes

In practice, we may want to measure Brownian motion on an arbitrary scale and
allow the mean to change. So given a Wiener processW , we call any processS of
the form

S(t) = µt + σW (t), (9.1)

whereµ ∈ R andσ ≥ 0, a Brownian motion. The random variableS(t) then has
meanµt and varianceσ2t. We callµ thedrift of the process, we callσ its volatility,
and we callσ2 its variance.

Equation (9.1) implies that any positive real numberdt, we may write

dS(t) = µdt + σdW (t), (9.2)

where, as usual,dS(t) := S(t+dt)−S(t) anddW (t) := W (t+dt)−W (t). When
dt is interpreted as an infinitely small number rather than an ordinary real number,
this is called astochastic differential equationand is given a rigorous meaning in
terms of a corresponding stochastic integral equation (see§9.6).

We obtain a wider class of stochastic processes when we allow the drift and
volatility in the stochastic differential equation to depend onS andt:

dS(t) = µ(S(t), t)dt + σ(S(t), t)dW (t). (9.3)

Stochastic processes that satisfy stochastic differential equations of this form are
calleddiffusion processes, because of the connection with the diffusion equation (also
known as the heat equation; see p. 128) and because the random walk represented by
W diffuses the probabilities for the position of the path as time goes on.

A diffusion processS that satisfies (9.3) has the Markov property: the probabilities
for whatS does next depend only on the current state,S(t). We can generalize further,
allowing the drift and volatility to depend on the whole preceding path ofS rather
than merely the current valueS(t). This produces a wider class of processes, which
are often calledItô processesin honor of the Japanese mathematician Kiyosi Itô. But
in this book, we consider only the Markov case, (9.3).

Itô developed a calculus for the study of stochastic differential equations, the
stochastic calculus. The centerpiece of this calculus is Itô’s lemma, which allows
us write down, from knowledge of the stochastic differential equation governing an
Itô processS, the stochastic differential equation governing the Itô processU(S),
whereU is a well-behaved function. We state Itô’s lemma in§9.5, and we prove a
game-theoretic variant in§14.2. But in the body of this chapter we avoid Itô’s lemma
in favor of more direct heuristic arguments, whose robustness is more easily analyzed
when we relax the rather strong assumptions that define the Wiener process.

The measure-theoretic account of continuous-time stochastic processes is essen-
tially asymptotic: it shows us only what is left in the limit as the time steps of the
underlying random walk (represented byW ) are made shorter and shorter. Although
it makes for beauty and clarity, the asymptotic character of the theory can create dif-
ficulties when we want to gauge the value and validity of applications to phenomena
such as finance, which are discrete on a relatively macroscopic level. One of our
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goals in this book is to develop less asymptotic tools, whose relevance to discrete
phenomena can be understood more directly and more clearly.

Osborne’s Log-Gaussian Model (Geometric Brownian Motion)

Although Bachelier continued publishing on probability and finance through the
1930s, his fellow probabilists gave his work on probability little prominence and
ignored his work on finance [60]. Consequently, the British and American statis-
ticians and economists who began examining stock-market prices empirically and
theoretically in the middle of the twentieth century had to rediscover for themselves
the relevance of the Wiener process. The principal contribution was made in 1959
by the American astrophysicist M. F. Maury Osborne, who was the first to publish a
detailed study of the hypothesis thatS(t) follows a geometric Brownian motion. This
has been called Osborne’slog-Gaussian model, because it says that the logarithm of
the priceS(t), rather thanS(t) itself, follows a Brownian motion [237, 337].

If lnS(t) follows a Brownian motion, then we may write

d ln S(t) = µ0dt + σ0dW (t).

It follows (see p. 231) that the relative incrementsdS(t)/S(t) satisfy a stochastic
differential equation of the same form:

dS(t)
S(t)

= µdt + σdW (t). (9.4)

SoS itself is also a diffusion process:

dS(t) = µS(t)dt + σS(t)dW (t). (9.5)

The stochastic differential equation (9.5) will be the starting point for our review in
the next section of the Black-Scholes model for option pricing.

Figure 9.3 shows two realized paths of the random motion defined by (9.5), with
parameters chosen to match the apparent trend and volatility of the Microsoft prices
shown in Figure 9.1. The parameters are the same for the two paths. Both start at
22.4, the initial price of Microsoft in Figure 9.1, and for both the theoretical driftµ is
0.0024 (the average daily return on Microsoft’s stock), and the theoretical volatility
σ is0.0197 (the square root of the average daily squared return on Microsoft’s stock).
The fact thatσ is multiplied byS(t) in (9.5) is visible in these graphs: the magnitude
of the fluctuations tends to be larger whenS(t) is larger. This same tendency towards
larger fluctuations when the price is higher is also evident in Figure 9.1. On the other
hand, the two paths show very different overall trends; the first ends up about 50%
higher than Microsoft does at the end of 600 days, while the second ends up only
about1/3 as high. This illustrates one aspect of the relatively weak role played by
the drift µ in the diffusion model; it can easily be dominated by the random drift
produced by the failure of thedW (t) to average exactly to zero.
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Fig. 9.3 Two realizations of the same geometric Brownian motion, whose parameters are
chosen to match the apparent trend and volatility in the Microsoft price series in Figure 9.1:
S(0) = 22.4375, µ = 0.0024, andσ = 0.0197.

Benoit Mandelbrot (born 1924) in 1983.
Since the 1960s, Mandelbrot has cham-
pioned alternatives to the log-Gaussian
model.

In the four decades since Osborne’s for-
mulation of the log-Gaussian model, abundant
evidence has been found for deviations from it:
dependencies, skewness, non-Gaussian kurto-
sis, and heteroskedasticity [212, 216, 208].
Some authors, most notably Benoit Mandel-
brot, have argued for alternative stochastic
models. But most researchers in finance have
not found these alternatives attractive or useful.
They have continued to take the log-Gaussian
model as their starting point, making ad hoc ad-
justments and elaborations as necessary when
empirical deviations become too troublesome.

We agree with Mandelbrot that the log-
Gaussian model is a doubtful starting point.
But we do not propose replacing it with a
different stochastic model. Instead, we pro-
pose dropping the assumption that the market
is governed by a stochastic model. We now
turn to a tool that can help us do this, the vari-
ation spectrum.
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Fig. 9.4 Variation spectra for the two price series in Figure 9.1—Microsoft on the left and
the S&P 500 on the right. In both cases, we have rescaled the data in Figure 9.1 by taking
the median value as our unit. The median price for Microsoft over the 600 working days in
Figure 9.1 is approximately$48.91; the median value of the S&P 500 index is approximately
775. This unit determines the vertical scale in the picture of the variation spectrum. As an
example, considervar600(1), which is the sum of the absolute values of the daily changes. In
the case of Microsoft,var600(1) is approximately 9.5, meaning that the total of the absolute
sizes of the daily changes over 600 days is 9.5 times the median price. In the case of the
S&P 500,var600(1) is approximately 4.3, meaning that the total of the absolute sizes of the
daily changes is 4.3 times the median value of the index.

The Variation Spectrum

Consider a continuous functionS(t) on the finite interval[0, T ]. Choose an integer
N , set

xn = S

(
n

T

N

)
− S

(
(n− 1)

T

N

)

for n = 1, . . . , N , and set

varS,N (p) :=
N∑

n=1

|xn|p (9.6)

for all p > 0. We callvarS,N (p) the p-variation of S, and we call the function
varS,N the variation spectrumfor S. We abbreviatevarS,N to varS or varN or
even tovar in contexts that fix the missing parameters. If we setdt := T/N , then
we can also write (9.6) in the form

varS,N (p) :=
N−1∑
n=0

|dS(ndt)|p, (9.7)

where, as usual,dS(t) := dS(t + dt)− dS(t).
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Figure 9.4 shows the variation spectra for the Microsoft and S&P 500 data shown
in Figure 9.1. These spectra display some typical features: thep-variation has
large values forp less than 1 and small values forp greater than 2. This is to be
expected; if, e.g.,0 < |xn| < 1 for all n, thenvarS,N (p) decreases continuously
in p, with limp→0 varS,N (p) = N and limp→∞ varS,N (p) = 0. The fall from
large to small values is gradual, however, and the apparent position of the transition
depends strongly on the unit of measurement for the original series. This dependence
is illustrated by Table 9.1, which givesvar600(2) for the Microsoft and S&P 500
data measured with several different units.

In many of the games between Investor and Market that we will study, the ability
of Investor to hedge the sale of an option depends on Market choosing his moves
x1, . . . , xN so thatvarN (2+ ε) is small for some small positiveε. In Chapter 10, for
example, we prove that under certain conditions, which includevarN (2+ε) ≤ δ, the
game-theoretic upper and lower prices of an option are approximated in discrete time
by our Black-Scholes formula with an error no greater thanKδ1/4 for some constant
K. Here it makes sense thatvarN should depend on the unit of measurement for the
price of the underlying security, for the error in pricing the option is also measured
using some arbitrary unit, and the constantK depends on how these two units are
related. But the devil is in the details. It is not enough to say that the Black-Scholes
formula will be accurate ifvarN (2 + ε) is small. Just how small a bound we
can put onvarN (2 + ε) will determine whether the formula will give a reasonable
approximation or be an asymptotic irrelevance.

The Variation and H ölder Exponents

In addition to a practical theory, in which we wade through messy calculations to
obtain bounds on the accuracy of hedging in terms of bounds on2-variation, we do
also want an asymptotic theory, in which we clear away the clutter of practical detail
in order to see the big picture more clearly. This book is far from practical, and
asymptotic theory will occupy most of the remaining chapters. In this asymptotic
theory, we will emphasize the value ofp at which thep-variation drops from large
(asymptotically infinite) to small (asymptotically zero). In practice, as we have just
seen, this value is scarcely sharply defined. But an asymptotic theory will assume,

Table 9.1 Dependence ofvar600(2) andvar600(2.5) on the choice of a unit for the Mi-
crosoft price or the S&P 500 index. Thep-variations are given to three significant figures or
three decimal places, whichever is less.

Microsoft S&P 500
unit var(2) var(2.5) unit var(2) var(2.5)
dollar 742 1, 100 index point 37, 700 160, 000
median ($48.91) 0.310 0.066 median (775) 0.063 0.010
initial ($22.44) 1.473 0.463 initial (621) 0.098 0.017
final ($86.06) 0.100 0.016 final (1124) 0.030 0.004
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Fig. 9.5 Mandelbrot’s concept of box dimension ([216], pp. 172–173). Intuitively, the box
dimension of an object in the plane is the power to which we should raise1/dt to get, to the
right order of magnitude, the number ofdt × dt boxes required to cover it. In the case of an
object of areaA, aboutA/(dt)2 boxes are required, so the box dimension is 2. In the case of
a smooth curve of lengthT , T/dt boxes are required, so the box dimension is 1. In the case of
the graph of a function on[0, T ] with Hölder exponentH, we must cover a vertical distance
(dt)H above the typical incrementdt on the horizontal axis, which requires(dt)H/dt boxes.
So the order of magnitude of the number of boxes needed for allT/dt increments is(dt)H−2;
the box dimension is2−H.

one way or another, that it is defined. It is called thevariation exponent, and its
inverse is called theHölder exponent, in honor of Ludwig Otto Ḧolder (1859–1937).

We brush shoulders with the idea of a Hölder exponent whenever we talk infor-
mally about the order of magnitude of small numbers. What is the order of magnitude
of x1, . . . , xN relative to1/N? If N is large and the|xn| have the same order of
magnitude as(1/N)H on average, where0 < H ≤ 1, then the order of magnitude
of thep-variation will be

N

(
1
N

)Hp

= N1−Hp. (9.8)

This will be close to zero forp > 1/H + ε and large forp < 1/H − ε, whereε is
some small positive number. Intuitively,1/H is the variation exponent, andH is the
Hölder exponent. In other words, the Hölder exponent ofS(t) is the numberH such
thatdS(t) has the order of magnitude(dt)H .

Following Mandelbrot ([215], Part II,§2.3; [216], p. 160), we also introduce a
name for2 −H; this is thebox dimension. Mandelbrot’s rationale for this name is
sketched in Figure 9.5. Although this rationale is only heuristic, the concept gives
visual meaning to the Ḧolder exponent. In general, the box dimension of the graph
of a time series falls between1 and 2, because the jaggedness of the graph falls
somewhere between that of a line or a smooth curve and that of a graph so dense that
it almost completely fills a two-dimensional area.

As Figure 9.5 suggests, an ordinary continuous function should have box dimen-
sion1, which means that its Ḧolder exponent and variation exponent should also be1.
For a wide class of stochastic processes with independent increments, including all
diffusion processes withσ > 0, we expect the Ḧolder exponent of a path to be1/2; this
expresses the idea that the incrementdS has the order of magnitude(dt)1/2. Func-
tions that fall between an ordinary function and a diffusion process in their jaggedness
may be calledsubstochastic. These benchmarks are summarized in Table 9.2.
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For a greater variety of values for the Hölder exponent, we may consider the
fractional Brownian motions. Thefractional Brownian motionwith indexh ∈ (0, 1)
is a stochastic processBh such thatBh(0) = 0, valuesBh(t) for t > 0 are jointly
Gaussian, and the variance of an incrementBh(t) − Bh(s), where0 < s < t,
is (t − s)2h. If h = 0.5, then the fractional Brownian motion reduces to the
usual Brownian motion, but for other values ofh even nonoverlapping increments
are correlated. We can assume that the sample paths are continuous (cf. [262],
Corollary 25.6 on p. 61 of Volume 1). The Hölder exponent should approximate the
indexh. Figure 9.6 shows some sample paths for differenth. See [13, 48, 214, 216].

We use such cautious turns of phrase (“the Hölder exponent is supposed to be
such and such”) because there is no canonical way to define the Hölder exponent
precisely. In practice, we cannot determine a Hölder exponent for an arbitrary
continuous functionS(t) on [0, t] with any meaningful precision unless we chop the
interval into an absolutely huge number of increments, and even then there will be
an unattractive dependence on just how we do the chopping. In order to formulate a
theoretical definition, we cannot merely look at the behavior in the limit of a division
of [0, T ] into N equal parts; in general, we must pass to infinity much faster than this,
and exactly how we do it matters. In the nonstochastic and nonstandard framework
that we use in Chapter 11, this arbitrariness is expressed as the choice of an arbitrary
infinite positive integerN .

The practical implication of the relative indeterminacy of the Hölder exponent is
clear. Unlike many other theoretical continuous-time concepts, the Hölder exponent
is not something that we should try to approximate in a discrete reality. It has a
less direct meaning. When a statement in continuous-time theory mentions a Hölder
exponentH, we can use that statement in a discrete reality only after translating it
into a statement about thep-variation for values ofp at a decent distance from1/H.
For example, the statement that Market’s path will have Hölder exponent1/2 or less
must be translated into a condition about the relative smallness of thep-variation for
p = 2 + ε, whereε > 0 is not excessively small.

Table 9.2 Typical values for our three related measures of the jaggedness of a continuous
real-valued functionS. The figures given for a substochastic function are typical of those
reported for price series by Mandelbrot.

Hölder exponent variation exponent box dimension
H vex dim

definition vex := 1/H dim := 2−H

range 0 ≤ H ≤ 1 1 ≤ vex ≤ ∞ 1 ≤ dim ≤ 2

ordinary function 1 1 1
substochastic 0.57 1.75 1.43
diffusion process 0.5 2 1.5
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a h = 0.2 b h = 0.4 c h = 0.5

d h = 0.6 e h = 0.8 f h = 1

Fig. 9.6 Sample paths for fractional Brownian motions with different values for the index
h. The Ḧolder exponent of a sample path is supposed to approximate the indexh. When
h = 0.5, the fractional Brownian motion reduces to ordinary Brownian motion. Whenh = 1,
it reduces to a straight line.
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Fig. 9.7 Graphs of variation spectra for the straight lineS(t) = t on0 ≤ t ≤ 1. On the left
is the variation spectrum based on a division of the interval[0, 1] into 600 steps. On the right
is the variation spectrum based on a division into10, 000 steps. These graphs fall from values
greater than one to values less than one when we crossp = 1 on the horizontal axis, but the
fall is less than abrupt.
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In order to be fully persuasive on this point, we should perhaps look at some
further examples of the indeterminacy of the Hölder exponent even whenN is
huge. Consider the best behaved function there is: the linear functionS(t) = t for
0 ≤ t ≤ 1. We split the interval[0, 1] into N parts, and (9.7) becomes

varS,N (p) :=
N−1∑
n=0

(
1
N

)p

= N1−p.

Figure 9.7 graphs this function forN = 600 and N = 10, 000. As N tends to
infinity, N1−p tends to zero forp > 1 and to infinity forp < 1, confirming that the
Hölder exponent forS is1. But how large doesN have to be in order for the variation
spectrum to identify this value to within, say, 10%? For example, how large doesN
have to be in order for

varS,N (p) ≥ 10 for p ≤ 0.9 and varS,N (p) ≤ 0.1 for p ≥ 1.1 (9.9)

to hold? This is not hard to answer: the conditionsN1−0.9 ≥ 10 andN1−1.1 ≤ 0.1
are both equivalent toN ≥ 1010. And even whenN is in the billions, there are still
arbitrary choices to be made. If we had chosen our linear function on[0, 1] to be
S(t) = 100t instead ofS(t) = t, varN (1) would not be1, as shown in Figure 9.7
and taken for granted by our question about (9.9). Instead, it would be100.

The story is similar for other continuous functions, including sample paths for
diffusion processes: we do not get even the appearance of a sharply defined value for
the Hölder exponent unlessN is in the billions. Figure 9.8 illustrates the point with
the variation spectra for two realizations of the Wiener process, one withN = 600
and one withN = 10, 000. In this case, the Ḧolder exponent is0.5: thep-variation
tends to infinity withN for p less than2 and to zero forp greater than2. The scale in
which the Wiener process is measured has the convenient feature thatEvarN (2) = 1
for all N , but the drop at the pointp = 2 is no more abrupt than for the linear function.
We should note that Figure 9.8 is not affected by sampling error; different realizations
give curves that cannot be distinguished visually.

The var600 for Microsoft and thevar600 for the S&P 500, both of which we
displayed in Figure 9.4, are similar to thevar600 for the Wiener process in Figure 9.8.
But in the Microsoft and S&P 500 cases, we must use empirical scales for the data
(in Figure 9.1, our unit was the observed median in each case), and so we cannot
create the illusion that we can identify2 as the crossover point from large to small
p-variation.

Why Do Stock-Market Prices Move Like Brownian Motion?

As we have explained, we will use the variation spectrum and the variation exponent
in game-theoretic versions of Black-Scholes pricing that do not rely on the assumption
that stock-market prices are stochastic. In these versions, the assumption that the
stock priceS(t) follows a geometric Brownian motion with theoretical volatilityσ
is replaced by the assumption that the market prices a derivative securityD that
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Fig. 9.8 The variation spectrum for a sample path of the Wiener process, for600 and10, 000
sample points.

pays dividends that add up to the actual future (relative) variance ofS(t). We
then assume bounds on thep-variations ofS(t) and the priceD(t) of the traded
derivative. In discrete time, we assume upper bounds onvarS(2 + ε) andvarD(2−
ε) (Proposition 10.3, p. 249). In our continuous-time idealization, bounds on the
wildness ofS(t) are not even needed if we can assume that the payoff of the option
we want to price is always nonnegative and thatS does not become worthless; in this
case it is enough that the variation exponent of the variance securityD be greater
than2 (or, equivalently, that its Ḧolder exponent be less than1/2) (Theorem 11.2,
p. 280).

The movement of stock-market prices does look roughly like Brownian motion.
But in our theory this is a consequence, not an assumption, of our market games
for pricing options. This is made clear in our continuous-time theory, where we
prove (Proposition 11.1, p. 281) that Market can avoid allowing Investor to become
infinitely rich only by choosing hisdS(t) so thatS(t) has variation exponent exactly
equal to2. This is a way of expressing the truism that it is the operation of the market
that makes price changes look like a random walk. The game-theoretic framework
clears away the sediment of stochasticism that has obscured this truism, and in its
discrete-time form it allows us to explore how far the effect must go in order for
Black-Scholes pricing to work.

9.2 THE STOCHASTIC BLACK-SCHOLES FORMULA

TheBlack-Scholes formulawas published in 1973, in two celebrated articles, one by
Fischer Black and Myron Scholes, the other by Robert C. Merton [30, 229, 28, 16].
This formula, which prices a wide class of derivatives, has facilitated an explosive
growth in the markets for options and more complex derivatives. In addition to filling
the need for objective pricing (a starting point for valuation by creditors and auditors),
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it gives those who write (originate) options guidance on how to hedge the risks they
are taking, and it permits a great variety of adjustments that can bring the ultimate
pricing into line with supply and demand. It was recognized by a Nobel Prize in
1997.

As we explained in the introduction to this chapter, the Black-Scholes formula
relies on the assumption that the price of the underlying stock follows a geometric
Brownian motion. In this section, we review the derivation, informally but with
careful attention to how the stochastic assumption is used. This will set the stage
for our presentation, in the next section, of our purely game-theoretic Black-Scholes
formula.

European Options

Fischer Black (1938–1995) in 1975. Be-
cause of his early death, Black did not
share in the 1997 Nobel prize for eco-
nomics, which was awarded to Myron
Scholes and Robert C. Merton.

Recall that a derivative (or, more properly, a
derivative security) is a contract whose payoff
depends on the future movement of the prices
of one or more commodities, securities, or
currencies. The derivative’s payoff may de-
pend on these prices in a complicated way, but
European optionsare relatively simple; their
payoffs depend only on the price of a single
security at a fixed date of maturity. A Euro-
pean optionU on an underlying securityS is
characterized by its maturity date, sayT , and
its payoff function, sayU . Its payoff at time
T is, by definition,

U(T ) := U(S(T )). (9.10)

The problem is to priceU at a timet before
T . What price should a bank charge at time0,
say, for a contract that requires it to pay (9.10)
at timeT?

The most familiar European option is the
European call, which allows the holder to buy
a security at a price set in advance. The holder

of a European call onS with strike pricec and maturityT will exercise it only if
S(T ) exceedsc, and he can then immediately realize the profitS(T )− c by reselling
the security. So the payoff functionU of the call is

U(S) :=
{

S − c if S > c
0 if S ≤ c.

In practice, the bank selling the option and the customer buying it usually do not
bother with the underlying security; the bank simply agrees to pay the customer
U(S(T )).
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At first glance, one might expect that buyers of call options would be motivated
by the belief that the price of the stockS will go up. This is often true in practice,
especially for buyers who cannot afford to buy the stock outright. But buying the
stock is a more straightforward and efficient way to bet on a price increase. The
buyer of a call option will generally be charged more for his potential payoff than the
interest on the money needed to buy the stock, because he is not risking the loss a
buyer of the stock would incur if its price goes down instead of up. If he can afford
to buy the stock but buys the stock option instead, the fact that he is paying to avoid
this risk reveals that he is not really so confident that the price will go up. He may be
counting only on a big change in the price. If it goes up, he will make a lot of money.
If it goes down, he will lose only the relatively small price he pays for the option.

Another important European option is the European put, which entitles its holder
to sell stock at a given price at a given time. It can be analyzed in the same way as
we have analyzed the European call. European options are less popular, however,
than American options, which can be exercised at a time of the holder’s choosing.
We analyze American options in Chapter 13.

The Market Game

In the 1950s and early 1960s, when American economists first attacked the problem
of pricing derivatives, they considered a number of factors that might influence the
price an investor would be willing to pay, including the investor’s attitude toward risk
and the prospects for the underlying security [56, 114, 264]. But the formula derived
by Black and Scholes involved, to their own surprise, only the time to maturityT ,
the option’s payoff functionU , the current priceS(t) of the underlying securityS,
and the volatility ofS ’s price. Moreover, as they came to realize in discussions with
Merton, the formula requires very little economic theory for its justification. If the
price ofS follows a geometric Brownian motion, then the price the formula gives for
U is its game-theoretic price, in the sense of Part I, in a game between Investor and
Market in which Investor is allowed to continuously adjust the amount of the stock
S he holds. The protocol for this game looks like this:

The Black-Scholes Protocol
Parameters: T > 0 andN ∈ N; dt := T/N
Players: Investor, Market
Protocol:

I(0) := 0.
Market announcesS(0) > 0.
FORt = 0, dt, 2dt, . . . , T − dt:

Investor announcesδ(t) ∈ R.
Market announcesdS(t) ∈ R.
S(t + dt) := S(t) + dS(t).
I(t + dt) := I(t) + δ(t)dS(t). (9.11)
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Investor’s moveδ(t) is the number of shares of the stock he holds during the period
t to t + dt, Market’s movedS(t) is the change in the price per share over this period,
and henceδ(t)dS(t) is Investor’s gain (or loss). We writeI for Investor’s capital
process.

Investor starts with zero capital, but at each step he can borrow money to buy stock
or borrow stock to sell, in amounts as large as he wants. So his moveδ(t) may be
any number, positive, zero, or negative. Market may also choose his move positive,
zero, or negative, but he cannot allowS(t) to become negative. IfS(t) ever becomes
zero, the firm issuing the stock is bankrupt, andS(t) must remain zero.

For simplicity, we assume that the interest rate is zero. Thus we do not need to
adjust Investor’s gain,δ(t)dS(t), to account for his payment or receipt of interest.
We also assume that transaction costs are zero; Investor does not incur any fees when
he buys or sells stock in order to change the number of shares he is holding fromδ(t)
to δ(t + dt).

The Stochastic Assumption

To the protocol we have just described, Black and Scholes added the assumption that
S(t) follows a geometric Brownian motion. In other words, Market’s moves must
obey the stochastic differential equation for geometric Brownian motion,

dS(t) = µS(t)dt + σS(t)dW (t). (9.12)

But the derivation of the Black-Scholes formula does not actually use the full force of
this assumption. What it does use can be boiled down to three subsidiary assumptions:

1. The
√

dt effect. The variation exponent of theS(t) is 2. In other words, the
order of magnitude of thedS(t) is (dt)1/2. This is a constraint on the wildness
of Market’s moves. They cannot take too jagged a path.

2. Standard deviation proportional to price. The expected value of(dS(t))2

just before Market makes the movedS(t) is approximatelyσ2S2(t)dt.

3. Authorization to use the law of large numbers. In a calculation where the
squared increments(dS(t))2 are added, they can be replaced by their expected
values,σ2S2(t)dt. This follows from the assumption that thedW (t) are
independent, together with the law of large numbers, which is applicable if the
time incrementdt is sufficiently small.

In our judgment, the most troublesome of these three assumptions is the third. The
first assumption, as we explained in the preceding section, can be re-expressed
in game-theoretic terms. Adjustments (more or less convincing and more or less
cumbersome) can be made to correct for deviations from the second. But the third is
risky, simply because the number of terms being averaged may fail to be large enough
to justify the use of the law of large numbers. The new Black-Scholes method that
we introduce in the next section is motivated in part by our dissatisfaction with this
risky use of the law of large numbers.
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Assumption 1, that thedS(t) have order of magnitude(dt)1/2, follows, of course,
from (9.12) and the fact that thedW (t), as increments in a Wiener process, have this
order of magnitude. The first term on the right-hand side of (9.12),µS(t)dt, can be
neglected, becausedt is much smaller than(dt)1/2.

Assumption 2 follows similarly when we square both sides of (9.12):

(dS(t))2 = S2(t)
(
µ2(dt)2 + 2µσdtdW (t) + σ2(dW (t))2

)
. (9.13)

BecausedW (t) is of order(dt)1/2, (dW (t))2 is of orderdt and dominates the other
two terms, and hence the approximate expected value of(dS(t))2 is obtained by
dropping them and replacing(dW (t))2 by its expected value,dt.

In order to explain Assumption 3 carefully, we first note that as the square of
a Gaussian variable with mean zero and variancedt, (dW (t))2 has meandt and
variance2(dt)2. (The Gaussian assumption is not crucial here; the fact that the
coefficient of(dt)2 in the variance is exactly2 depends on it, but this coefficient is
of no importance.) This can also be expressed by writing

(dW (t))2 = dt + z, (9.14)

where thez has mean zero and variance2(dt)2. In words: (dW (t))2 is equal todt
plus a fluctuation of orderdt. Summing (9.14) over allN increments

dW (0), dW (dt), dW (2dt), . . . , dW (T − dt),

we obtain
N−1∑
n=0

(dW (ndt))2 = T +
N−1∑
n=0

zn.

Because
∑N−1

n=0 zn has a total variance of only2Tdt, we may neglect it and say that
the(dW (t))2 add to the total timeT ; thezn cancel each other out. More generally,
if the squared increments(dW (t))2 are added only after being multiplied by slowly
varying coefficients, such asσ2(S(t))2, we can still expect thezn to cancel each
other out, and so we can simply replace each(dW (t))2 in the sum withdt. Here it
is crucial that the time stepdt be sufficiently small; before there is any substantial
change in the coefficientS2(t), there must be enough time increments to average the
effects of thezn to zero.

The Derivation

Now to our problem. We want to findU(t), the price at timet of the European option
U that paysU(S(T )) at its maturityT . We begin by optimistically supposing that
there is such a price and that it depends only ont and on the current price of the
stock,S(t). This means that there is a function of two variables,U(s, t), such that
U(t) = U(S(t), t). In order to findU , we investigate the behavior of its increments
by means of a Taylor’s series.
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Considering only terms of order(dt)1/2 ordt (i.e., omitting terms of order(dt)3/2

and higher, which are much smaller), we obtain

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

∂U

∂t
dt +

1
2

∂2U

∂s2
(dS(t))2. (9.15)

Here there is one term of order(dt)1/2—the term indS(t). There are two terms of
orderdt—the term indt and the term in(dS(t))2. The terms of orderdt must be
included because their coefficients are always positive and hence their cumulative
effect (there areT/dt of them) will be nonnegligible. Individually, thedS(t) are
much larger, but because they oscillate between positive and negative values while
their coefficient varies slowly, their total effect may be comparable to that of thedt
terms. (We made this same argument in our heuristic proof of De Moivre’s theorem
in §6.2.)

Substituting the right-hand side of (9.13) for(dS(t))2 in (9.15) and again retaining
only terms of order(dt)1/2 anddt, we obtain

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

∂U

∂t
dt +

1
2
σ2S2(t)

∂2U

∂s2
(dW (t))2. (9.16)

We still have one term of order(dt)1/2 and two terms of orderdt.
Because its coefficient in (9.16) varies slowly, we replace(dW (t))2 with dt,

obtaining

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

(
∂U

∂t
+

1
2
σ2S2(t)

∂2U

∂s2

)
dt. (9.17)

This is the risky use of the law of large numbers. It is valid only if the coefficient
S2(t)∂2U/∂s2 holds steady during enoughdt for the (dW (t))2 to average out.
Notice that we simplified in our preliminary discussion of this point. The variability
in (dW (t))2’s coefficient comes from∂2U/∂s2 in addition toS2(t).

Now we look again at the Black-Scholes protocol. According to (9.11),

dI(t) = δ(t)dS(t),

whereδ(t) is the amount of stock Investor holds fromt to t + dt. Comparing this
with (9.17), we see that we can achieve our goal by setting

δ(t) :=
∂U

∂s
(S(t), t) (9.18)

if we are lucky enough to have

∂U

∂t
(S(t), t) +

1
2
σ2S2(t)

∂2U

∂s2
(S(t), t) = 0

for all t, no matter what valueS(t) happens to take.
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Our problem is thus reduced to a purely mathematical one: we need to find a
functionU(s, t), for 0 < t < T and0 < s < ∞, that satisfies the partial differential
equation

∂U

∂t
+

1
2
σ2s2 ∂2U

∂s2
= 0 (9.19)

(this is theBlack-Scholes equation) and the final condition

U(s, t) → U(s) (t → T ).

As it turns out (see Chapter 11), there is a solution,

U(s, t) =
∫ ∞

−∞
U (sez) N−σ2(T−t)/2, σ2(T−t)(dz). (9.20)

As the reader will have noted, (9.19) differs only slightly from the heat equation,
which we used in our proof of De Moivre’s theorem, and (9.20) is similar to the
solution of that equation. Both equations are parabolic equations, a class of par-
tial differential equations that have been thoroughly studied and are easily solved
numerically; see§6.3 and [68, 131, 352].

So an approximate price at timet for the European optionU with maturityT and
payoffU(S(T )) is given by

U(t) =
∫ ∞

−∞
U (S(t)ez) N−σ2(T−t)/2, σ2(T−t)(dz). (9.21)

This is theBlack-Scholes formulafor an arbitrary European option. (The formula
is more often stated in a form that applies only to calls and puts.) We can replicate
the optionU at the price (9.21) by holding a continuously adjusted amount of the
underlying securityS, the amountδ(t) held at timet being given by (9.18). Financial
institutions that write options often do just this; it is calleddelta-hedging.

Only one of the parameters in (9.12), the volatilityσ, plays a role in the derivation
we have just outlined. The other parameter, the driftµ, does not appear in the
Black-Scholes equation or in the Black-Scholes formula.

Most expositions simplify the argument by using Itô’s lemma (p. 232). We have
avoided this simplification, because Itô’s lemma itself is based on an asymptotic
application of the law of large numbers, and so using it would obscure just where
such asymptotic approximation comes into play. As we have explained, we are
uncomfortable with the application of the law of large numbers that takes us from
(9.16) to (9.17), because in practice the length of timedt may be equal to a day or
longer, and it may be unreasonable to expectS2∂2U/∂s2 to hold steady for a large
number of days.

9.3 A PURELY GAME-THEORETIC BLACK-SCHOLES FORMULA

We now turn to our game-theoretic version of the Black-Scholes formula. We have
already explained the main ideas: (1) Market is asked to price bothS and a derivative
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securityD that pays dividends(dS(t)/S(t))2, and (2) constraints on the wildness of
price changes are adopted directly as constraints on Market’s moves. We now explain
informally how these ideas produce a Black-Scholes formula. The argument is made
rigorous in the next two chapters, in discrete time in Chapter 10 and in continuous
time in Chapter 11.

Another Look at the Stochastic Derivation

Consider again the derivation of the stochastic Black-Scholes formula. It begins with
a Taylor’s series:

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

∂U

∂t
dt +

1
2

∂2U

∂s2
(dS(t))2. (9.22)

The right-hand side of this approximation is the increment in the capital process of
an investor who holds shares of two securities during the period fromt to t + dt:

• ∂U/∂s shares ofS, and

• −σ−2∂U/∂t shares of a securityD whose price per share at timet isσ2(T −t)
(the remaining variance ofS), and which pays a continuous dividend per share
amounting, over the period fromt to t + dt, to

− σ2

∂U/∂t

1
2

∂2U

∂s2
(dS(t))2. (9.23)

The second term on the right-hand side of (9.22) is the capital gain from holding
the−σ−2∂U/∂t shares ofD, and the third term is the total dividend.

The Black-Scholes equation tells us to choose the functionU so that the dividend per
share, (9.23), reduces to (

dS(t)
S(t)

)2

,

and the increment in the capital process, (9.22), becomes

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

∂U

∂t
dt− ∂U

∂t

(dS(t))2

σ2S2(t)
. (9.24)

Only at this point do we need the assumption thatS(t) follows a geometric Brownian
motion. It tells us that(dS(t))2 ≈ σ2S2(t)dt, so that (9.24) reduces to

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

∂U

∂t
dt− ∂U

∂t
dt,

which will be easier to interpret if we write it in the form

dU(S(t), t) ≈ ∂U

∂s
dS(t)− σ−2 ∂U

∂t
(−σ2dt)− σ−2 ∂U

∂t
(σ2dt).
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The capital gain on each share ofD, −σ2dt, is cancelled by the dividend,σ2dt. So
there is no point in holding−σ−2∂U/∂t shares, or any number of shares, ofD. The
increment in the capital process is simply

dU(S(t), t) ≈ ∂U

∂s
dS(t),

which we achieve just by holding∂U/∂s shares ofS.
This way of organizing the Black-Scholes argument points the way to the elimi-

nation of the stochastic assumption. We can do without the assumption if the market
really does price a securityD whose dividend accounts for the(dS(t))2 term in the
Taylor’s series.

The Purely Game-Theoretic Derivation

Assume now that between0 andT , Investor trades in two securities: (1) a security
S that pays no dividends and (2) a securityD, each share of which periodically pays
the dividend(dS(t)/S(t))2. This produces the following protocol:

The New Black-Scholes Protocol
Parameters: T > 0 andN ∈ N; dt := T/N
Players: Investor, Market
Protocol:

Market announcesS(0) > 0 andD(0) > 0.
I(0) := 0.
FORt = 0, dt, 2dt, . . . , T − dt:

Investor announcesδ(t) ∈ R andλ(t) ∈ R.
Market announcesdS(t) ∈ R anddD(t) ∈ R.
S(t + dt) := S(t) + dS(t).
D(t + dt) := D(t) + dD(t).
I(t + dt) := I(t) + δ(t)dS(t) + λ(t)

(
dD(t) + (dS(t)/S(t))2

)
. (9.25)

Additional Constraints on Market: (1) D(t) > 0 for 0 < t < T andD(T ) = 0,
(2) S(t) ≥ 0 for all t, and (3) the wildness of Market’s moves is constrained.

OnceD pays its last dividend, at timeT , it is worthless:D(T ) = 0. So Market
is constrained to make hisdD(t) add to−D(0). We also assume, as we did in the
previous section, that the interest rate is zero. We do not spell out the constraints
on the wildness of Market’s moves, which will take different forms in the different
versions of game-theoretic Black-Scholes pricing that we will study in the next two
chapters. Here we simply assume that these constraints are sufficient to justify our
usual approximation by a Taylor’s series.

Consider a European optionU with maturity dateT and payoff functionU . We
begin by optimistically assuming that the price ofU beforeT is given in terms of the
current prices ofD andS by

U(t) = U(S(t), D(t)),
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where the functionU(s,D) satisfies the initial condition

U(s, 0) = U(s). (9.26)

We approximate the increment inU ’s price fromt to t + dt by a Taylor’s series:

dU(S(t), D(t)) ≈ ∂U

∂s
dS(t) +

∂U

∂D
dD(t) +

1
2

∂2U

∂s2
(dS(t))2. (9.27)

We assume that the rules of the game constrain Market’s movesdS(t) anddD(t) so
that higher order terms in the Taylor expansion are negligible.

Comparing Equations (9.25) and (9.27), we see that we need

δ(t) =
∂U

∂s
, λ(t) =

∂U

∂D
, and

λ(t)
S2(t)

=
1
2

∂2U

∂s2
.

The two equations involvingλ(t) require that the functionU satisfy the partial
differential equation

−∂U

∂D
+

1
2
s2 ∂2U

∂s2
= 0

for all s and allD > 0. This is the Black-Scholes equation, adapted to the market in
which bothS andD are traded. Its solution, with the initial condition (9.26), is

U(s,D) =
∫ ∞

−∞
U (sez) N−D/2,D(dz).

This is the Black-Scholes formula for this market.
To summarize, the price for the European optionU in a market where both the

underlying securityS and a volatility securityD with dividend(dS(t)/S(t))2 are
traded is

U(t) =
∫ ∞

−∞
U (S(t)ez) N−D(t)/2,D(t)(dz). (9.28)

To hedge this price, we hold a continuously changing portfolio, containing

∂U

∂s
(S(t), D(t)) shares ofS

and
∂U

∂D
(S(t), D(t)) shares ofD

at timet.
By the argument of the preceding subsection, the derivativeD is redundant ifS(t)

follows a geometric Brownian motion. In this case,D’s dividends are independent
nonnegative random variables with expected valueσ2dt + (µdt)2 ≈ σ2dt. By the
law of large numbers, the remaining dividends at timet will add to almost exactly
σ2(T − t), and hence this will be the market price, known in advance.
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In the following chapters, we refine and elaborate the derivation of (9.28) in various
ways. In Chapter 10, we derive (9.28) as an approximate price in a discrete-time
game in which Market is constrained to keepvarS(2+ ε) andvarD(2− ε) small. In
Chapter 11, we derive it as an exact price in a continuous-time game in which Market
is constrained to makevex D < 2; it turns out that in this game Market is further
obliged to makevexS = 2 in order to avoid allowing Investor to become infinitely
rich. As we have already noted, this gives some insight into why stock-market prices
resemble diffusion processes as much as they do: the game itself pushes them in this
direction. In Chapter 12, we extend the argument to the case of a known interest rate
and show that we can replace the dividend-paying securityD with a derivative that
pays at timeT a strictly convex function ofS(T ).

Other Choices for the Dividend-Paying Security

The core idea of the preceding argument is to have the market price by supply and
demand a derivative securityD that pays a continuous dividend locally proportional to
S ’s incremental variance,(dS(t))2. We chose forD’s dividend to be(dS(t))2/S2(t),
but this is not the only possible choice. If we takeD’s dividend to be

(dS(t))2

g(S(t))
, (9.29)

then we obtain the partial differential equation

−∂U

∂D
+

1
2
g(s)

∂2U

∂s2
= 0

for the priceU , and there are many different functionsg(s) for which this equation
has solutions. The choiceg(s) := s2, which we have just studied and will study
further in the next two chapters, leads to the Black-Scholes formula. The choice
g(s) := 1, which we will also study in the next two chapters, leads to Bachelier’s
formula. Bachelier’s formula makes sense only ifS(t) can be negative, which is
impossible for the price of stock in a limited-liability corporation. Powers ofs
intermediate between0 and2 (as in the Constant Elasticity of Variance model of Cox
and Ross 1976) also have this defect, but there are many choices forg(s) that avoid
it; it is sufficient thatg(s) go to 0 fast enough ass goes to 0 ([107], p. 294).

In general, the game in which Investor can buy a derivative that pays the divi-
dend (9.29) has as its stochastic counterpart the diffusion model

dS(t) = µ(S(t), t)dt +
√

g(S(t))dW (t). (9.30)

As we explain in an appendix (p. 231), the stochastic theory of risk-neutral valu-
ation, which generalizes the Black-Scholes theory, tells us that ifS(t) follows the
diffusion model (9.30), then all well-behaved derivatives are exactly priced, and the
dividend (9.29), will total to exactlyT − t over the period fromt to T . So this diffu-
sion model makes it redundant to trade in a derivative that pays the dividend (9.29),
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just as geometric Brownian motion makes it redundant to trade in a derivative that
pays the dividend(dS(t))2/S2(t).

Since the Taylor’s series on which our reasoning is based is only an approximation,
the local proportionality of the dividend to(dS(t))2 does not need to be exact, and this
suggests another possibility:(dS(t))2 might be smoothed to limit the dependence
on extreme values and the susceptibility of the market to manipulation by major
investors. But as a practical matter, it might be more promising to take the more
conventional approach we have already discussed: we ask the market to price a
derivative that pays a strictly convex function ofS(T ) at T , and we calculate from
its price an implied price for our theoretical derivativeD (§12.2).

9.4 INFORMATIONAL EFFICIENCY

The hypothesis that capital markets are informationally efficient emerged from efforts
in the 1960s to give an economic explanation for the apparent randomness of prices
in markets for stocks and markets for commodity futures, and it is formulated in the
context of a stochastic assumption. According to this stochastic assumption, each
pricep in such a market is based on a probability distribution for the ultimate valuex
of the contract being priced—the discounted value of the future stream of dividends
in the case of a stock, the value at delivery of the commodity in the case of a futures
contract. Neglecting interest, transactions costs, and so on, the assumption is thatp is
the expected value ofx conditional on certain current information. What information?
Different answers are possible. The hypothesis of informational efficiency says that
p is the expected value ofx conditional onall information available to investors,
including all the information in past prices, so that an investor cannot expect, on
average, to profit from buying at current prices and selling later.

Our rejection of stochasticity obviously undercuts this whole discussion. If there
is no probability distribution forx, then there is no point to arguing about how
the market uses such a probability distribution. But as we pointed out in§1.1, our
game-theoretic framework permits a much simpler interpretation of the hypothesis
of informational efficiency: it is simply the hypothesis of the impossibility of a
gambling strategy in a game where the imaginary player Skeptic is allowed to buy
and sell securities at current prices. It says that Skeptic does not, in this setting, have
a strategy that will make him very rich without risk of bankruptcy. No assumptions
of stochasticity are made, and yet there are many ways of testing the hypothesis: any
strategy that does not risk bankruptcy can be the basis for such a test. As we will
see in Chapter 15, under certain conditions there are strategies that allow Skeptic to
become rich without risk of bankruptcy if returns do not average to zero in the long-
run. So tests of the stochastic hypothesis of market efficiency that check whether
returns do approximately average to zero can be made into tests of our hypothesis of
market efficiency.

In addition to allowing us to test market efficiency, this understanding of the
market efficiency also opens the possibility of using game-theoretic probability in
various contexts where established finance theory uses stochastic ideas. We explore
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a couple of examples in Chapter 15: the trade-off between risk and return, and the
measurement of value at risk.

Why Should Prices Be Stochastic?

Why should prices in markets for stocks and commodity futures be stochastic? In
1972, Paul Samuelson summarized the answer that comes to an economist’s mind as
follows ([264], p. 17):

Expected future price must be closely equal to present price, or else
present price will be different from what it is. If there were a bargain,
which all could recognize, that fact would be “discounted” in advance and
acted upon, thereby raising or lowering present price until the expected
discrepancy with the future price were sensibly zero. It is true that people
in the marketplace differ in their guesses about the future: and that is a
principal reason why there are transactions in which one man is buying
and another is selling. But at all times there is said to be as many bulls as
bears, and in some versions there is held to be a wisdom in the resultant of
the mob that transcends any of its members and perhaps transcends that
of any outside jury of scientific observers. The opinions of those who
make up the whole market are not given equal weights: those who are
richer, more confident, perhaps more volatile, command greater voting
power; but since better-informed, more-perceptive speculators tend to be
more successful, and since the unsuccessful tend both to lose their wealth
and voting potential and also to lose their interest and participation, the
verdict of the marketplace as recorded in the record of auction prices is
alleged to be as accurate ex ante and ex post as one can hope for and
may perhaps be regarded as more accurate and trustworthy than would
be the opinions formed by governmental planning agencies.

Samuelson did not represent this argument as his own opinion, and his tone suggests
some misgivings. But he did represent it as “a faithful reproduction of similar ideas
to be found repeatedly in the literature of economics and of practical finance”. He
cited a collection of articles edited by Cootner [56], which included a translation of
Louis Bachelier’s dissertation.

As Samuelson had observed in 1965, the assumption that the current price of a
stock (or a futures contract) is the expected value of its price at some future time has a
simple consequence: the successive prices of the stock will form a martingale [263].
This means that ifpt is the price of a stock at timet, then

pt = Et(pt+1),

or
Et(pt+1 − pt) = 0, (9.31)

whereEt represents the expected value conditional on information available at time
t. Before Samuelson’s observation, economists had been investigating the hypoth-
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esis that prices follow a random walk—that is, have statistically independent in-
crements [116]. The increments of an arbitrary martingale have only the weaker
property (9.31); each has expected value zero just before it is determined. Subse-
quent to Samuelson’s calling attention to the martingale property, economists shifted
from testing for a random walk to testing (9.31), and they began saying that they are
testing market efficiency.

Eugene Fama (born 1939) in 1999. His
work on efficient markets has helped
make him the most frequently cited pro-
fessor of finance.

Tests of the stochastic efficiency of markets
have spawned an immense literature, chron-
icled in successive reviews by Eugene Fama
[117, 118, 119]. Many authors contend that
the empirical results in this literature confirm
that financial markets generally are efficient;
as Fama put it in 1998, “the expected value of
abnormal returns is zero, but chance generates
deviations from zero (anomalies) in both direc-
tions” ([119], p. 284). Other authors see de-
viations from efficiency everywhere [288] and
conclude that stock-market prices are the result
of “indifferent thinking by millions of people”
([286], p. 203) that can hardly identify correct
probabilities for what will happen in the future.
Yet other authors have suggested that the finan-
cial markets can be considered efficient even
if they do not conform exactly to a stochastic
model or eliminate entirely the possibility for
abnormal returns [48, 140, 207, 208].

The diversity of interpretation of the empir-
ical results can be explained in part by the fact, acknowledged by everyone in the
debate, that the efficient-markets hypothesis cannot really be tested by itself. By
itself, it says only that prices are expected values with respect to some stochastic
model. An effective test requires that we specify the stochastic model, substantially
if not completely, and then we will be testing not merely the efficient-markets hy-
pothesis but also specific model. This is thejoint hypothesis problem([48], p. 24;
[118], pp. 1575–1576).

Game-Theoretic Efficiency

Our game-theoretic efficient-market hypothesis is in the spirit of Samuelson’s ar-
gument but draws a weaker conclusion. We do not suppose that there is some
mysteriously correct probability distribution for future prices, and therefore we reject
the words with which Samuelson’s argument begins: “expected future price”. But
we accept the notion that an efficient market is one in which bargains have already
been discounted in advance and acted upon. We hypothesize that our Skeptic cannot
become rich without risking bankruptcy because any bargains providing Skeptic se-
curity against large loss would have already been snapped up, so much so that prices
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would have adjusted to eliminate them. By the principles of§1.3 and§8.3, this is
enough to determine game-theoretic upper and lower probabilities for other events in
the market being considered.

The purely game-theoretic approach obviously avoids the joint-hypothesis prob-
lem. We do not assume a stochastic model, and so we do not need to specify one in
order to test our efficient-market hypothesis. We must specify, however, just what
market we are talking about. Are we asserting that Skeptic cannot get rich with-
out risking bankruptcy by trading in stocks on the New York Stock Exchange? By
trading in options on the Chicago Board Options Exchange? Or by trading just in
stocks in the S&P 500 index? These are all well-defined markets, and the hypothesis
that Skeptic cannot get rich is a different hypothesis for each one of them, requiring
different tests and perhaps leading to different practical conclusions. Ours is an
efficient-market hypothesis, not an efficient-markets hypothesis.

We must also specify a unit of measurement for Skeptic’s gains—anuḿeraire.
We may hypothesize that Skeptic cannot get rich relative to the total value of the
market (if this is well-defined for the particular market we are considering). Or we
may hypothesize that he cannot get rich in terms of some monetary unit, such as the
dollar or the yen. Or we may hypothesize that he cannot get rich relative to the value
of a risk-free bond. And so on. These are all different hypotheses, subject to different
tests and possibly having different implications concerning what we should expect in
the future.
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