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Annotation 
The three contributions translated below are very different. The first 

is very elementary and as such deserves some attention as being 
perhaps methodically unique. The third booklet went at least through 
five editions: 1960, 1963, 1966 (here translated), and 1970, 1976 
which I have regrettably not seen. This circumstance all by itself is 
remarkable. My own contribution was an attempt to link a rather 
elementary exposition with the history of probability. I accompanied 
the first and the third contributions by notes, and certainly do not 
repeat here their essence. There certainly exist good more or less 
elementary expositions of probability published in English. Some of 
them are referred to below and I can also mention  

 
F. Mosteller., R. E. K. Rourke, G. B. Thomas (1961), Probability and Statistics. 

New York, 1965.  
    F. Mosteller (1965), Fifty Challenging Problems in Probability. New York. 

 
    A few words about Rumshitsky’s booklet. He had barely touched on 
statistics and, as I see it, italicised too many sentences and passages; in 
this respect, I did not always follow him. Then, a large portion of his 
text was in small print which was not necessary to preserve.  
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Chapter 1. What about Is the Theory of Probability? 
 

The theory of probability occupies a special place in the family of 
mathematical sciences. It studies the laws of a special type governing 
random experiments1. Later, if and when specifically studying this 
theory, you will gain a profound knowledge of such laws, but my aim 
is far more modest. I am attempting to acquaint the reader with some 
elementary notions about the theory of probability, its problems and 
methods, its possibilities and boundaries. 

Nowadays the development of science is characterized by a general 
mighty offensive of stochastic (statistical) methods on a wide front, an 
attack on every branch of knowledge. Today, each engineer, researcher 
and manager ought to be informed about the elements of theory of 
probability. However, experience shows us that, generally speaking, 
beginners run into difficulties when studying it. For a person 
accustomed to quite different traditional scientific ways it is not easy 
to become accommodated to its specific features. Most difficult are 
usually the first steps towards understanding and applying stochastic 
methods. The sooner this peculiar psychological barrier is removed, 
the better will it be.  

In my booklet, without aspiring to describe systematically the theory 
of probability, I am attempting to help the beginner with these same 
first steps. And, in spite of the free and easy (at times, even comic) 
form of exposition, an attentive reader will on occasion have to think 
hard. 

First, only a few words about random events. Suppose that the 
outcome of some experiment (or trial) cannot be predicted. For 
example, we toss a coin and cannot say whether heads or tails will 
appear. Or, we blindly draw a card from a pack and cannot predict its 
suit. Another example: we arrive at a bus station regardless of the bus 
timetable; how long will we have to wait? As chance would have it! 
Finally, how many articles manufactured under certain conditions will 
be defective?  

All these examples describe random events with unpredictable 
outcomes. When experiments with indefinite outcomes are being 
repeated, their results will change. Thus, a precise balance will 
generally show differing values of the weight of an object. Why these 
differences? The conditions of the experiments appear identical, but 
the outcome of each is influenced by many small and hardly revealable 
factors causing in total an indefinite outcome.  

And so, suppose that some experiment whose outcome is not known 
beforehand is random. Each fact that can occur or not is called a 
random event (or simply an event)2. Thus, a coin toss can lead or not to 
an event A, to the appearance of heads. Another experiment, a toss of 
two coins, can lead or not to an event B, the occurrence of two heads. 
One more example. A lotto consists of 49 numbers 6 of which are 
drawn. Each of the following happy events can occur: A, B and C, 
denoting 3, 4 or 5 guessed numbers. Also, the happiest (but the most 
unlikely) event D, denoting all 6 guessed numbers3.  
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The theory of probability allows us to measure the likelihood (or 
probability)4 of various events, to compare them according to their 
probabilities, and, what is the most important, thus to predict the 
outcomes of random phenomena ! You will possibly by angered here 
by understanding nothing at all. Just above you read that random 
phenomena are unpredictable, but now, predictions!  

Just a minute, be patient. We can only predict random events having 
a high likelihood or probability. And it is the theory of probability that 
allows us to determine which events belong to that class. Let us 
discuss probabilities of events. Obviously, not all random events are 
equally probable, they can be more or less probable. 

Which outcome of a roll of a die do you think is more probable: A, 6 
points; or B, an even number of points? A difficult problem? Then shut 
my booklet and forget about it. But no! This is entirely unlikely; on the 
contrary, you will say at once: What kind of a problem is this? 
Obviously, event B. And you will be in the right since an elementary 
understanding of the notion probability of an event is a distinctive 
feature of each human being not lacking in common sense.  

We are surrounded by random phenomena and random events, from 
childhood we are accustomed to estimate somehow those probabilities 
when contemplating our actions, to separate them into probable, 
unlikely, and hardly feasible. When the probability of an event is very 
low, common sense tells us not to reckon seriously on its appearance. 
Suppose a formula interesting us is placed somewhere in a book 500 
pages long. Can we seriously expect to find it by blindly opening the 
book? Apparently not. Such an event is possible but unlikely. 

Now let us agree how to calculate (to estimate) the probability of 
random events. First of all, we should assign a probability for a certain 
event, i. e., an event that will certainly occur in a given experiment. 
For example, it is certain that the number of points achieved in a roll 
of a die will not exceed 6. By definition, the probability of a certain 
event is 1. And probability 0 is assigned to an impossible event, i. e., 
an event that cannot occur in a given experiment at all. Thus, a 
negative number of points cannot occur in a roll of a die.  

Denote the probability of event A by P(A), then obviously 
 
0 ≤ P(A) ≤ 1.                                                                     (1.1) 
 

Keep in mind this most important property of probability! If, while 
solving a problem, you get a probability higher than 1 (or, still worse, 
a negative probability), be sure that you have been mistaken. One of 
my students failed to understand this. Arriving at P(A) = 4, he stated 
that the event was more than probable5.  

But to return to our considerations. I repeat that the probability of an 
impossible event is 0 and that a certain event has probability 1. Then, 
the probability of any random event A is a number contained between 
0 and 1. It shows the part of the probability of a certain event 
possessed by that given event. Later, you will learn how to calculate 
the probabilities of random events when dealing with some simple 
problem. Now, however, we have to think about certain points of 
principle connected with the theory of probability and its applications. 
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And, first of all, why should we be able to calculate probabilities? It is 
certainly sufficiently interesting in itself to know how to estimate 
numerically the degrees of likelihood of various events, to compare 
them one with another.  

But our final aim is different: we wish to predict the outcomes of 
experiments concerning random phenomena by issuing from their 
calculated probabilities. Indeed, there exist such experiments whose 
outcomes are predictable in spite of randomness, predictable either 
exactly or approximately, with certainty or, so to say, practically 
certainly. To reveal a special class of events practically certain and 
practically impossible, to discern events A for which P(A) ≈1 and 0, is 
one of the most important problems of the theory of probability.  

Suppose that each of 100 men tosses his own coin. Event A is the 
appearance of 100 heads. It is theoretically possible to imagine such a 
freak of chance, but its probability is negligible; we will soon find out 
that it equals 1/2100. Event A can be considered practically impossible 
while the contrary event A  meaning that there occurs at least 1 tails is 
practically certain. In problems concerning probabilities practically 
certain and practically impossible events always occur in pairs, just as 
above. 

If our calculations show that some event A is practically certain, we 
may predict its occurrence, although not for sure, but almost so. Not a 
little success when dealing with random phenomena! We may thus 
almost for sure predict the maximal error in our computer calculations; 
the maximal and minimal yearly number of spare parts needed by a 
garage; the maximal and minimal number of successive shots when 
shooting at a target; the maximal [relative] number of defective articles.  

Note that such predictions are generally possible when studying 
many homogeneous random events rather than a single isolated event. 
It is impossible to say beforehand whether the outcome of a coin toss 
will be heads or tails, and no theory of probability whatever helps here. 
However, we can predict the boundaries within which the number of 
heads will be contained after, say, 500 or 1000 tosses. Such examples 
will be offered below; predictions are formulated not for sure but 
almost so, and are realized not without exception, but in most cases. 

People are often asking: how high should be the probability of an 
event for considering it practically certain? Should it be, say, 0.99 or 
0.995, or even 0.999? No definite answer is possible. All depends on 
how important is the success of the prediction, and what will threaten 
us if it fails? Suppose we predict that, with probability 0.99, if 
travelling by a certain type of public transportation, we will not be late 
for work more than by 10 minutes. Can we consider this event 
practically certain? Yes, as it seems. The same question about a 
favourable landing of a spaceship? Obviously, probability 0.99 is not 
here enough! 

Now, keep in mind that any prediction provided by the theory of 
probability is always characterized by two features: 

1. It is not offered for sure, but almost for sure, i. e., with a high 
probability. 

2. The researcher himself assigns the numerical value of this 
probability (of this confidence level) more or less arbitrarily, but in 
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accordance with common sense and allowing for the importance of the 
success of the prediction. 

If, after all these reservations, you are not yet definitively 
disappointed in the theory of probability, go on reading and get 
acquainted with some elementary methods of reckoning the 
probabilities of random events. Some idea about these methods you 
already apparently possess. Answer, for example, this question: What 
is the probability of heads in a coin toss? Almost surely (with a very 
high probability) you will say at once: 1/2. And this is the correct 
answer provided that the coin is symmetric and of regular shape6, and 
the outcome edgeways is considered practically impossible. 

Just as easy is the question about the appearance of 6 points in a roll 
of a die. You will almost surely answer, 1/6 (with the same 
reservations allowed for). How did you arrive at this answer? 
Apparently, you have noted that there are six possible outcomes and 
that, owing to the symmetry of the die, they are all equally probable. It 
was therefore natural to assign probability 1/6 to each, which is what 
you did quite correctly.  

But now, what is here the probability of the occurrence of more than 
4 points? You will probably answer, again correctly, 1/3. Indeed, two 
equally probable outcomes, 5 and 6 points, are favourable for the 
event. You divided 2 by 6 and obtained the correct answer. Bravo! 
Without suspecting it, you have applied the classical method of 
calculating probabilities according to the pattern of chances.  

But what is that, the pattern of chances? First, we introduce a few 
terms; in the theory of probability, just as in many other sciences, 
terminology is important. Suppose that an experiment has possible 
outcomes A1, A2, …, An. Events A1, A2, …, An are called incompatible 
if they mutually exclude one another, if no two of them can occur at 
the same time. 

They form a complete group if they exhaust all possible outcomes, 
if the non-appearance of all of them is impossible. They are equally 
probable if the conditions of the experiment ensure an equal 
possibility (probability) of the appearance of each of them. If those 
outcomes possess all the three properties (are incompatible, form a 
complete group and are equally probable) they are called chances and 
the experiment is said to be reduced to the pattern of chances7. 

The experiment of coin tossing is thus reduced to the pattern of 
chances since the two outcomes, A1 and A2, possess all the three 
abovementioned properties. The same can be stated about the rolls of a 
die with six possible outcomes. 

Consider now the toss of two coins. If thoughtless and hasty, you 
will be quick to mention three events: B1, two heads; B2, two tails; B3, 
heads and tails. You will be wrong! These events are not chances since 
they are not equally probable; B3 is twice as probable as each of the 
other two. The real chances are A1 and A2, as also are B1 and B2, and 
A3 and A4: heads on the first (on the second) coin, tails on the second 
(on the first) coin.  

In our next example we will for the first time use the traditional urn 
with balls, or, simply speaking, a container with some number of balls 
of various colours. They are thoroughly shuffled and do not differ to 
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the touch which ensures an equal probability of drawing any of them. 
These conditions will be implied in each problem connected with urns. 

Each problem in which the experiment is reduced to the pattern of 
chances can be considered as an urn problem. These latter problems 
constitute a single language of sorts capable of describing instances 
most variable in appearance. So let us have an urn with 7 balls, 3 white 
and 4 black. A ball is blindly drawn and it is required to enumerate the 
appropriate chances. Here, it is once more possible to name 
thoughtlessly two events, B1 and B2, the occurrences of a white and a 
black ball. If you were thus tempted, you are not fit for the theory of 
probability. However, you will quite likely reject such an answer, you 
have already understood that B1 and B2 are not equally probable. Here, 
we have 7 rather than 2 cases, as many as there are balls. There cases 
are incompatible, they form a complete group and are equally probable 
and they therefore represent chances. 

Now, is it possible to form a group of chances for each experiment? 
No, far from it. If, for example, the experiment consists in tossing an 
irregular (a bent) coin, the appearances of heads and tails will not 
anymore be chances since they are not equally probable. It is even 
possible to bend a coin in such a way, that one of these outcomes will 
become impossible. The toss of an irregular coin cannot be reduced to 
the pattern of chances. For such a reduction the experiment should 
possess some symmetry and thus to enable equal probabilities of the 
outcomes.  

That symmetry is sometimes achieved by physical symmetry (of the 
coin or die) or by shuffling the elements involved which ensures an 
equal probability of the extraction of any one of them. Most often such 
symmetry is observed in artificially arranged experiments if only 
special measures are implemented 

Typical examples are provided by games of chance. Note that the 
development of the theory of probability began with their analysis. If 
an experiment is reduced to the pattern of chances, the probability of 
any event A included there can be calculated as the ratio of the number 
of chances favourable for A (mA) to the total number of chances (n) 

 
P(A) = mA/n.                                                                          (1.2) 
 
This is the so-called classical formula. It has been applied from the 

very origin of the science of random phenomena. For a long time it 
was even considered as the definition of probability. Experiments 
which did not possess symmetry had been artificially adjusted to fit the 
pattern of chances8. In our time, probability, as well as the methods of 
discussing its theory, is regarded from another point of view.  

For us, formula (1.2) is not universal, although it ensures 
calculations of the probabilities of events in some simplest 
experiments. In the subsequent chapters you will see how to calculate 
the probabilities of events when the appropriate experiment is not 
reducible to the pattern of chances.  

We will now consider a number of problems for illustrating the 
calculation of probabilities of random events according to formula 
(1.2). Some of them are very easy, the other ones are not.  
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Ex. 1. Two coins are tossed. Required is the probability of the 
appearance of at least one heads (of event A).  

Here, we have 4 cases (as explained above), three of them 
favourable for A, so P(A) = 3/4. 

Ex. 2. An urn contains 3 white and 4 black balls. A ball is drawn, 
and required is the probability that it is white (event A).  

Here, n = 7, mA = 3, P(A) = 3/7. 
Ex. 3. A ball is drawn from the same urn and put elsewhere without 

noting its colour. A second ball is drawn. Required is the probability 
that it is white (event A). 

Pondering about these circumstances, we [apparently] convince 
ourselves that the preliminary extraction does not influence event A. It 
remains as it was in Ex. 2 (3/7). However, before the second ball was 
extracted, the urn had contained 6 rather than 7 balls, so was the 
number of cases really 7? Unless and until we know the colour of the 
first ball, the number of cases remains as it was, 7. To convince 
ourselves, we will preliminarily draw 6 balls rather than 1 again 
without noting their colour.  

The probability that the only one left is white will still be 3/7 since it 
is irrelevant whether we draw it or leave it in the urn. You are still 
doubtful? Then imagine a dark room. We draw all the 7 balls, throw 2 
of them somewhere on the floor and put the rest on a cupboard. Then 
we accidentally step on one of those two balls and require the 
probability that it is white. Are you still in doubt? Well, nothing will 
help you since all our arguments are exhausted9. 

Ex. 4. Two balls are drawn at the same time from the same urn. 
Required is the probability that both are white (event A). 

This problem is somewhat more difficult since it is not so easy to 
calculate n and mA in formula (1.2). We will have to decide in how 
many ways we can draw these two balls, and to draw both white balls. 
Such problems belong to the subject of a special science, 
combinatorics, a branch of elementary algebra. Here, we only need 
one of its formulas for calculating the number of combinations of k 
things taken s at a time and differing by their composition but not by 
the order of their elements: 

 
( 1)...( 1)

,  .
!

k k k k s k k

s s s k s

− − +     
= =     

−     
         (1.3, 1.4) 

 
In our example, k = 7, s = 2 and n = 21. Now we have to find the 

number of ways for selecting 2 out of the 3 white balls. Here, k = 3 
and s = 2, so mA = 3. Finally, P(A) = 3/21 = 1/7. 

Ex. 5. Three balls are drawn at once from the same urn (put up with 
it for a while longer, we will soon leave it). Required is the probability 
that 2 of them will be black, and 1, white (event A). 

Here, k = 7, s = 3 and n = 35. Now, two out of 4 black balls can be 
selected in 6 ways (k = 4 and s = 2) and each such combination should 
go with each combination of the selected white balls. The total number 
of favourable cases will be 6·3 = 18, and P(A) = 18/35.  

We are now prepared to solve the following general problem. 
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Problem. An urn contains a white and b black balls and k balls are 
drawn. Required is the probability that among these there will be l 
white balls (and therefore k – l black balls); l ≤ a, k – l ≤ b. 

The number of cases is 
 

    .
a b

n
k

+ 
=  
 

  

 
Now, we select l white balls from a and k – l black balls from b, 

then take each of the first combinations with each of the second ones 
so that 

 

( ) .
a b a b

P A
l k l k

+    
= ÷    

−    
                                            (1.5) 

 
This formula can be applied in various settings, for example when 

solving problems concerned with sampling acceptance. An urn is then 
replaced by a batch containing defective (black balls) and quality 
articles (white balls) with k balls in a trial sample. One more example 
which will perhaps interest you.  

Ex. 6. A gambler selected 6 numbers of a lottery containing 49 
numbers. Required is the probability that he had guessed 3 numbers 
out of the drawn 6. 

But this was explained in the previous example. Just imagine an urn 
with 6 white and 43 black balls. Required is the probability that out of 
the drawn 6 balls 3 will be white. According to formula (1.5) with a = 
6, b = 43, k =6 and l = 3, 

 
6 43 49 6 5 4 43 42 41 4 5

( ) .
3 3 6 49 48 47 46 45 44

P A
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

= ÷ =    
⋅ ⋅ ⋅ ⋅ ⋅    

  

 
If not feeling lazy, calculate this result. The probability is very low, 

ca. 0.0176 or only 1.8%. The probabilities of guessing 4 or 5 or all 6 
numbers (a wonder!) is still lower (much lower).Try and calculate 
them if you are so especially inclined. 

 
Chapter 2. Probability and Relative Frequency 

You have acquainted yourself with the subject of the theory of 
probability, with some of its main notions and with the calculation of 
probabilities of events according to the so-called classical formula 
(1.2). It does not follow, however, that you are well equipped for 
practically applying the theory of probability. The sphere of 
application of that formula is regrettably not as vast as desired. It is 
only useful for experiments symmetrical with respect to symmetry of 
possible outcomes (reducible to the pattern of chances). Such 
experiments mostly belong to games of chance in which symmetry is 
ensured by special measures10. Unlike former times, nowadays 
professional gamblers are not really numerous, and the practical 
importance of formula (1.2) is very restricted. So how should we deal 
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with the probabilities of events in most cases? Do they exist? If they 
do, how to calculate them? 

Here, we ought to introduce a new main notion of the theory of 
probability, the notion of relative frequency of an event. Let us 
approach it from some distance. Suppose we throw an irregular 
asymmetric die and let event A be the occurrence of 6 points. Formula 
(1.2) is inapplicable here11 and we cannot say that P(A) = 1/6. So is it 
higher or lower than that value? And how to find this probability, at 
least approximately?  

Any reasonable man will say: let us roll the die many times and see 
how often (relatively) the event occurs. This frequency can be 
assumed as the probability of A. What can you say? Our reasonable 
man is certainly in the right. Without knowing it, he applied the notion 
of frequency which we will now rigorously define. 

Frequency of an event in a series of experiments is the ratio of the 
number of those of them in which that event had occurred to the total 
number of experiments. 

This frequency is also called statistical probability. Statistics of 
mass random phenomena is the foundation for determining the 
probabilities of events with possible asymmetrical outcomes. We will 
denote frequency by P* so that 

 
P*(A) = MA/N.                                                                     (2.1) 
 
Here, N is the total number of experiments and MA, the number of 

those of them in which the event A had occurred. Formulas (1.2) and 
(2.1) are similar in appearance but absolutely different in essence. The 
former theoretically computes the probabilities of events given the 
conditions of an experiment, whereas the latter experimentally 
determines the frequency of the events. For applying it, we need 
experimental, statistical data. 

Let us think awhile about the essence of frequency of an event. It is 
quite obvious that some connection exists between it and probability. 
More probable events generally occur more often than less probable 
ones, but the two notions are not at all identical. The similarity, the 
kinship between them becomes the more noticeable the more trials are 
made. With a small number of them frequency is essentially random, 
can considerably deviate from probability.  

For example, in 10 coin tosses heads can indeed appear 3 times, its 
frequency is then 0.3, very different from its probability, 0.5. But when 
the number of experiments increases, frequency gradually loses its 
random essence12. Random circumstances accompanying each 
experiment compensate each other and frequency generally stabilizes 
and with slight fluctuations approaches some mean constant magnitude. 
It is natural to suppose that that magnitude is nothing but the 
probability of the event. 

We can verify that statement, although obviously only for those 
events whose probabilities can be calculated by formula (1.2), i. e., for 
those experiments which are reducible to the pattern of chances. And 
that statement proved to be correct. You can check it yourself by 
choosing a simple example, by coin tossing, let us say. The frequency 



 

14 
 

of heads will approach its probability, 0.5. Toss the coin 10, 20, … 
times (until patience lasts) and calculate that frequency. For sparing 
efforts and time apply a simple ruse, throw coins by the dozen (but 
certainly shake them thoroughly beforehand). […] 

You will not be the first to conduct such experiments, eminent 
scholars did not shrink from them. Thus, Pearson13, a celebrated 
statistician, made 24 thousand coin tosses and got 12,012 heads so that 
its frequency was very near to 0.5. Many experiments were made with 
a die and the frequency of the occurrence of its faces proved to be near 
1/6. The approach of the frequency to probability can be considered 
experimentally proven.  

Stability of the frequency given a large number of homogeneous 
experiments is one of the most typical regularities observed in mass 
random phenomena. When repeating the same experiment many times 
(and ensuring their independence) the frequency of the studied event 
becomes ever less random14, more equable and approaches a constant. 
For experiments reducible to the pattern of chances it is possible 
directly to convince ourselves that that constant is nothing but the 
probability of the event. Suppose, however, that the experiment is not 
reducible to that pattern, but that the frequency becomes stable and 
approaches a constant. Well, we will then assume that the formulated 
rule is holding and call the approached constant the probability of the 
event.  

We have thus introduced probabilities not only for events and 
experiments reducible to the pattern of chances, but for other events 
and experiments as well, if only the stability of the frequency persists. 
But what can be said about that stability? Does it exist for all random 
phenomena? Not for all, but for many. Let us explain this not really 
simple statement. Try to consider carefully this explanation since it 
will save you from possible mistakes. 

When discussing stability, we assumed that the same experiment 
(coin toss, a roll of a die) can be repeated indefinitely. Indeed, nothing 
prevents us from repeating such an experiment any number of times 
provided we have the necessary time. But sometimes not we ourselves, 
but nature arranges experiments, and we only observe their results. In 
such cases stability of the frequency cannot be guaranteed beforehand, 
it ought to be verified. 

Suppose that an experiment is a male birth, and that we are 
interested in its probability. Nature arranges it a great many times 
yearly. Is the frequency of such random phenomena stable? Yes, as 
experimentally established, it is very stable. It barely depends on the 
geographic location of the country in question, on the nationality or 
age of the baby’s parents etc. It is somewhat higher than 0.5 
(approximately equals 0.51)15.  

Frequencies are stable (at least not over very large time intervals) is 
present in such random phenomena like, for example, failures of 
technical equipment, appearance of defective articles, wrong work of 
machinery, morbidity and mortality of a population, meteorological 
and many biological phenomena. It is this stability that allows us to 
apply successfully stochastic methods for studying those phenomena, 
predicting and governing them16. 
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There also exist such random phenomena for which that stability is 
doubtful or does not even exist. In such cases it is meaningless to 
mention a long number of homogeneous experiments, since a 
sufficiently large ensemble of statistical data does not exist (or cannot 
in principle be obtained). Such phenomena can include some events 
which seem to be more or less plausible, but no definite probability 
can be assigned them. Thus, it is hardly possible (and hardly expedient) 
to calculate the probability that in three years women will wear long 
skirts (or men grow moustaches). There is no appropriate ensemble of 
statistical data and successive years, if considered as experiments, 
cannot be thought to be in any sense homogeneous.  

Another example (a question) in which a probability of an event is 
even less sensible: What is the probability that organic life exists on 
Mars? Whether such life exists there will apparently be found out in a 
few years17; many scientists consider it quite plausible. But some 
degree of plausibility is not yet probability. When guesstimating 
probability, we inevitably find ourselves in a world of vague fantasies; 
when wishing to deal with genuine probabilities, we should base 
ourselves on sufficiently vast statistics. But in the case above this latter 
condition is certainly lacking: Mars is unique! 

So let us specify: we will only discuss probabilities of events in 
experiments not reducible to the pattern of chances when they belong 
to the class of mass random phenomena with stable frequencies. 
Whether these are stable or not is usually decided by common sense. Is 
it possible to repeat sufficiently many times an experiment without 
essentially changing its circumstances? Can we hope to collect the 
necessary statistical data? If the researcher intends to apply stochastic 
methods, he himself ought to answer these questions. 

To dwell now on yet another question directly connected with the 
previous discussion. When speaking about the probability of an event 
in some experiment it is necessary first of all to list carefully the main 
conditions of that experiment. They are supposed to be fixed rather 
than changeable once the experiment is repeated. One of the most 
common mistakes in practical applications of the theory of probability 
(especially made by the beginners) consists of speaking about the 
probability of an event without specifying the conditions of the 
appropriate experiment or the statistical ensemble of random 
phenomena in which that probability could have revealed itself as 
frequency.  

Thus, it is utterly meaningless to speak about the probability of such 
an event as the delay of a train. Of what train? Freight or passenger 
train? Wherefrom and where does it go? Along which railway line? 
Only after specifying all these circumstances we are allowed to 
consider the probability of that event as a definite number. We are thus 
warning you about reefs threatening those who are not only interested 
in amusing petty problems about coins, dice and cards18, but desire to 
apply stochastic methods for attaining veritable aims. 

Suppose now that all those conditions are met: we can conduct 
sufficiently many homogeneous experiments, and the frequencies are 
stable. Then, having a long series of experiments, we may 
approximately equate the frequency of an event to its probability. 
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Indeed, we have agreed that that frequency approaches probability as 
the number of experiments increases. This seems to be, but is not 
really very simple. The interrelation of frequency and probability is 
rather delicate.  

Let us think for some time about the term approaches. What does it 
mean? What a strange question, you will possibly think. Approaches 
means comes ever nearer. What is there to think about? There is 
something indeed. We are dealing with random phenomena, with 
everything happening in a special way, out of the ordinary. 

We know that the sum of the geometric progression 
 
1 + 1/2 + 1/22 + … + 1/2n 
 

indefinitely approaches 2 as n increases. The more terms we take, the 
nearer will their sum be to their limit, which is absolutely certain. 
However, we are unable to make such categorical statements when 
dealing with random phenomena.  

Yes, frequency generally approaches probability, but in its own way: 
not exactly for sure, but, with high probability, almost so. It can 
happen that even after a very long series of experiments frequency will 
essentially deviate from probability. The probability of that occurrence 
is very low, and the lower, the larger is the number of the experiments. 

Suppose we toss a coin 100 times. Can it happen that the frequency 
of heads will essentially differ from its probability, 0.5? Can it be 0 
(no heads at all)? Such an outcome is theoretically possible (it does not 
contradict any law of nature), but its probability is very, very low. Let 
us calculate it; happily, we are already able to solve such simple 
problems. First of all, calculate the general number n of cases. There 
are two outcomes for each coin, and each outcome can go with any 
outcome of any of the other coins, so that n = 2100. Then, there is only 
one favourable case, and its probability is therefore 1/2100. This 
number has 30 zeros after the decimal point and we may safely regard 
an event having such probabilities practically impossible. Actually, 
even lesser deviations of the frequency from probability are also 
practically impossible. 

So how large are the practically possible deviations given a long 
number N of experiments? I will write down the formula providing the 
answer to that question. Regrettably, I am not in position to prove it 
although some justification is given below. At present, you can only 
trust me19. Suppose that event A arrives with probability p in each of N 
experiments. Then with probability (confidence level) 0.95 the 
frequency P*(A) of that event will be contained within the interval (the 
confidence interval) 

 

2 (1 )/ .p p p N± −                                                                     (2.2) 

 
This means that almost always (or, more precisely, in 95% of all 

cases) the frequency will not be beyond that interval. Yes, in 5% of the 
cases we will be wrong, but nothing ventured, nothing gained. Or, 
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when fearing mistakes, do not predict random phenomena since your 
statements will come true not for sure, but only almost so. 

A quite another point is that someone will decide that probability 
0.05 of a mistake is too high. Then we can play safe and apply a 
somewhat wider confidence interval 

 

3 (1 )/ .p p p N± −                                                            (2.3) 

 
It corresponds to a very high confidence level of 0.997. But suppose 
that we demand a complete certainty of prediction? Then we will only 
be able to say that the frequency will not go beyond interval [0, 1] 
which is a rather trivial and obvious statement.  

In Chapter 1 I had stated that the probability of a practically certain 
event (of the confidence level) is assigned to some degree arbitrarily. 
Let us agree that, when estimating the precision of determining 
probability by frequency we will be satisfied by a modest confidence 
level of 0.95 and apply formula (2.2). After all, nothing disastrous 
happens if we will sometimes be mistaken.  

And so, suppose we toss a coin N = 100 times. We have p = 1 – p = 
0.5 and formula (2.2) provides 

 

0.5 2 0.25/100 0.5 0.1.± = ±   
 

With probability (confidence level) 0.95 we can thus predict that in 
100 tosses the frequency of heads will deviate from its probability not 
more than by 0.1. Well … the deviation, to put it bluntly, is 
considerable. How can we decrease it? Apparently, by increasing N. 
The length of the confidence interval will shorten (regrettably, not as 
rapidly as we wish, but inversely proportional to √N). For example, 
with N = 10,000 formula (2.2) provides 0.5 ±  0.01. The connection 
between frequency and probability of an event can therefore be 
formulated thus: 

Having a sufficiently large number of independent experiments, the 
frequency of an event will, practically speaking, certainly become as 
near as desired to its probability. 

This statement is called the Jakob Bernoulli theorem or the simplest 
form of the law of large numbers. I have introduced it without proof, 
but you had hardly doubted it in earnest … 

We have thus investigated the meaning of the approach of frequency 
to probability. One more step is left: to determine approximately the 
probability of an event given its frequency and estimate the error of 
that approximation. Formula (2.2), or, if you will, (2.3) will help with 
the latter task.  

Suppose that a large number N of experiments was conducted and 
that the frequency P*(A) of event A is derived. Required is an 
approximate value of its probability. Denote P*(A) = p* and P(A) = p 
and set approximately that 

 
p ≈ p*.                                                                                   (2.4) 
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Estimate now the practically possible maximal error of this 
approximate equality by formula (2.2). It will show with confidence 
level 0.95 how much can the frequency deviate from the probability.  
But how can we manage it? Formula (2.2) includes the unknown 
probability p, which we indeed wish to estimate.  

An absolutely legitimate question! But formula (2.2) only serves for 
approximately estimating the confidence interval. For a rough 
estimation of the error of the probability we may replace the unknown 
p by its approximation, the known frequency p*. So let us do it! Here 
is an example. 

A series of N = 400 experiments provided the frequency of an event 
p* = 0.25. Choose confidence level 0.95 and determine the maximal 
practically possible error when assuming that p = p*. Formula (2.2) 
provides 

 

0.25 2 0.25 0.75/400 0.25 0.043.± ⋅ ≈ ±   
 
The maximal practically possible error is 0.043. But if it does not 

suit us? If that error should not exceed 0.01, say? Increase the number 
of experiments; but by how much? We will again apply our favourite 
formula (2.2). Assuming that p = p* = 0.25, we will find the 
approximate value of the maximal practically possible error and equate 
it to 0.01:  

 

2 0.25 0.75/N 0.01.⋅ =  
 
Solving this equation we obtain N = 7500. And so, for calculating 

probability with confidence level 0.95 given the frequency of the order 
of 0.25, and an error not exceeding 0.01, we need 7500 experiments 
(terrible even to think about it!). 

Formula (2.2) or the similar formula (2.3) can also help to solve one 
more question: is it possible to explain the derived deviation of the 
frequency from probability by random causes or does that deviation 
indicate that the probability is not such as we thought.  

Suppose we toss a coin N = 800 times and the frequency of heads is 
0.52. We suspect that the coin is irregular so that heads appear more 
often than tails. Is our suspicion warranted? We will start by assuming 
that everything was in order: the coin is regular, the probability of 
heads is 0.5 as it should be. Then we will determine the confidence 
interval at confidence level 0.95 for the frequency of heads. If the 
determined value 0.52 is within the confidence interval, everything is 
normal, otherwise we should suspect the coin’s regularity.  

For the frequency of heads formula (2.2) provides an approximate 
value 0.5 ± 0.035. The calculated value of the frequency is contained 
within that interval, so we ought to exonerate our coin.  

Similar methods are applied for judging whether various deviations 
from mean values observed in random phenomena are accidental or 
significant. Thus, whether some short measures in a few purchases 
were random or indicated a systematic deception of customers; 
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whether the recovery rate of patients heightened accidentally or due to 
the action of a certain new medicine. 

And so, you have learned to determine approximately the 
probability of events in experiments not reducible to the pattern of 
chances when issuing from statistical data and even to estimate 
somehow the ensuing error. But what kind of a science is this theory of 
probability, will be your possible question. If the probability of an 
event cannot be determined by formula (1.2), we have to conduct 
experiments, and more and more of them, until patience and endurance 
last. Then, we calculate the frequency of the event, equate it to the 
unknown probability and perhaps estimate the ensuing error. How 
boring!  

You will be completely wrong since such statistical derivation of 
probability is not the only and far from being the main method20. 
Much more important are the indirect rather than direct methods of 
determining probabilities. They allow us to calculate probabilities of 
events by issuing from the probabilities of other events, connected 
with the studied event; to calculate the probability of a compound 
event by that of a simple, then to go over to simpler events etc. This 
chain extends to the simplest events after which it cannot be continued 
further. The probabilities of those simplest events are either calculated 
by formula (1.2) or derived experimentally, by applying frequencies.  

This last-mentioned procedure certainly demands us to conduct 
experiments or collect data. We should try to use the longest possible 
chains of events and conduct simplest and cheapest experiments. To 
attain our goal we therefore ought to get as much as possible 
information by calculating and as little as possible by experimenting. 
Indeed, the cheapest components needed for information are paper and 
the researcher’s time. 

In the next chapter, we discuss the calculation of probabilities of 
compound events by those of simple events. 

 
Chapter 3. The Main Principles of the Theory of Probability 

I have just emphasised that the main methods of determining the 
probabilities of events are indirect and consist in issuing from the 
probabilities of simple events. Here, we deal with these methods. All 
of them rest on the two proverbial whales, on the two most important 
principles, rules of the theory of probability, those of addition and 
multiplication of probabilities. 

The addition rule. The probability of the occurrence of whichever 
of two incompatible events, A and B, is equal to the sum of their 
probabilities  

 
P(A or B) = P(A) + P(B).                                                       (3.1) 
 

Now, is it a theorem or an axiom? Both. It can be rigorously proven 
for experiments reducible to the pattern of chances. The number of 
cases favourable for the compound event (A or B) is mA + mB etc and 
the formula (3.1) is therefore often called addition theorem. 
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However, we ought not to forget that for other experiments it is 
assumed as a principle, or an axiom. You can convince yourselves in 
that this theorem/principle is also valid for frequencies.  

It can be simply generalized on any number of events. If events A1, 
A2, …, An are incompatible, then 

 
P(A1 or A2 or … or An) = P(A1) + P(A2) + … + P(An).   (3.2) 
 

There are some important corollaries. First, if events A1, A2, …, An are 
mutually incompatible and form a complete group, the sum of their 
probabilities is unity. Try to prove this statement yourselves. 

Second (a corollary of the corollary): if A is some event and A is its 
contrary event (non-appearance of A), then 

 
P(A) + P( A ) = 1;                                                                 (3.3)  

 
the sum of the probabilities of contrary events is unity. This formula is 
the foundation of a very common method of transition to the contrary 
event. It often occurs that it is difficult to calculate the probability of 
some event A, but easy to determine that of A . 

Multiplication rule. The probability of the combination of two 
events (of the occurrence of both) is equal to the probability of one of 
these multiplied by the probability of the other one provided that the 
first event had occurred: 

 
P(A and B) = P(A)·P(B/A).                                                   (3.4) 
 
Here, P(B/A) is the so-called conditional probability of event B 

calculated under the condition that A had occurred. This formula is a 
theorem as well and can be rigorously proven for the pattern of 
chances. Otherwise, it is assumed without proof as a principle or 
axiom, and it is also valid for frequencies. Note that is absolutely 
indifferent which event is called the first, and which is therefore the 
second. Formula (3.4) can be written as 

 
P(A and B) = P(B)·P(A/B).                                                (3.5) 
 
Ex. 1. An urn contains 3 white and 4 black balls. Two balls are 

drawn, one after the other. Required is the probability that both are 
white. 

Suppose that both balls are white (events A and B). We ought to find 
out the probability of their combination. We have formula (3.4) with 
P(A) = 3/7. The second ball is chosen out of the six left, two of them 
white, so P(B/A) = 2/6 = 1/3 and  

 
P(A and B) = 3/7·1/3 = 1/7. 
 

We have obtained the same result (Ex. 4 in Chapter 1) by a direct 
enumeration of chances. 
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    But will the solution change if the balls are drawn not successively, 
but at once? At a glance, it possibly seems that it will indeed change. 
However, think just a little bit and it will become clear that no change 
will happen. Indeed. Let us draw the balls at the same time, one with 
our right hand, the other one, with our left, and call them the first and 
the second respectively. Will our considerations differ from those 
applied when solving Ex. 2 [Ex. 5 of Chapter 1]? No, not at all. The 
probability sought will still be 1/7. 

But suppose we draw them both by the same hand? Then, call the 
ball nearer to the thumb the first one, and stop nagging! But if … Oh, 
enough is enough, doubting Thomas. You have certainly understood it 
already. 

The multiplication rule becomes especially simple for a special kind 
of events called independent. Two events, A and B, are called 
independent if the occurrence of one of them does not at all influence 
the probability of the occurrence of the second one. Or, the conditional 
probability of event A provided that B had occurred, is absolutely the 
same as it would be if that restriction was dropped: 

 
P(A/B) = P(A).                                                                         (3.6) 
 

Otherwise events A and B are called dependent21. 
In our Ex. 1 the events A and B were dependent: the probability of 

the occurrence of a white ball at the second drawing depended on 
whether the first drawn ball was white or black. But change now the 
conditions of the problem: return back the first drawn ball, shuffle all 
of them and draw the second ball. Here, the same events A and B will 
be independent: 

 
P(B/A) = P(B) = 3/7. 
 
The notion of dependence/independence of events is very important. 

Its incomplete understanding often leads to mistakes. Especially 
beginners tend to forget about dependence of events when it exits, or, 
conversely, assign some dependence to actually independent events. 
Let us, for example, ask someone inexperienced in the theory of 
probability whether heads or tails will be more probable to occur after 
10 heads in succession. Almost for sure he will say, Certainly tails. 
The tosses should sometime compensate each other, tails should arrive 
sooner or later! 

Yes, he will say that and be absolutely wrong. The probability of 
heads, if only we toss the coin in the usual way, does not at all depend 
on what happened before. The probability of heads at any toss of a 
regular coin is 1/2. But of course the appearance of heads 10 times in 
succession can lead us to suspect that regularity, and we will tend to 
believe that the appearance of heads is more probable at any toss.  

Possibly you will not agree. Well, let us bet. Suppose that a year ago 
you tossed a coin 10 times and heads appeared invariably. Today, you 
recalled that curious episode and decided to toss a coin once more. Do 
you still think that tails will be more probable than heads? You have 
rather begun to hesitate … but I will now deal the final blow. Let 
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someone else (Pearson, for the sake of definiteness) toss a coin 24 
thousand times, and in some 10 consecutive tosses obtain 10 heads. 
You have recalled that experiment and wish to toss a coin once more. 
So what is more probable, heads or tails? You have apparently 
surrendered and admitted that they are equally probable.  

Now let us extend our multiplication rule on several events. In the 
general case of dependent events the probability of one of them is 
multiplied by the probability of another one provided that the former 
had occurred, then by the conditional probability of the third one 
provided that the first two had occurred etc. I will not write out the 
appropriate formula since this statement is easier to remember when 
offered verbally.  

Ex. 2. An urn contains 5 numbered balls. All of them are drawn one 
after another. Required is the probability that they will be drawn in 
their order 1, 2, …, 5. 

By the multiplication rule22  
 
P(1, 2, 3, 4, 5) = 1/5·1/4·1/3·1/2·1 = 1/120. 
 
Ex. 3. Eight separate letters are lying on the table, 2 letters u, 3 

letters g and 3 letters m. We pick up three of them one after another. 
Required is the probability that, being arranged in their appeared order, 
they form the word gum.  

By the multiplication rule, P(gum) = 3/8·2/7·3/6 = 3/56. 
Now, required is the probability that that same word can be formed 

from the same three letters. Both the conditions of the experiment, and 
the event itself has changed. We only have to choose letters g, u and m 
in whichever order. How many cases are there? As many as there are 
permutations of 3 elements, P3 = 3! = 6. We ought to calculate the 
probability of each and sum them up. Those probabilities are 
2/8·3/7·3/6 = 3/56 and 3/8·2/7·3/6 = 3/56 etc and 3/56·6 = 9/28. 

The multiplication rule becomes especially simple when the events 
are independent23. We should then multiply not the conditional 
probabilities, but simply probabilities: 

 
P(A1 and A2 and … and An) = P(A1)·P(A2)·…·P(An).  (3.7) 
 
The probability of the combination of independent events is equal to 

the product of their probabilities. 
Ex. 4. A shot fires at a target 4 times independently. The probability 

of a hit is 03. Required is the probability that the 3 first shots fail (–) 
and the fourth hits the target (+). 

For independent events P(–  –  –  +) = 0.73·0.3 = 0.1029. 
And now a bit more difficult problem. 
Ex. 5. Under the conditions of the previous problem required is the 

probability that exactly 2 shots will be successful. 
The demanded aim can be reached in several ways, in as many as 

there are combinations of 4 elements taken 2 at a time: 
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4
4 3/1 2 6.

2

 
= ⋅ ⋅ = 

 
  

 
Here (but not always) the probability of each is the same and equals 
0.32 ⋅ 0.72 = 0.0441 so that the probability sought is 0.0441 ⋅ 6 = 0.2646 
≈ 0.265. 

According to a general rule useful for solving such problems, the 
first thing to do is to ask ourselves, in how many incompatible ways 
can the studied event happen? Then calculate the probability of each 
and sum them up etc. In the next problem, the probabilities of those 
different ways are not equal to one another. 

Ex. 6. Each of three men shoots once at the same target. Their 
probabilities of success are p1 = 0.4, p2 = 0.5 and p3 = 0.7. Required is 
the probability that there will be exactly two hits.  

Three ways (combination of 3 elements taken by 1 at a time) lead to 
success: 

P1(+ + –) = 0.4·0.5·0.3 = 0.060 
P2(+ – +) = 0.4·0.5·0.7 = 0.140 
P3(– + +) = 0.6·0.5·0.7 = 0.210 

and their sum is 0.410. 
The examples concerning shots and hits about experiments not 

reducible to the pattern of chances are just as unavoidable and 
traditional as the classical examples with coins, dice etc about 
experiments of the other kind. The latter examples do not testify to 
some special inclination for games of chance just as the former do not 
indicate some special blood-thirstiness. Their authors just choose the 
simplest possible illustrations. So endure one more example. 

Ex. 7. Required is the probability that, under the conditions of Ex. 4, 
there will be at least one hit. 

There are many ways to achieve the stated aim (event C) and it is 
certainly possible to calculate the probabilities of each of them and 
sum them up. But this method is really bad. It is much simpler to 

transfer from C to the contrary event C which occurs only in one way: 
 

P(C ) = 0.74 ≈ 0.240, so that P (C) = 0.760. 
 
If the contrary event has a lesser number of ways to occur than the 

event sought, transfer to it. One of the almost sure indication for such 
a transfer is the presence of the words at least in the formulation of the 
problem.  

Ex. 8. A group of n people unknown to each other is formed. 
Required is the probability that at least two of them have the same date 
(day and month) of birth (event C).  

We assume that birthdays fall on each day of the year with the same 
probability24. Now, at least puts us on guard: will not it be better to 
transfer to the contrary event? Indeed, C has so many ways to occur, 
that even to think about them makes us feel creepy all over. On the 

other hand, C  is much more modest and its probability can be 
obtained very simply. 
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Call one participant of the group the first person. He can be born on 
any day of the year (probability 1). Now choose arbitrarily a second 
person who can be born on any day except that on which the first one 
was born (probability 364/365) etc25. Therefore, 

 
364 363 365 ( 1)

( ) 1 ...  ,  ( ) 1 ( ).
365 365 365

n
P C P C P C

− −
= ⋅ ⋅ ⋅ ⋅ = −      (3.8) 

 
A curious feature of this problem consists in that with a (even rather 

modestly) increasing n the event C rapidly becomes almost certain. 

Thus, for C = 50 formula (3.8) provides P( C ) ≈ 0.03, P(C) ≈ 0.97. 
With a high level of confidence (0.97) event C can be considered 
certain! 

This uncomplicated calculation can help you, if you so desire, to 
become a magician. Maintain that in a gathering of 50 or of a bit larger 
number of people26 whose birthdays are unknown to you there are 
those whose birthdays coincide. Take a sheet of paper number 31 rows 
(1, 2, …, 31) and 12 columns (January, February, …, December), ask 
each person to mark his birthday in the appropriate cell, and let me see 
when two marks coincide. But suppose no such coincidence takes 
place? Oh, although being sick at heart, confidently tell them that it 
will happen for sure. Actually, you know that your prediction will not 
come true absolutely certainly: with a very low probability it will fail. 
Well, you are risking.  

And now we turn to serious matters by solving an important general 
problem often occurring in most various forms.   

Problem 1. Event A occurs with probability p in each of n 
independent experiments. Required is the probability that it occurs at 
least once (event C).  

The magic words at least send us to the contrary event which is 
simpler and can only occur in one way. Then, by the multiplication 
rule for independent events,  

 
P(C ) = (1 – p)n, P(C) = 1 – (1 – p)n.               (3.9a, 3.9b) 
 

Pay attention to formula (3.11b): it is being applied for solving many 
practically important problems. 

Ex. 9. The probability of detecting an artificial space object by a 
single radiolocation sweep is p = 0.1. Required is the probability that 
such an object will be detected after 10 independent sweeps. 

By formula (3.9b) 
 
P(C) = 1 – (1 – 0.1)10 = 1 – 0.348 = 0.652. 
 
Ex. 10. A technical device consists of 7 elements each failing 

independently from the others with probability 0.0527. A failure of 
even one element leads to some breakdown. Required is the 
probability of such an event (C). 

By formula (3.9b) 
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P(C) = 1 – (1 – 0.05)7 = 0.305. 
 

Surprise! That probability is higher than 30%. The reliability (the 
probability of being in good repair) of each element should be urgently 
heightened! Note that the failure of each had a rather low probability 
0.05. When considering that probability thoughtlessly it is possible to 
disregard it and declare that the failure of the device was practically 
impossible. We have done the same when predicting the results of coin 
tossing but here we have something altogether different. First, there 
are 7 elements rather than 1, and the failure of at least one is not 
unlikely at all. In addition, the consequences of thoughtlessness are not 
in the least harmless.  

It is interesting to note that stochastic calculations sometimes lead to 
unexpected results as though contradicting common sense. Here is an 
(apparently) amusing example. 

Ex. 12. Two hunters, Simon and Georgy, saw a bear and shot at him 
at the same time. They killed the bear and found only one hit. It is 
more likely that it was Simon who killed him since he was an old hand 
at hunting and considering the shot’s distance would have hit the bear 
with probability p1 = 0.8. Georgy, however, is a young and less 
experienced hunter, and for him the corresponding probability was 
only p2 = 0.4. The hunters sold the bear’s fell and required is how they 
should share the earned money.  

You will probably wish to share that money in the proportion to 
these probabilities, to give Simon 2/3 of the money, and 1/3 to Georgy. 
Just imagine, however, that you are wrong! To convince you, I change 
the conditions of the problem and let p1 = 1 and p2 = 0.5. Will the fell 
belong to Simon? Certainly, since he could not have missed. You, 
however, would have shared the money just as previously, in the same 
proportion. So something is wrong, but what exactly?  

You have not taken into account that one of the hunters failed, so let 
us now properly solve this problem. The hit could have happened in 
two ways:  

A1: Simon hit the bear, but Georgy did not.  
A2: Georgy hit the bear, but Simon did not. 

 
By the multiplication rule 
 
P(A1) = 0.8·0.6 = 0.48, P(A2) = 0.4·0.2 = 0.08. 
 

And so, the earned money should be shared in proportion to these 
probabilities, 0.48 and 0.08. But then, Simon, who got the lion’s share 
will likely spend it on treating them both to a hunter’s meal at a 
campfire. 
 

Chapter 4. Random Variables 
In this chapter you will become acquainted with a new and very 

important notion of random variable. In Chapter 1 you learned the 
simplest method of calculating probabilities of events, by directly 
computing the fraction of favourable cases. Immediately after that, 
however, you became disappointed: it occurred that that method is 
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applicable far from always, only in those comparatively rare problems 
in which the experiment is reducible to the pattern of chances, i. e., 
when its possible outcomes are symmetrical.  

Nevertheless, in the next chapter you learned to derive 
approximately the probabilities of events by their frequencies without 
any restrictions imposed on the experiment. And again, immediately 
afterwards you were disappointed once more: it occurred that such 
derivations did not constitute the main stochastic method. Finally, in 
Chapter 3, according to its title, you came across such main methods. 
Here we are, you believe, I have now succeeded to reach the very 
foundations, the very essence. No more disappointments! 

Alas, one more disappointment (the last one) is still lying in wait. 
The point is that according to the contemporary theory of probability, 
an event with which we had to deal until now is not its main notion. 
And what is the main notion, you will ask me in a burst of indignation, 
and what the deuce was I doing, compelled to get acquainted with 
inferior armoury? Unfortunately, I meekly answer, without that 
armoury it is impossible even to approach the modern arsenal of 
random variables (RV). 

This chapter is indeed devoted to that notion, to the main notion of 
the contemporary theory of probability, to RVs, to their varieties and 
methods of describing and dealing with them. As compared with 
events, we will discuss them in lesser detail, consider them rather in a 
descriptive manner since the mathematical apparatus, had we applied it, 
would have been more complicated possibly repelling the beginner. 
Indeed, it is exactly our aim to simplify his first steps. And so, 

a RV is a variable, which, as a result of an experiment, can take one 
or another value, unknown beforehand. 

As always in the theory of probability, this statement is somewhat 
obscure; it includes some indefiniteness and unknowns28. For 
mastering the definition, just get acquainted with it, so let us consider 
some examples. 

1. We toss two coins. The number of appearing heads is a RV with 
possible values 0, 1, 2, and we do not know which of them will be 
realized. 

2. A student is examined. His mark is a RV with possible values 2, 3, 
4, 529.  

3. There are 28 students in a group. The number of those failing to 
appear on a certain date is a RV with possible values 0, 1; …, 28. 
Impossible! All of them cannot be taken ill (or play truant) at once. 
Yes, such an event is practically impossible, but who told you that all 
the values of a RV ought to be equally probable?  

All the RVs in those examples belong to the so-called discrete type 
which means that their possible values are separated by some intervals. 
When shown on the number axis, they are represented by separate 
points. There also exist continuous RVs whose values completely fill 
some interval on that axis. The boundaries of such intervals are either 
definite and clear or vague. Here are a few examples. 

4. The time interval between two consecutive failures of a computer. 
The values of this RV completely fill some part of the number axis. 
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The left boundary (0) of that part is quite clear, but the right one is 
indefinite and can only be established by experiments. 

5. The weight of a freight train. 
6. The water level at flood-time. 
7. The error of weighing something by an analytical balance. Unlike 

the RVs above, this RV can take both positive and negative values. 
8. The specific gravity of milk in its sample. 
9. The time daily spent by a school student of a certain form on 

watching television. 
I emphasize that, when discussing a RV, it is necessary to specify 

the essence of the corresponding experiment. Thus, in the fourth 
example we should specify the type of the computer, its age and the 
conditions of its work. In the seventh example, it is necessary to 
specify the balance and the set of weights.  

We will not invariably mention this condition. Note that all the 
continuous RVs [all their values] can only be measured in some units 
(minutes, centimetres, tons) and in the strict sense they are discrete. 
For example, it is meaningless to measure a person’s stature more 
precisely than to within 1 cm. And so, stature is in essence a discrete 
RV with values separated by intervals of 1 cm. The number of such 
[possible] values is very large and they are situated very closely30. It is 
then more convenient to consider that the RV belongs to the 
continuous type. We will denote RVs by capital letters, and their 
possible values, by the same small letters. 

Let us now have a RV taking some values. They naturally are not 
equally probable; some are more, and some are less probable. The law 
of distribution of a RV is any function describing the distribution of 
probabilities of its values. I will only acquaint you with some of the 
simplest laws. The law of distribution of a discrete RV can be written 
down as a table with two rows of its possible values x1, x2, …, xn and 
their probabilities p1, p2, …, pn. Each pi is simply the probability that 
the RV takes the value xi and their sum is apparently unity: 
 

p1 + p2 + …+ pn = 1. 
 

This unity is somehow distributed among the values of the RV, hence 
the term distribution.  

Ex. 1. Three independent shots at a target are made and the 
probability of each hit is 0.4. The discrete RV is the number of hits. 
Show its law of distribution (its possible values with their 
probabilities).  

We have 
p0 = P(–  –  –) = 0.63 = 0.216 
p1 = P[(+  –  –) or (–  –  +) or (–  +  –)] = 3·0.62·0.4 = 0.432 
p2 = P[(+  +  –) or (+  –  +) or (–  +  +)] = 3·0.42·0.6 = 0.288 
p3 = P(+  +  +) = 0.43 = 0.064 
The sum of these probabilities is indeed unity. 
Ex. 2. A sportsman is attempting to throw a ball into the basket. At 

each independent attempt the probability of his success is p. The 
discrete RV is here the number of his attempts continuing until success. 
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The possible values of the RV are here x1 = 1, x2 = 2, …, xk = k 
(theoretically, k can be infinite). Now, p1 = p, but for determining p2 
we have to consider the combination of two events, of the failure at the 
first attempt and success at the second one, p2 = (1 – p)p. Similarly, p3 
= (1 – p)2p and in general pi = (1 – p)i–1 p. These probabilities pi form a 
geometric progression with ratio 1 – p so that the corresponding 
distribution is called geometrical.  

Let us see now how to characterize the distribution of probabilities 
for a continuous RV. The table with two rows (see above) cannot be 
formed; it is impossible even to fill its upper row, that is, to list all the 
possible values of the RV one after another: between any two of them 
other values will inevitably exist31. Another difficulty consists in that 
any separate value of a continuous RV has probability 0. Yes, exactly 
so, I am not mistaken and will try to convince you.  

Suppose you are on a pebbly beach and are interested in the RV, in 
the weight of an isolated pebble. So let us weigh the pebbles. We 
begin with a reasonable precision, 1 g, and consider the weight of each 
pebble equal to 30 g (say) if it is 30 g to within 1 g. We will obtain the 
frequency of that weight although we neither know, nor need to know 
it.  

Let us then weigh to within 0.1 g, so that some pebbles supposed to 
weigh 30 g will now be left out. The frequency of the event X [x rather 
than X] = 30 g will decrease. By how much? It will become about 10 
times less. And now we will weigh to within 1 milligram and the 
frequency will become 100 times less. But frequency is the own sister 
of probability and approaches it as the number of experiments (of the 
sufficiently numerous pebbles on the beach) increases. So what value 
should we assign to the probability that the pebble’s weight is exactly 
30 g, not a bit more, not a bit less? Obviously, zero; what can we do 
otherwise? 

You are perplexed, perhaps indignant since you certainly remember 
that zero probabilities mean impossible events whereas a continuous 
RV can take some value x, so how can its probability be zero? Let us 
remember everything well and truly. Yes, we did state that the 
probability of an impossible event is zero. But had we ever maintained 
that any event with zero probability is impossible? No, not at all. And 
now we had to acquaint ourselves with possible events having zero 
probabilities.  

Don’t hurry, let us reflect awhile. Forget the theory of probability 
for a moment and imagine some plane figure with area S. Choose any 
point inside; what is its area? Apparently, zero, but the figure 
obviously consists of points each having a zero area whereas S > 0. 
This paradox is not surprising since you got used to it, and now you 
ought to become accustomed to the fact that, having a continuous RV, 
the probability of choosing each isolated point is exactly zero32.  

So how then can we discuss a distribution of probabilities for such 
RVs if each of its values has the same probability, zero? You are quite 
right. It is senseless to consider the distribution of probabilities among 
separate values of a continuous RV. Nevertheless, a distribution does 
exist. For example, no one doubts that 170 cm is more probable than 
210 cm for a man’s stature although both are possible.  
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We ought to introduce now a new important notion, density of 
probability. Density of a substance is sufficiently known in physics, it 
is the weight of its unit volume. But if the substance is heterogeneous? 
Then we can only consider its local density. The same happens in the 
theory of probability. We consider the local density (the probability of 
the RV’s unit length at point x).  

The density of probability of a continuous RV is the limit of the ratio 
of the probability of its occurring in a small interval adjacent to point 
x to the length of that interval if that latter tends to disappear. 

Density of probability is easily derived from its similar notion of 
density of frequency. Consider a continuous RV (someone’s stature or 
the weight of a pebble). First of all, conduct a series of experiments 
with that RV which will take some value in each of them. Thus, 
measure the stature of each person from a group of people or weigh 
many pebbles. We are interested in the distribution of the probability 
of our RV. Separate the range of its values into some intervals; for 
example, let them be 150 – 155, 155 – 160, …, 195 – 200 cm. Count 
the number of the values in each interval33, divide these numbers by 
the total number of experiments and by the lengths of the intervals 
(which do not have to be the same), and thus obtain the density of 
frequency. 

When having at our disposal enough statistical data (of the order of 
a few hundred, or more, which is better) we ensure a sufficiently good 
notion about the distribution of the RV, about its density. It is 
expedient to begin here by constructing a special bar chart consisting 
of rectangles whose areas are equal to the frequencies of the separate 
intervals (and whose heights are therefore the densities of the 
frequencies). The area of a bar chart is obviously unity. With an 
increasing number of experiments the intervals of the RV’s range of 
values can be shortened, the steps of the chart will then smoothen and 
the chart will approach some fluent curve, the curve of distribution. 
Ordinates will become the densities of probability rather than of 
frequency, and the complete area restricted by that curve just like the 
area of its sister, of the bar chart, will be unity. 

The probability of the RV being in some interval (a, b) will then be 
equal to the area of the figure resting on that interval. Denote the 
density of probability by f(x), then that probability will be represented 
by integral  

 

( , ) ( ) .
b

a

P a b f x dx= ∫                                                               (4.1) 

 
Sparing neither time nor money we can determine f(x) by 

experimental data as precisely as desired. But is the game worth the 
candle? Do we need to know that function absolutely precisely? Very 
often we do not and are rather satisfied by an approximate notion of 
the RV’s law of distribution. Indeed, all stochastic calculations are in 
essence approximate so that the number of experiments can be rather 
modest, 300 – 400, say (!), and sometimes less. 
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It is possible to construct a bar chart and then smooth it by some 
fluent curve (but certainly keeping the area under the curve equal to 
unity). The theory of probability has at its disposal an entire set of such 
curves. Some of them are in a sense better than others; for example, 
when choosing properly, the integral (4.1) can be obtained more easily, 
or calculated by appropriate tables. The manner in which the RV had 
originated can prompt us to choose a certain type of distributions 
according to theoretical considerations. I will not dwell on such details 
since this is a special topic. However, I emphasize that indirect 
methods of determining laws of distribution are more important here 
than the direct approach. They allow us to derive the distribution of a 
RV not directly, by experiments, but by issuing from other RVs 
somehow connected with it. 

The so-called numerical characteristics of RVs play a large part in 
realizing these indirect methods. These are numbers describing some 
of their distinguishing properties. For example, the mean value in 
whose vicinity occur the random deviations [of the values of a RV]; 
the magnitude of those deviations (as though the degree of randomness 
of the RV) and some other indications. Many problems can be solved 
by applying those characteristics without or almost without resorting 
to the laws of distribution. I am only acquainting you with two (but the 
most important two) numerical characteristics, the expectation and the 
variance.  

Expectation EX of a discrete RV X is the sum of the products of all 
its possible values by these probabilities: 

 

EX = x1p1 + x2p2 + … + xnpn = 
1

.
n

i i
i

x p
=

∑                 (4.2, 4.3) 

 
Formulas (4.2) and (4.3) show that EX is the generalized, weighted 
mean of all possible values of X with weights being the corresponding 
probabilities. If the RV has infinitely many possible values, the sums 
(4.2) and (4.3) will include infinitely many products. 

The expectation or mean value of a RV is as though its 
representative which can replace it for rough estimations. Actually, we 
always do it when randomness is not taken into account.  

Ex. 3. Determine the expectation of the RV in Ex. 1 (the number of 
hits after 3 shots).  

By formula (4.2) 
 
EX = 0·0.216 + 1·0.432 + 2·0.288 +3·0.064 = 1.2. 
 
Expectation is also introduced for continuous RVs but then the sum 

in formula (4.3) is naturally replaced by an integral: 
 

EX = ( ) .xf x dx
∞

−∞

∫                                                        (4.4) 

 
Here, f(x) is the density of the RV’s probability. 
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Let us now briefly discuss the expectation, its meaning and 
genealogy. Probability has its own sister, frequency, and expectation 
has its own brother (sister? relative?), the arithmetic mean of the 
observational results. Just as frequency approaches probability as the 
number of experiments increases, that mean of the observational 
results of a RV approaches expectation. 

Let us prove it for discrete RVs34. I think that you will gladly accept 
it on trust for continuous RVs. Suppose that N experiments were made 
and value x1 occurred M1 times, x2, M2 times, etc. The arithmetic mean 
X  of the values of X is 

 

1 1 2 2 ...
.n n i ix M x M x M x M

X
N N

+ + +
= =∑   

 
But Mi/N = p*i is the frequency of the event X = xi; with practical 

certainty it approaches probability pi as N increases. Therefore, 
The arithmetic mean of the observed values of a RV will with 

practical certainty approach without bound its expectation as the 
number of the experiments increases. 

This statement represents one of the forms of the law of large 
numbers, a theorem very important for practically applying the theory 
of probability. In a long series of experiments, the unknown 
probability of an event can be approximately determined by its 
frequency, and just the same the expectation of a RV can be 
approximately assumed as the arithmetic mean of its observed values 

 

E .X X≈                                                                             (4.5) 

 
I especially note that for such calculations we do not at all need to 

know the law of distribution of the RV. We just calculate the mean of 
all of its observational results. One more remark. For determining with 
a sufficient precision the expectation of a RV we do not at all need the 
same number of experiments (of the order of a few hundred) as for 
constructing a bar chart. Several dozen are sufficient.  

Introduce now the second most important numerical characteristic 
of a RV: its variance, var X, which describes the scattering of its 
values around the mean. The larger the variance, the more random is 
the RV. Here is how it is calculated. The mean (the expectation) is 
subtracted from each possible value of the RV, the differences are 
squared, multiplied by the corresponding probabilities and finally all 
such products are summed up: 

 

2

1

var ( E ) .
n

i i i
i

X x x p
=

= −∑                                                       (4.6) 

 
But why square the differences? To get rid of the signs (plus or 

minus). Instead, we could have certainly introduced absolute values of 
those differences but the resulting measure will then be less convenient 
for calculating and dealing with. 

Ex. 4. Determine the variance of the number of hits X in Ex. 1. 
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By formula (4.6) 
 
var X = (0 – 1.2)2·0.216 + (1 – 1.2)2·0.432 +  
(2 – 1.2)2·0.288 + (3 – 1.2)2·0.064 = 0.72. 
 
Formula (4.6) is not however the best for calculating. It is usually 

convenient to apply formula 
 
var X = E[X2] – (EX)2.                                                         (4.7) 
 
The variance of a RV equals the expectation of its square less the 

square of its expectation.  
Formula (4.7) is easily derived by identical transformations, but we 

will rather confirm its validity by calculating the previous example 
anew: 

 
var X = 02·0.216 + 12·0.432 + 22·0.288 + 32·0.064 – (1.2)2 = 0.72. 
 
For continuous RVs variance is calculated similarly, by formula 

(4.6), but with the sum being naturally enough replaced by an integral: 
 

2var ( E ) ( ) .X x x f x dx
∞

−∞

= −∫                                                     (4.8) 

 
It is usually more convenient, however, to apply formula (4.7), 

again with a similar replacement: 
 

2 2var ( ) (E ) .X x f x x dx
∞

−∞

= −∫                                                 (4.9)  

    For an approximate derivation of the expectation we did not need to 
know the appropriate law of distribution, and now we can 
approximately directly calculate the variance by observations, by the 
deviations of the observed values of the RV from their mean: 

 

2

1

1
var ( ) .

N

k
k

X x X
N =

≈ −∑                                                      (4.10) 

 
Here, k is the number of the experiment, xk, the corresponding value 

of the RV and N is the number of experiments. Again, it is more 
convenient to apply a formula similar to (4.7) 

 

2 2

1

1
var .

N

k
k

X x X
N =

≈ −∑                                                         (4.11) 

 
Formulas (4.10) and (4.11) can be applied for calculating a rough 

estimate of the variance without having very many experiments (better 
something than nothing). In mathematical statistics, a correction for a 
small number of experiments is usually made by multiplying the result 
obtained by N/(N – 1). We certainly may do so, but this correction is 
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not very important since with a small number of experiments nothing 
good will result by treating them anyhow. And with a large N the 
correction is close to 1. 

Variance as a measure of scattering has an unpleasant feature: its 
dimensionality, see formula (4.6), is equal to the square of X’s 
dimensionality. For example, if X is expressed, say, in minutes, its 
variance is in square minutes, which is not very clear. For avoiding 
this circumstance a square root is extracted of the variance and a new 
measure of scattering thus emerges, the so-called mean square (or 
standard) deviation 

 

σ var .x X=                                                                       (4.12) 

 
This is a very transparent and convenient measure of scattering. It 

immediately provides a notion about the range of the oscillations of a 
RV from its mean. For RVs mostly occurring in practice it can be 
stated with practical certainty that they do not deviate from their 
expectations more than by 3σx. 

Confidence level depends on the RV’s law of distribution, but it is 
rather high in each problem, if not otherwise artificially designed. The 
statement above is called the three-sigma rule. Therefore, when being 
able to determine somehow both numerical characteristic of a RV, its 
expectation and variance, we immediately get an approximate idea 
about the range of its possible values. 

You may ask here: we determined those parameters experimentally, 
so why cannot we find that range the same way? Yes, you are quire 
right if these characteristics are indeed found directly by 
experimenting. But that (direct) approach does not constitute the main 
method of determining the numerical characteristics. We say it once 
more: the main methods are indirect, those that allow us to determine 
the numerical characteristics of RVs by characteristics of other RVs 
connected with the former.  

In such cases we apply the main rules of dealing with these 
parameters; we will formulate now (certainly without proof) some of 
those rules. 

1. The expectation of a sum of RVs is equal to the sum of the 
expectations of the summands. 

2. The variance of a sum of independent RVs is equal to the sum of 
the variances of the summands. 

3. A non-random factor c can be taken out from the sign of 
expectation: 

 
E(cX) = cEX. 
 
4. When squared, a non-random factor c can be taken out from the 

sign of variance 
 
var(cX) = c2varX. 
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These rules although perhaps not the last one seem natural. I will 
now show the validity of that last one by the following example. 
Suppose you double the RV X. Its expectation obviously doubles as 
well and the same happens to the deviation of a separate value of the 
RV from its mean and the square of that deviation becomes 
quadrupled.  

The small number of rules provided above is nevertheless sufficient 
for solving some interesting problems. Indeed: 

Problem 1. N independent experiments are made. Event A occurs in 
each with probability p. Required is the expectation and variance of 
the random number X of experiments in which A appears. 

Represent X as a sum of N RVs: 
 
X = X1 + X2 + … + XN.                                                 (4.13) 
 

Here, Xk = 1 if A occurred in the k-th experiment and Xk = 0 otherwise. 
By rule No. 1 
 

EX = EX1 + EX2 + … + EXN.                                       (4.14) 
 
The experiments are independent and so therefore are the Xk. By 

rule No. 3 
 
varX = varX1 + varX2 + … + varXN.                             (4.15) 
 
Now we have to determine the expectation and variance of each Xk. 

They are discrete RVs with two possible values, 0 and 1 having 
probabilities (1 – p) and p respectively. The expectation of each is 

 
    EXk = 0·(1 – p) + 1·p = p. 

 
By formula (4.7) their variances are 
 
varXk = 02·(1 – p) + 12·p – (EX)2 = p – p2 = p(1 – p). 
 

Apply now formulas (4.14) and (4.15): 
 

EX = Np, varX = Np(1 – p). 
 
Problem 2. Under the same conditions approximately determine the 

range of the practically possible values of the RV P*, of the frequency 
of A. 

By definition, frequency is the number X of the occurrences of the 
event divided by N. By rules 3 and 4 we have  

 
EP* = E(X/N) = (1/N)EX = Np/N = p. 
varP* = var (X/N) = (1/N2)varX = Np(1 – p)/N2 = p(1 – p)/N. 

*σ (1 )/ .P p p N= −   
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Apply now the three-sigma rule to determine approximately the 
range of the practically possible values of P*: 

 
p ± 3σP*. 
 
Well, isn’t it our old friend, you will exclaim if you have attentively 

read the previous material, This very formula appeared for the 
confidence interval with confidence level 0.997 and estimated the 
value of the frequency of an event given a large number of 
experiments. And, along with it (and even considered preferable) 
another formula with coefficient 2 rather than 3 was recommended, the 
formula which is realized with probability 0.95. Yes, but wherefrom 
did the probabilities 0.997 and 0.95 arrive? 

Just a minute, be patient. You should become acquainted with a 
very important law of probability, the so-called normal law. Consider 
a continuous RV X. It is normally distributed if the density of its 
probability is 

 
2

2

1 ( )
( ) exp[ ].

2σσ 2π

x m
f x

−
= −                                             (4.16) 

 
[…] This law depends on two parameters, m and σ. The first, as you 

probably surmised, is the expectation of X, and the second is its mean 
square deviation. Change m and the curve, without changing its form, 
will shift in one or another direction along the x-axis. Change σ and 
the curve will change its form: increase σ and it spreads out; decrease 
it, and the curve becomes needle-shaped. 

The special role played by the normal law is connected with one of 
its remarkable properties. When summing up a large number of 
independent (or weekly dependent) RVs, comparable with respect to 
the order of their variances, the law of distribution of the sum will be 
close to the normal law (the closer, the more is that number) 
whichever are the laws of the summands. 

This is a rough formulation of the very important so-called central 
limit theorem. It is known in many various forms differing in the 
underlying conditions which the initial RVs ought to satisfy. In 
practice, very many RVs are formed by summing up and are therefore 
distributed normally or almost so. For example, the errors of all types 
of measurements are sums of many elementary and practically 
independent errors, the effects of their own causes35. 

As a rule, the errors of firing obey the same rule as do the deviations 
of the voltage in an electrical grid from its nominal value, total 
payments made by an insurance office during a long period, the total 
time of a computer being out of service during a year etc.  

Such an interesting RV as the frequency of an event A in a large 
number of experiments also has a law of distribution close to the 
normal. Indeed, 

 
P* = (X1 + X2 + … + XN)/N 
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where Xk is a RV with values 1 if A occurred in the k-th experiment 
and 0 otherwise. The proof is obvious since P* is the sum of a large 
number of independent terms having the same variance  
 

var(Xk/N) = (1/N2)p(1 – p). 
 
Since the normal law often occurs in practice, the probability of a 

RV thus distributed being within (a, b) is calculated time and time 
again. Now, the integral (4.16) cannot be expressed by elementary 
functions and has to be calculated by tables of the function 

 

2

0

1
( ) exp( /2) .

2π

x
x t dtΦ = −∫   

 
Here is a fragment from such a table […]. For x ≥ 4 we may assume 

that, to within the fourth digit after the decimal point, Ф(x) = 0.5000. It 
should also be bourn in mind that Ф(x) is an odd function, Ф(– x) =  
– Ф(x). 

The probability of the event mentioned above is  
 
P(a, b) = Ф[(b – m)/σ] – Ф[(a – m)/σ].                            (4.17) 
 
Ex. 5. Determine the probability that RV X having a normal 

distribution with parameters m and σ will deviate from its expectation 
not more than by 2σ; by 3σ. 

By formula (4.17) and the table [omitted from the translation] 
 

2σ 2σ
( 2σ,  2σ) [ ] [ ]

σ σ

m m m m
P m m

+ − − −
− + = Φ − Φ =   

Ф(2) – Ф(– 2) = Ф(2) + Ф(2) = […] ≈ 0.95. 
 

For the second case [the probability is approximately 0.997.] 
So here finally they are, those confidence probabilities for the 

frequency of an event, which, along with the corresponding confidence 
intervals, had been discussed in Chapter 2. We had to go a long way! 

Ex. 6. A freight train has N = 100 cars. The weight of each is a RV 
with expectation mq = 65 ton and mean square deviation σq = 9 ton. A 
locomotive can pull a train weighing up to 6600 ton, otherwise a 
second locomotive is needed. Required is the probability that one 
locomotive is sufficient.  

The weight X of the train is the sum of 100 RVs Qk with the same 

expectations and variances 2σq  = 81. By summing up the expectations 

and variances we get 
 
EX = 100·65 = 6500, varX = 100·81 = 8100, σX = 90.  
 
We demand that X does not exceed 6600. We may assume that it is 

normally distributed, and by formula (4.17) 
 
P(0, 6600) = Ф[(6600 – 6500)/90] – Ф[(0 – 6500)/90] =  
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[…] ≈ 0.887. 
And so, one locomotive is sufficient with probability ≈ 0.887. 

Suppose now that N = 98. Calculate yourselves and the result will 
likely surprise you: the probability sought is 0.99, that is, practically 
certain. Only two cars have been uncoupled!  

You see now how curious can the problems be when a large number 
of RVs have to be summed up. Here, however, a question naturally 
arises: how much is many? How many RVs should we sum up for the 
law of distribution of the sum to become normalized? It depends on 
the laws of distribution of the summands which should be studied at 
least in the first approximation. There exist such intricate laws that 
very, very many summands are needed. To repeat: whatever will those 
mathematicians devise! However, nature does not intentionally play 
mean tricks. A sufficient number of summands for the normal law to 
become applicable, especially if they have the same distributions, is 
usually 5 – 6, or, well, 10; well, really, 20.  

The rapidity with which the law of distribution of a sum of the 
summands having the same distribution is being normalized can be 
illustrated by an example. You will again have to believe me on trust; I 
did not yet deceive you. Suppose we have a continuous RV with a 
constant density on interval (0, 1). The curve of distribution becomes a 
segment, so unlike the normal law! Sum up two such (independent) 
RVs, and the density is now represented by triangular law. It does not 
resemble the normal distribution, but we are moving in the right 
direction, For the sum of three such uniformly distributed (!) RVs the 
curve of distribution consists of three parabolic segments and awfully 
resembles the normal law. And when summing up 6 uniformly 
distributed RVs no one will be able to say that the resulting curve is 
not normal.  

This is the foundation of the commonly applied method of obtaining 
a normally distributed RV. When simulating random phenomena by a 
computer it is sufficient to sum up 6 such RVs existing on interval (0, 
1). Nevertheless, we should not be excessively carried away and 
declare at once that the normal law is the distribution of the sum of 
several RVs but rather somewhat cautiously resort to this rule. At least 
in the first approximation we ought to study their distributions. If, for 
example, they are very asymmetric, or if the probability of an event 
occurring in each experiment is very high or very low, a large number 
of summands can be necessary. 

Incidentally, here is a practical rule allowing us to find out whether 
the normal law may be assumed for a frequency. Construct as shown 
above the confidence interval for it with confidence level 0.997 

 

3 (1 )/ .p p p N± −   

 
If it is entirely (with both ends!) situated within some reasonable 

boundaries36 we may assume a normal law, but not if one of the 
boundaries is beyond interval (0, 1). For approximately solving our 
problems in latter cases we may apply the so-called Poisson 
distribution. However, the pertinent subject as well as a study of other 
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distributions (a great many of them are applied in the theory of 
probability) is not here possible. 

As a result of reading my unpretentious booklet you have apparently 
gained some understanding about the essence of that theory and its 
scope. You possibly came to loath it resolutely and then your first 
acquaintance with it will also be the last one as well. Too bad, but it 
cannot be helped. There are people (and even mathematicians) who 
inherently cannot bear the theory of probability. But it is also possible 
that the subject, the methods and the possibilities of the theory did 
interest you (which was the aim of my booklet). Then get deeper 
acquainted with it. I will not conceal from you that that will demand 
much more mental efforts than the first steps did. It will be more 
difficult but more interesting as well. Not without reason we say that 
the roots of study are bitter but its fruits are sweet. I am wishing you 
the sweetest fruits! 

 
Notes 

1. The author time and time again applies the term phenomenon instead of event 
and prefers experiment to trial. She calculates with an excessive number of digits 
after the decimal point.  

2. This definition is unfortunate: probabilities are not mentioned although they 
inevitably appear. The same remark applies to the definitions of a random variable in 
Chapter 4. 

3. There had indeed been such a lottery in the USSR. 
4. Here and below the term likelihood is applied as stated: or probability. 
5. De Morgan (1864) believed in negative probabilities and in those higher than 

unity. Worse (Sophia De Morgan 1882, p. 147), in a letter of 1842 he stated that the 

tangent and cotangent of infinity are equal to 1.± −   
6. Those few readers who hesitate before agreeing with that answer are 

faultfinders. Sometimes such behaviour testifies to deep thinking, but more often 
indicates bad temper. E. V. 

Homogeneity of the coin is also necessary. 
7. Otherwise (theoretical) probability does not exist. 
8. No example is provided and the statement is unfounded. 
9. The author did not say that she only discussed subjective probabilities so that 

her conclusions are barely useful. Poisson (1837, § 11) proved that the subjective 
probability of drawing a white ball from an urn containing white and black balls in 
an unknown proportion was 1/2. According to information theory such a probability 
is tantamount to complete ignorance. The same conclusion applies to the celebrated 
Bertrand problem about a random chord: after more than a century of discussions 
commentators largely agreed that the probability of its being shorter than a side of an 
equilateral triangle inscribed in the circle is 1/2! 

10. Just like in Note 8, no example is provided. The statement is unfounded and 
furthermore doubtful. 

11. In the sequel, I drop the adjective relative. 
12. The author indirectly introduces degrees of randomness (also in Chapter 4). 

See a similar approach in Chaitin (1975) who had nevertheless connected them with 
complexity rather than range. 

13. The experiment is due to Weldon who rolled 12 dice 26 306 times. Pearson 
(1900) only discussed it as did Markov (1924, pp. 349 – 353). 

14. See Note 12.  
15. Under some special conditions (for example, during and after wars) this 

frequency can deviate from a stable long-term mean. The causes of these deviations 
are not yet ascertained. E. V. 

16. Governing mortality? 
17. Even now the existence of organic life on Mars is doubtful. 
18. Games of chance are very important at least methodically. 
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19. The celebrated scientist D’Alembert is said to have given lessons in 
mathematics to a very slow-witted and very noble pupil who was unable to 
understand a certain proof. Becoming desperate, D’Alembert cried out: Upon my 
word, this theorem is true. The pupil answered: But why did not you tell me that from 
the beginning? You are a nobleman, and I am a nobleman. Your word is quite 
sufficient for me! E. V.  

20. Statistical probability remains extremely important in statistics itself. 
Moreover, when solving any practical problem, the researcher has to issue from 
statistical data. 

21. It is easy to prove that dependence and independence are always mutual, i. e., 
that P(A/B) = P(A) involves P(B/A) = P(B). Show it yourselves by applying the two 
forms of the multiplication rule, (3.4) and (3.5). E. V. 

22. Either here or below I do not introduce special notation. The less symbols are 
applied, the better it is. E. V. 

23. Several events are called independent if none of them depends on any 
combination of the other ones. For independence of events in their totality 
independence of their pairs is not sufficient. Intricate examples can be devised of 
such events which prove the above statement. Trust mathematicians to invent 
whatever they wish! E. V. See also Rumshitsky, § 1.4 and Note 5. 

24. It is not exactly true, but that assumption may be introduced as a first 
approximation. E. V. 

25. This formula is only valid at n ≤ 365; for n > 365 we obviously have 

( ) 0.P C =  For the sake of simplicity we disregard leap years (and birthdays 

occurring on February 29). E. V. 
See an approximate calculation of probability P(C) in Feller (1950/1964, § 2.3).  
26. When n is much larger than 365, the experiment becomes barely effective. E. 

V. 
27. That probability obviously depends on the time interval involved. 
28. It is really unfortunate to maintain that statements pertaining to the theory of 

probability are always obscure. 
29. According to a long-standing Russian tradition the highest mark (5) 

corresponds to the largest number, and the lowest mark (2), to the least number. 
30. Why is the number of possible discrete measurements of stature very large? 

The same statement is repeated below. 
31. For those acquainted with the set theory it can be added that the number of 

these values is uncountable. E. V. 
32. There also exists a special, so-called mixed type of RVs: in addition to a dense 

interval of possible values having zero probabilities they have separate, special 
values with positive probabilities. I do not consider such RVs, but their existence 
ought to be known. E. V. 

33. If X falls exactly on the border between two intervals, we add a half of a value 
to each of them. E. V. 

34. The values of a continuous RV do not have any arithmetic mean, at least not 
in the usual sense. 

35. This is wrong. Random errors of measurements are not always normal, to say 
nothing about the unavoidable systematic errors. 

36. The author introduced both some reasonable boundaries and interval (0, 1), – 
perhaps coinciding with those boundaries. The Poisson distribution, see below, is 
applied when the studied probability is either very low or very high (a case 
mentioned above). 
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0. Introduction 

0.1. Some Explanation 
This treatise is written on an elementary level; in more difficult 

cases the final formulas are provided without proof. Nevertheless, 
it was impossible to leave out integrals and I also had to 
differentiate an integral with respect to a parameter. I include many 
examples taken from the history of probability and hope that my 
subject has thus become lively. I especially quote Karl Pearson’s 
(1978, p. 1) repentant confession: 

I do feel how wrongful it was to work for so many years at 
statistics and neglect its history. 

In spite of a few mistakes, his book deserves serious attention. 
Thus, in § 4.1.1 I criticize his opinion about Jakob Bernoulli. 

I have devoted much attention to the notion of probability which 
fully conforms to Langevin’s statement (1913/1914, p. 3): 
    Dans toutes ces questions [in the kinetic theory] la difficulté 
principale est, comme nous le verrons, de donner une définition 
correcte et claire de la probabilité. 
    Note however that correct definition sounds strangely.  

0.2. The Object of the Theory of Probability 
    Toss a coin and the outcome will be either heads or tails. Toss it 50 
times and theoretically there will be 0, 1, 2, …, 49 or 50 heads. For the 
time being I emphasize that the number of heads will only be 
determined stochastically (= probabilistically): there will be from 20 to 
30 heads with such-and-such probability; from 22 to 28 heads with 
another probability etc. In probability theory, it will never be possible 
to provide a quite definite answer whereas, for example, the number of 
roots of a given algebraic equation can be stated at once. 
    Games of chance (of which coin tossing is an example) was the 
main subject of the early theory of probability. Their outcome depends 
on chance rather than on the gamblers’ skill, and even now they are 
methodically (and therefore pedagogically as well) interesting.  

Many tosses provide an example of mass random events which 
occur in most various settings: in population statistics (births, 
marriages, deaths), when treating numerous observations corrupted by 
unavoidable random errors, applying acceptance sampling of 
manufactured articles with a stochastic estimation of its error, and in 
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various branches of knowledge (kinetic theory, epidemiology etc). 
And so, the theory of probability studies mass random events, or, more 
precisely, their regularities which really exist. An isolated event is 
random, but a (homogeneous) set of events displays regularities. 
Aristotle (Metaphysics 1026b) remarked that none of the traditional 
sciences busies itself about the accidental. As stated above, neither 
does the theory of probability!  

Laplace quite successfully applied probability to studying mass 
random events, and thus to investigating laws of nature (especially 
astronomy) and population statistics. And unlike his predecessors, he 
regarded the theory of probability as a branch of applied mathematics 
(and separated himself from the geometers: let the geometers study …). 

I ought to add the reasonable but indefinite Laplace’s opinion 
(1814/1886, p. CLIII): La théorie des probabilités n’est, au fond, que 
le bon sens réduit au calcul. He did not mention mass random events 
and furthermore his definition pertained to mathematics of his time as 
a whole. 

Times change and we change with time … A mathematically 
formulated definition of the aims of the theory of probability became 
needed, and Boole (1851/1952, p. 251) provided it, in a seemingly dull 
wording: Given the separate probabilities of any [logical] proposition, 
to find the probability of another proposition. A similar statement 
pertaining to events was due to Chebyshev (1845/1951, p. 29): the 
theory of probability has as its subject the determination of an event 
given its connection with events whose probabilities are given. He 
added that probability signifies some magnitude subject to 
measurement. Prokhorov & Sevastianov (1999, p. 77) confirmed that 
aim and noted that such determinations were possible owing to the 
stability of those same mass random phenomena, as they stated. 
Anyway, owing to the stability of statistical probability (§ 1.1.3). 

Since the theory of probability is axiomatized, it belongs to pure 
mathematics rather than a branch of applied mathematics (Laplace, see 
above).  

 
Chapter 1. Main Notions, Theorems and Formulas 

1.1. Probability 
    1.1.1. Theoretical Probability. Suppose that the outcome of a trial 
depends on n incompatible and equally possible cases only m of which 
are favourable for the appearance of some event A. Then its probability 
is assumed as 

 
    P(A) = m/n                                                                (1.1) 

 
and it can change from 0 to 1, from an impossible to a certain event. 
This is the so-called classical definition due (not to Laplace, but) to De 
Moivre (1711/1984, p. 237) although he formulated it in the language 
of chances as he also did later, in 1756.  
    That definition had been known or intuitively applied from antiquity. 
The Talmud recognized seven levels of food containing differing 
relative amounts of a prohibited element (Rabinovitch 1973, p. 41). In 
the 14th century, Oresme (1966, p. 247) possibly thought about 
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probability in the modern way since he stated that two [randomly 
chosen] numbers were probably incommensurable. (For us, his 
understanding of incommensurability was unusual.) The same idea of 
probability is seen in Kepler (1596). Finally, I cite Jakob Bernoulli 
(1713, Chapter 1 in Pt. 4). He introduced probability just as De Moivre 
did but not formally, nor did he apply it in the sequel.  

In ancient times, geometry started by definitions of a point, a line 
and a plane. The point, for example, was something dimensionless. 
Nowadays, such negative definitions are unacceptable; just consider: a 
man is not a woman … and a woman is not a man! We have to accept 
such initial notions without defining them. Here is Markov (1900; 
1908, p. 2; 1924, p. 2; and 1911/1981, p. 149): 

Various concepts are defined not by words, each of which can in 
turn demand definition, but rather by [our] attitude towards them 
ascertained little by little. 

  
    I shall not defend these basic theorems linked to the basic notions of 
the calculus of probability, notions of equal probability, of 
independence of events, and so on, since I know that one can argue 
endlessly about the basic principles even of such a precise science as 
geometry.  
    Then, Kamke (1933, p. 14) noted: Um das Jahr 1910 konnte man in 
Göttingen das Bonmot hören:  
    Die mathematische Wahrscheinlichkeit ist ein Zahl, die zwischen 
Null und Eins liegt und über die man sonst nicht weis. 
    At that tine, Göttingen was considered the mathematical world 
centre, but in 1934 Hilbert, who had been working there, stated that 
after the Jewish scholars were ousted, the university ceased to exist. 
Not without reason Khinchin (1961/2004, p. 396) noted that  
    Each author […] invariably reasoned about equally possible and 
favourable chances, attempting, however, to leave this unpleasant 
subject as soon as possible. 
    Indeed, definition (1.1) begs the question: probability depends on 
equal possibilities, that is, on equal probabilities. More important, it is 
not really a definition, but only a formula for calculating it. Just the 
same, the area of a square can be calculated, but the appropriate 
formula does not tell us the meaning of area. And, finally, equal 
possibilities exist rarely so that the application of formula (1.1) is 
severely restricted. 
    In accord with Hilbert’s recommendation (1901, Problem No. 6), 
the contemporary theory of probability is axiomatic, but in practice 
statistical probability (see § 1.1.3) reigns supreme. 
    Example (application of theoretical probability). Apparently during 
1613 – 1623 Galileo wrote a note about a game with 3 dice first 
published in 1718 (David 1962, pp. 65 – 66; English translation, pp. 
192 – 195). He calculated the number of all the possible outcomes 
(therefore, indirectly, the appropriate probabilities) and compared the 
appearance of 9 or 12 points and 10 or 11 points (events A and B). 
Both A and B occurred in six ways; thus, A can appear when the 
number of points on the dice is (3, 3, 3) or (1, 4, 4 or 2, 2, 5) or (1, 2, 6 
or 1, 3, 5 or 2, 3, 4), i. e. when the number of points on each die is the 
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same; when it is only the same on two dice; and when it is different. 
However, the first case is realized only once, the second case, in 3 
ways, and the last one, in 6 ways. Event A therefore appears in 25 
ways whereas event B, according to similar considerations, in 27 ways. 
The total number of possible outcomes is 216, 108 for 3, 4, …, or 10 
points, and again 108 for 11, 12, …, 18 points and the probabilities of 
A and B are 25/216 and 27/216. 
    This example is instructive: it shows that the cases in formula (1.1) 
if unequally likely can be subdivided into equally possible ones. 
Galileo also stated that gamblers knew that B was more advantageous 
than A. They could have empirically compared not 25/216 and 27/216, 
but 25/52 and 27/52 by only paying attention to the two studied events.  
    Some definitions. When two events, A and B, have occurred, we say 
that their product AB had appeared. When at least one of them has 
occurred, it was the appearance of their sum, (A + B), and if only one 
(say, A but not B), then it was their difference (A – B).  
    Example. Two chess tournaments are to be held. The probabilities of 
a certain future participant to win the first place (events A and B) are 
somehow known. If the tournaments will occur at the same time, the 
product AB is senseless, formula (1.1) cannot be applied, the 
probability of that product does not exist. 
    1.1.1.-1. The addition theorem. For incompatible events A and B  

 
    P(A + B) = P(A) + P(B). 

 
    Examples. Suppose that an urn contains n balls, a of them red, b, 
blue, and c, white. Required is the probability of drawing a coloured 
ball (Rumshitsky 1966). The answer is obviously a/n + b/n.  
    Here, however, is only a seemingly similar problem. A die is rolled 
twice. Required is the probability that one six will appear. Call the 
occurrence of 6 points in the first and the second trial by A and B. 
Then 

 
    P(A) = 1/6, P(B) = 1/6, P(A + B) = 1/3. 

 
    But something is wrong! After 6 trials the probability will be unity, 
and in 7 trials?.. The point is, that A and B are not incompatible. See 
the correct solution in § 1.1.1-2. 
    The addition and the multiplication (see below) theorems for 
intuitively understood probabilities have actually been applied even in 
antiquity. Aristotle (De Caelo 292a30 and 289b22) stated that 
    Ten thousand Coan throws [whatever that meant] in succession with 
the dice are impossible and it is therefore difficult to conceive that the 
pace of each star should be exactly proportioned to the size of its 
circle.  

Imagined games of chance had illustrated impossible events: the 
stars do not rotate around the sky randomly. Note that the naked eye 
sees about six thousand stars. 
    1.1.1-2. Generalization: the formula of inclusion and exclusion. For 
two events A and B the general addition formula is 
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    P(A + B) = P(A) + P(B) – P(AB).  
 

    Indeed, in the example in § 1.1.1-1 P(AB) = 1/36 and 
 

    P(A + B) = 1/6 + 1/6 – 1/36 = 11/36. 
 

The number of favourable cases was there 11 rather than 12. For 3 
events we have 

 
P(A + B + C) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(ABC) 
 

and in the general case 

 

    Р(А1А2 … Аn) = Р( ) ( ) ( ) ...i i j i j k
i i j i j k

A P A A Р A A A
< < <

− + −∑ ∑ ∑  

 
This formula of inclusion and exclusion was applied by Montmort (1708). 

It is a particular case of the proposition about the mutual arrangement of 
arbitrary sets. The conditions i < j, i < j < k, … ensure the inclusion of 
all subscripts without repetition. Thus, for 4 events i < j means that 
allowed are events with subscripts 1, 2; 1, 3; 1, 4; 2, 3; 2, 4 and 3, 4, 
six combinations in all (of 4 elements taken 2 at a time). 

1.1.1-3. The multiplication theorem. We introduce notation Р(В/А), 
denoting the probability of event В given that event А had occurred. 
Now, the theorem: 
 
    Р(АВ) = Р(А)Р(В/А).                                                        (1.2) 
 
Switch А with В, then  
 
    Р(АВ) = Р(В)Р(А/В).                                                       (1.3) 
 

Example 1 (Rumshitsky 1966). There are 4% defective articles in a 
batch; among the others 75% are of the best quality. Required is the 
probability that a randomly chosen article will be of the best quality. 

Denote the extraction of a standard article by А, and by В, of one of 
the best. Then 
 
    Р(А) = 1 – 0.04 = 0.96; Р(В/А) = 0.75. Р(АВ) = 0.96·0.75 = 0.72. 
 

Example 2. What number of points, 11 or 12, will occur more 
probably in a cast of two dice? Leibniz (Todhunter 1865, p. 48) thought 
that both outcomes were equally probable since each was realized in only 
one way, when casting 5 and 6 and 6 and 6 respectively. An elementary 
mistake committed by a great man! Denote by A and B the occurrence of 5 
and 6 on a die, then Р(А) = 1/6, Р(В) = 1/6. Yes, both outcomes after 
casting both dice are the same, Р(АВ) = Р(А)Р(В) = 1/36, but we ought 
to take into account that the first alternative can appear in two ways, 5 
and 6, and 6 and 5, and is therefore twice as probable. 

In general, if Р(В/А) = Р(В) the multiplication theorem is written as  
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    Р(АВ) = Р(А)Р(В), 
 
and the events А and В are called independent. 

Example 3. А and В have 12 counters each and play with 3 dice. 
When 11 points appear, А gives В a counter and В gives a counter to А 
when 14 points occur. Required are the gamblers’ chances of winning 
all the counters. This is Additional problem No. 5 formulated by 
Pascal, then by Huygens (1657), who provided the answer without 
solution.  

There are 216 outcomes of a cast of 3 dies, 15 of them favouring the 
appearance of 14 points, and 27 favouring 11 points, see Example in § 
1.1.1. The probabilities or chances of winning are therefore as 15/27 = 
5/9. For winning 12 counters the chances therefore are as 512/912. 

This was the first of a series of problems describing the gambler’s 
ruin. They proved extremely interesting and among their investigators 
were De Moivre and Laplace. In a particular case, the fortune of one of 
the gamblers was supposed to be infinite.  

A series of games of chance can be thought of as a random walk 
whereas, when considered in a generalized sense, they become a 
random process (§ 5.2).  
    Suppose now that more than 2 (for example, 4) events are studied. 
The multiplication theorem will then be generalized: 
 
    Р(А1А2А3А4) = Р(А1)Р(А2/А1)Р(А3/А1А2)Р(А4/А1А2А3). 
 
The last multiplier, for example, denotes the probability of event А4  
given that all the other events had happened.  
    Reader! Bear with me for some time yet; two more statements are 
needed, perhaps not very elegant (every man to his taste). 

1.1.1-4. A more essential generalization of the multiplication 
theorem. Suppose that event А can occur with one and only one of 
several incompatible events В1, В2, …, Вn. It follows that our notation 
Р(АВ) can now be replaced simply by Р(А), so that formula (1.3) will 
be 

 
    Р(А) = Р(В1) Р(А/В1) + Р(В2) Р(А/В2) + … + Р(Вn) Р(А/Вn) = 
 

    
1

( ) ( / )
n

i i
i

P B P A B
=

∑ .                                                       (1.4) 

 
This is the formula of total probability and the Вi’s may be 

considered the causes of the occurrence of А, each leading to A 
although only with its own probability.  

Suppose that 3 urns have, respectively, 1 white (w) and 2 black (b) 
balls; 2 w and 1 b ball; and 3 w and 5 b balls. An urn is randomly 
selected and a ball is drawn from it. Required is the probability that 
that ball is white.  

The probabilities of extracting a white ball from those urns are 
Р(А/Вi) = 1/3, 2/3 и 3/8, and the probability of selecting any urn is the 
same, Р(Вi) = 1/3. Therefore,  
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    Р(А) = (1/3)·(1/3) + (1/3)·(2/3) + (1/3)·(3/8) = 0.458 < 1. 
 
It is quite possible that the extracted ball was black. But can  
Р(А) > 1? Let 
 

Р(А/В1) = Р(А/В2) = Р(А/В3) = 0.99 
  

and of course 
 
    Р(В1) + Р(В2) + Р(В3) = 1. 
 
    But the feared event will not occur even when the first 3 
probabilities are so high. But can Р(А) = 1? 

1.1.1-5. The Bayes formula. The left sides of equations (1.2) and 
(1.3) coincide, and their right sides are equal to each other 
 
    Р(А)Р(В/А) = Р(В)Р(А/В), 
 
or, in previous notation, 
 
    Р(А)Р(Вi/А) = Р(Вi)Р(А/Вi), 
 

    
( ) ( / )

( / ) .
( )

i i
i

P B P A B
P B A

P A
=                                        (1.5) 

 
    Replace finally Р(А) according to formula (1.4): 
 

    

1

( ) ( / )
( / ) .

( ) ( / )

i i
i n

i i
i

P B P A B
P B A

P B P A B
=

=

∑
                                   (1.6) 

 
It is time to contemplate. We assigned probabilities Р(В1), Р(В2), …, 

Р(Вn) to causes В1, В2, …, Вn and they are in the right side of (1.6). 
But they are prior whereas the trial was made: the event А has 
occurred and those prior probabilities can now be corrected, replaced 
by posterior probabilities Р(В1/А), Р(В2/А), …, Р(Вn/А).  

Bayes (1764) included formula (1.6) but only in the particular case 
of n = 1 (which means going back to the previous formula). However, 
it is traditionally called after him. More precisely, from 1830 onwards 
it was formula (4.5) that was called after him. Nevertheless, Cournot 
(1843, § 88), although hesitantly, attributed formula (1.6) to Bayes; 
actually, it appeared in Laplace’s great treatise (1812, § 26). 

And who was Bayes? A talented mathematician. His posthumous 
memoir (1764 – 1765) became lively discussed in the early 20th 
century since prior probabilities were rarely known; is it possible to 
suppose that they are equal to each other? Laplace (1814/1995, p. 116) 
thought that hypotheses should be created without attributing them any 
reality and continually corrected by new observations. Discussions are 
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still continuing and anyway several terms are called after Bayes, for 
example, Bayesian approach, estimator etc. 

Example. Consider the same three urns as above. For them, the 
fractions in the right side of formula (1.5) differ one from another only 
by multipliers Р(А/Вi), which are to each other as (1/3):(2/3):(3/8) = 
8:16:9. The same can therefore be stated about the posterior 
probabilities Р(Вi/А). It is certainly possible to take into consideration 
the previously established value Р(А) = 0. 458 and calculate them: 
 

1  2 3

1 2 3
( / ) ,  ( / ) ,  ( / ) . 

3 3 0.458 3 3 0.458 3 8 0.458
P B A P B A P B A= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

 
Understandably, probability Р(В2/А) turned out as the highest of 

them: the relative number of white balls was largest in that same urn, 
the second one. 

Stigler (1983/1999) applied the Bayes theorem in the mentioned 
particular case for stating that another English mathematician, 
Saunderson, was the real author of the Bayes memoir. He (p. 300) 
assigned subjective probabilities to three differing assumptions (for 
example, did each of them, Bayes and Saunderson, keep in touch with 
De Moivre) and multiplied these probabilities for each of the two. 
Their ratio occurred to be 3:1 in favour of the latter. Tacitly allowing 
an equality of the corresponding prior probabilities, Stigler (p. 301) 
decided that the probability of Saunderson’s authorship was three 
times higher. Stigler’s tacit assumption was absolutely inadmissible 
and that his (happily forgotten) conclusion ought to be resolutely 
rejected. That same Stigler allowed himself to vomit an abuse on Euler 
(§ 6.2) and Gauss (Sheynin 1999a, pp. 463 – 466). 

1.1.1-6. Subjective probability. It is naturally prior and somewhat 
complements the theoretical probability (1.1). Indirectly, it is applied 
very often, especially when there exists no reason to doubt the 
existence of equal probabilities of some outcomes. Thus, the 
probability of each outcome of a cast of a die is supposed to be 1/6, 
although any given die is not exactly regular. Poisson and Cournot 
(1843/1984, p. 6) were the first to mention it definitely. They even 
called it and the objective probability by different terms, chance and 
probability. 
    Here is Poisson’s (1837, § 11) instructive problem. An urn contains 
n white and black balls in an unknown proportion. Required is the 
probability that an extracted ball is white. The number of white balls 
can be 0, 1, 2, …, n, – (n + 1) allegedly equally probable cases. The 
probability sought is therefore the mean of all possible probabilities 
 

    
1 1 1 0 1

( ... ) = 
1 2

n n

n n n n n

−
+ + + +

+
 

 
as it should have been. His answer conforms to the principles of the 
information theory which Poisson himself understood perfectly well: it, 
his answer, corresponded to la perfaite perplexité de notre esprit.  
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Poisson (1825 – 1826) applied subjective probability when 
investigating a game of chance. Cards are extracted one by one from 
six decks shuffled together as a single whole until the sum of the 
points in the sample obtained was in the interval [31; 40]. The sample 
is not returned and a second sample of the same kind is made. It is 
required to determine the probability that the sums of the points are 
equal. Like the gamblers and bankers, Poisson tacitly assumed that the 
second sample was extracted as though from the six initial fresh decks. 
Actually, this was wrong, but the gamblers thought that, since they did 
not know what happened to the initial decks, the probability of 
drawing some number of points did not change. 

When blackjack is played, bankers are duty bound to act the same 
wrong way: after each round the game continues without the used 
cards, and, to be on the safe side, they ought to stop at 17 points. A 
gambler endowed with a retentive memory can certainly profit from 
this restriction.  

Here are other examples. Redemption of the first born. The 
Jerusalem Talmud (Sanhedrin 14) describes how lots were taken. The 
main point was that the voters were afraid that there will be no more 
special ballots left freeing the last voters from the payment. They 
actually thought about the subjective probabilities of the distribution of 
those special ballots among consecutive voters. Tutubalin (1972, p. 12) 
considered the same problem in quite another setting and proved that 
the fears of the voters were unfounded. 

Another example. Rabinovitch (1973, p. 40) desribed the statement 
of Rabbi Shlomo ben Adret (1235 – 1310 or 1319) about eating some 
pieces of meat one of which was not kosher. One piece after another 
may be eaten because (actually) the probability of choosing the 
forbidden piece was low, and when only two pieces are left, – why, the 
forbidden piece was already eaten, so eat these two as well! 
    Subjective opinions are mathematically studied, for example those 
pertaining to expert estimates and systems of voting. In those cases the 
merits of the economic projects or candidates are arranged in 
ascending or descending order of preference, see § 5.1. 

1.1.2. Geometrical Probability. The classical definition of 
probability can be generalized, and, in a manuscript of 1664 – 1666, 
Newton (1967, pp. 58 – 61) was the first to do so. He considered a ball 
falling upon the centre of a circle divided into sectors whose areas 
were in such proportion as 2 to √5. If the ball tumbles into the first 
sector, a person gets a, otherwise he receives b, and his hopes is worth 

 

(2 5) (2 5).a b+ ÷ +   

 
The probabilities of the ball tumbling into these sectors were as 2 to √5, 
as Newton also indirectly stated. See also Sheynin (1971a). 

The classical definition is still with us with m and n being real rather 
than only natural numbers. In this way many authors effectively 
applied geometrical probability. Buffon (1777, § 23) definitively 
introduced it by solving his celebrated problem. A needle of length 2r 
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falls randomly on a set of parallel lines. Determine the probability P 
that it intersects one of them. It is easily seen that 

 
   P = 4r/πa 
 
where a > 2r is the distance between adjacent lines. Buffon himself 
had however only determined the ratio r/a for P = 1/2. His main aim 
was to mettre donc la Géométrie en possession de ses droits sur la 
science du hazard (Buffon 1777/1954, p. 471). Later authors 
generalized the Buffon problem, for example by replacing lines by 
rectangles or squares. 

Laplace (1812, chapter 5) noted that after, say, 100 such trials the 
number π can be calculated. He thus suggested the Monte Carlo 
method (of statistical simulation). A formal definition of the new 
concept was only due to Cournot (1843, § 18). More precisely, he 
offered a general definition for a discrete and a continuous random 
variable by stating that probability was the ratio of the étendue of the 
favourable cases to that of all the cases. We would now replace 
étendue by measure (in particular, by area). 

Actually, beginning with Nikolaus Bernoulli (1709/1975, pp. 296 – 
297), see also Todhunter (1865, pp. 195 – 196), each author dealing 
with continuous laws of distribution (§ 2.1) applied geometric 
probability. The same can be said about Boltzmann (1868/1909, p. 49) 
who defined the probability of a system being in a certain phase as the 
ratio of the time during which it is in that time to the whole time of the 
motion. Ergodic theorems can be mentioned, but they are beyond our 
boundaries.  
    Determine the probability that a random chord of a given circle is 
shorter than the side of an inscribed equilateral triangle (Bertrand 
1888). This celebrated problem had been discussed for more than a 
century and several versions of randomness were studied. Bertrand 
himself offered three different solutions, and it was finally found out 
that, first, there was an uncountable number of solutions, and, second, 
that the proper solution was probability equals 1/2 which corresponded 
to la perfaite perplexité de notre esprit (§ 1.1.1-6).  

Finally, the encounter problem (Laurent 1873, pp. 67 – 69): two 
persons are to meet at a definite spot during a specified time interval 
(say, an hour). Their arrivals are independent and occur at random; the 
first one to come waits only for a certain time (say, 20 minutes), then 
leaves. Required is the probability of a successive encounter. 

Denote the time of their arrivals by x and y, then |х – у| ≤ 20 or |у – 
х| ≤ 20, and a graphical solution is simple and instructive, see also § 
3.2. 

1.1.3. Statistical Probability. Suppose that a random event occurred 
µ times in ν trials. Then its relative frequency (frequency, as I will call 
it) or statistical probability is 

    p̂  = µ/ν                                                                         (1.7) 

 
and it obviously changes from 0 to 1.  
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    Newton (§ 1.1.2), while commenting on his second thought 
experiment, a roll of an irregular die, concluded that, nevertheless, It 
may be found how much one cast is more easily gotten then another. 
He likely had in mind statistical probabilities rather than analytic 
calculations. And he may well have seen Graunt’s pioneer statistical 
contribution of 1662 where all deductions pertaining to population and 
medical statistics had been based on statistical probabilities. 

Statistical probability was applied even by Celsus (1935, p. 19) in 
the first century of our era:  

Careful men noted what generally answered the better, and then 
began to prescribe the same for their patients. Thus sprang up the Art 
of medicine.  

He certainly had no numerical data at his disposal, but qualitative 
statements had been a distinctive feature of ancient science.  

The definition above is only meaningful if the trials are mutually 
independent and the calculated probability remains almost the same in 
a subsequent series of similar trials. If results of some trials essentially 
differ, say, from one day of the week to another, then each such day 
ought to be studied separately. And what kind of trials do we call 
independent? For the time being, we say: trials, whose results do not 
influence each other, also see § 1.1.1-3.  

The imperfection of the theoretical probability and its narrow field 
of applications led to the appearance of the statistical probability as the 
main initial notion (Richard Mises, in the 1920s).  

A rigorous implementation of his simple idea proved extremely 
difficult and discussions about the Mises’ frequentist theory never 
ended. Here is his idea. Toss a coin many times and from time to time 
calculate the frequency (1.7) of heads. After a sufficiently large ν it 
will only change within narrow bounds and at ν → ∞ it will reach 
some limiting value. It was this value that Mises called statistical 
probability (of heads). 

Infinitely long trials are impossible, but Mises cited a similar 
approach in physics and mechanics (for example, velocity at a given 
moment). He also stated that the sequence of the trials (the collective) 
should be irregular (so that its infinite subsequences should lead to the 
same probability p̂ ). 

This condition is too indefinite. How many subsequences ought to 
be tested before irregularity is confirmed? And is it impossible to 
select randomly an excessively peculiar subsequence? Even these 
superficial remarks show the great difficulties encountered by the 
frequentist theory; nevertheless, naturalists have to issue from 
statistical probability. 

Yes, it is theoretically imperfect, although mathematicians came to 
regard it somewhat milder (Kolmogorov 1963, p. 369). I ought to add 
that (Uspensky et al 1990, § 1.3.4)  

Until now, it proved impossible to embody Mises’ intention in a 
definition of randomness satisfactory from any point of view.  

1.1.4. Independence of Events and Observations. Events А and В are 
independent if (1.1.1-3) 
 

Р(АВ) = Р(А)Р(В),  
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otherwise 
 
    Р(АВ) = Р(А)Р(В/А). 
 
   Switch А and B, then 
 
    Р(АВ) = Р(В)Р(А/В).  
 

A remarkable corollary follows: if А does not depend on В, then В 
does not depend on А; independence is mutual (De Moivre (1718/1756, 
p. 6): 

Two events are independent, when they have no connection one with 
the other, and that the happening of one neither forwards nor 
obstructs the happening of the other. 

Two events are dependent, when they are so connected together as 
that the probability of either’s happening is altered by the happening 
of the other.  

The proof of mutuality of independence (already evident in that 
definition) is simple. According to the condition, Р(А/В) = Р(А), then 
by formulas (1.3) and (1.2)  
 
    Р(АВ) = Р(В)Р(А), Р(В/А) = Р(В), QED. 
 
Here, however, is a seemingly contradicting example. Suppose that the 
weather during a summer week in some town is random. Then the 
random sales of soft drinks there depend on it although there simply 
cannot be any inverse dependence. But weather and sales cannot be 
here considered on the same footing. 
    De Moivre (1711, Introduction) was the first to mention 
independence, see also just above. Later classics of probability theory 
mentioned independence of events as well (see below), but some 
authors forgot about it. The situation had abruptly changed since 
Markov investigated his chains (§ 5.2) and thus added an additional 
direction to the theory, the study of dependent random events and 
variables. 

Gauss (1823, § 18) stated that if some observation was common to 
two functions of the results of observations, the errors of these latter 
will not be independent from each other. He added (for some reason, 
only in § 19) that those functions were linear. Without this restriction 
his statement would have contradicted the Student – Fisher theorem 
about the independence of the sample mean and variance in case of the 
normal distribution. 

Also dependent, as Gauss (1828, § 3) thought, were the results of 
adjustments. Thus, after the observed angles of a triangle were 
corrected, and their sum became strictly equal to its theoretical value, 
these adjusted angles were not anymore independent; they are now 
somehow connected by their unavoidable residual errors. Note that 
Gauss had thus considered independence of functions of random 
variables (§ 1.2.3). 



 

54 
 

Geodesists invariably (and without citing Gauss) kept to the same 
definition. Thus, in the Soviet Union separate chains of triangulation 
had bases and astronomically determined directions on both ends. 
Therefore, after their preliminary adjustment they were included in a 
general adjustment as independent entities. True, the bases and those 
directions were common to at least two chains, but they were 
measured more precisely than the angles. 

Bernstein (1946, p. 47) offered an instructive example showing that 
pairwise independence of, say, three events, is not sufficient for their 
mutual independence. 

1.2. Randomness and Random Variables 
    1.2.1. Randomness. In antiquity, randomness was a philosophical 
notion, then became a mathematical concept as well. Aristotle 
included it in his doctrine of causes; here are two of his celebrated 
examples. 

1) Digging a hole for a tree, someone finds a buried treasure [not a 
rusty nail!] (Metaphysics 1025а). 

2) Two men known to each other meet suddenly (Physics 196b30); 
two independent chains of events suddenly intersected.  

These examples have a common feature: a small change in the 
action(s) of those involved led to an essential change: the treasure 
would have remained buried, there would have been no meeting. Many 
ancient authors imagined chance just as Aristotle did whereas Cournot 
(1843, § 40) mentioned the second example anew.  

The pattern small change – essential consequences became 
Poincaré’s (1896/1987, pp. 4 – 6) main explanation of randomness, 
although he specified: when equilibrium is unstable. Here is his or, 
rather, Cournot’s (1843, § 43) example: a right circular cone standing 
vertically on its vertex falls in a random direction. A similar example 
is due to Galen (1951, p. 202), a Roman physician and naturalist, 2nd 
century:  

In those who are healthy […] the body does not alter even from 
extreme causes; but in old men even the smallest causes produce the 
greatest change.  
    Corruption of nature’s aims was another cause of randomness. 
Kepler (1618 – 1621/1952, p. 932) established that planets move along 
elliptical orbits whereas nature, as he thought, aimed at circular orbits. 
Complete perfection was not attained. Only Newton proved that the 
ellipticity followed from his law of universal gravitation and that the 
eccentricity of an orbit was determined by the planet’s initial velocity. 

Following Kepler and Kant, Laplace (1796/1884, p. 504) somehow 
concluded that these eccentricities had been caused by variations of 
temperatures and densities of the diverse parts of the planets. 

A mathematical theory cannot however be based on encounters or 
nature’s aims. I leave aside very interesting but occurring much ahead 
of their time and therefore unsuccessful attempts mathematically to 
determine randomness (Lambert 1771, §§ 323 – 324; 1772 – 1775), 
see also Sheynin (1971b, pp. 245 – 246). Modern attempts deal with 
infinite (and even finite) sequences of zeros and unities such as 
 
    0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, … 
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    Is it random or not? Such questions proved fundamental. They were 
approached in various ways, but are far from being solved. For a finite 
sequence that question is still more complicated. In any case, the 
beginning of an infinite sequence ought to be irregular so that 
irregularity (as Mises also thought) is an essential property of 
randomness. 

In philosophy, randomness is opposed to necessity; in natural 
sciences Poincaré (1896/1912, p. 1) described their dialectic: 

Dans chaque domaine, les lois précises ne décidaient pas de tout, 
elles traҫaient seulement les limites entre lesquelles il était permis au 
hasard de se mouvoir. 

He did not regrettably mention regularities of mass random events. 
It is also appropriate to recall the celebrated Laplace’s (1814/1995, p. 
2) statement allegedly proving that he rejected randomness: 

An intelligence that, at a given instant, could comprehend all the 
forces by which nature is animated […], if, moreover, it were vast 
enough to submit these data to analysis, would encompass […] the 
movements of the greatest bodies and those of the slightest atoms. […] 
Nothing would be uncertain, and the future, like the past, would be 
open to its eyes.  

Such intelligence is impossible. Then, there exist unstable motions, 
responding to small errors of the initial conditions (see above) and 
perhaps half a century ago a mighty generalization of the former 
phenomenon, the chaotic motion, was discovered and acknowledged. 
Finally, Maupertuis (1756, p. 300) and Boscovich (1758, § 385) kept 
to the same Laplacean determinism.  
    Allegedly proving … Perhaps Laplace’s entire astronomical 
investigations and certainly all his statistical work refute his statements 
(which really took place) denying randomness.  
    1.2.2. Cause or Chance? What should we think if a coin falls on the 
same side 10 or 20 times in succession? Common sense will tell us: 
the coin was imperfect. Nevertheless, we will discuss this example. 
Indeed, after the appearance, in mid-19th century, of the non-Euclidean 
geometry we may only trust common sense in the first approximation.  

Denote heads and tails by + and –. After two tosses the outcomes 
can be + +, + –, – + and – –, all of them equally probable. After the 
third toss the outcome + + becomes either + + +, or + + –. In other 
words, the outcome + + + is not less probable than any of the other 7, 
and it is easy to see that a similar conclusion remains valid at any 
number of tosses. Of course 10 heads in succession are unlikely, but 
all the other possible outcomes will be just as unlikely.  

So let us refer to Laplace (1776, p. 152; 1814/1995, p. 9), who 
discussed the so-called D’Alembert – Laplace problem: 

Suppose we laid out […] the printer’s letters Constantinople in this 
order. We believe that this arrangement is not due to chance, not 
because it is less possible than other arrangements. […] [S]ince we 
use this word it is incomparably more probable that someone has 
arranged the preceding letters in this order than that this arrangement 
happened by chance. 
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    No formulas can help us and Laplace had to turn to common sense. 
In our example, we may conclude that someone had done something 
so that the coin always falls on the same side. Common sense did not 
let us down. In 1776, Laplace selected the word Infinitesimal; it was 
D’Alembert (1767, pp. 245 – 255) who wrote Constantinople. His 
considerations were not as reasonable.  

In general, the cause or chance problem compels us to separate 
somehow equally possible cases (if they exist) into ordinary and 
remarkable; Constantinople was indeed a remarkable arrangement. 
Kepler was an astrologer as well (and called himself the founder of an 
allegedly scientific astrology which only admitted a correlative 
influence of the stars on human beings). He (1601, § 40/1979, p. 97) 

added three aspects (remarkable mutual positions of the heavenly 
bodies) to the five recognized by the ancients and he (1604/1977, p. 
337) also was not willing to ascribe the appearance of a New star to 
blind chance […] and considered it a great wonder.  

Another related subject is the superstition and self-delusion peculiar 
to gamblers (and not only to them). A ball is rolled along a roulette 
wheel and stops with equal probability at any of the 37 positions 0, 
1, …, 35, 36. Gamblers attempt to guess where exactly will the ball 
stop and the winner gets all the stakes; however, if the ball stops at 0, 
the stakes go the banker. This is the simplest version of the game. 

Now suppose that the ball stopped at 18 three times in succession; 
should a gambler take this fact into account (and how exactly)?  
    Petty (1662/1899, vol. 1, p. 64) resolutely opposed games in chance 
(considered that playing as such was a superstition): A lottery […] is 
properly a tax upon unfortunate self-conceited fools. Montmort 
(1708/1980, p. 6) and other authors noted the gamblers’ superstitions; 
and here is Laplace (1814/1995, p. 92) commenting on a similar event:  
    When one number has not been drawn for a long time […], the mob 
is eager to bet on it.  
    But it was Bertrand (1888, p. XXII) who dealt the final blow 
(although did not convince the gamblers): Elle [the roulette] n’a ni 
conscience ni mémoire. Play, but do not retrieve your losses (a 
Russian saying quoted by Pushkin)! It means: play if you cannot 
abstain from gambling, but never risk much. Arnauld & Nicole 
(1662/1992, p. 332) warned against expecting large gains (and risking 
much!). 

Laplace (Ibidem, p. 93) also mentioned the general public’ 
superstitions:  

I have seen men, ardently longing for a son […]. They fancied that 
the boys already born [during a certain month] made it more probable 
that girls would be born next. 

Finally, I note that Laplace (p. 93) saw no advantage in repeatedly 
staking on the same number. This brings us to martingales, but I will 
not go thus far. 
    1.2.3. Random Variable. This is the central notion of the theory of 
probability. Here is the simplest definition of a discrete random 
variable: A variable taking various discrete values, each with some 
probability. Denote these values by х1, х2, …, хn. The sum of their 
probabilities р1, р2, …, рn should be unity. Considered together, those 
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values and probabilities are the random variable’s law of distribution. 
A random event can be understood as a random variable having n = 2. 

The case of n → ∞ is also possible; it can be realized in the discrete 
way, for example, if х1 = 1, х2 = 2, х3 = 3, …, with a countable number 
of the values, or, if a continuous random variable is considered, that 
number is uncountable. Example: all the uncountable values in interval 
[0; 1]. A new circumstance appears when there are infinitely many 
values: an event having a zero probability is possible. Indeed, select 
any point, say, in the appropriate interval. The probability of choosing 
any given point is certainly zero, but we did select some point! The 
geometric probability (§ 1.1.2) can be recalled here. 

A random variable (or its generalization, which we will not discuss) 
or a random event ought to be present in each problem of the theory of 
probability. Thus, the outcome of a dice-fall is a random variable; it 
takes 6 values, each with its own probability (here, they are identical).  

Many interesting examples of random variables can be provided. 
Thus, in the beginning of the 17th century the participants in the 
celebrated Genoese lottery could guess 1, 2, …, 5 numbers out of 90. 
The gains increased with those numbers, but the more did the gambler 
hope for, the heavier was he punished (his expected gain rapidly 
decreased). This did not follow from any mathematical theorem, but 
was caused by the organizers’ greed.  

The random variable involved (the random gain) had 5 values with 
definite probabilities although only a handful of people had been able 
to calculate them. Then, from 1662 onward (Graunt), human lifespan 
began to be studied. In 1756 and 1757 Simpson effectively introduced 
random variables into the future theory of errors and until about the 
1930s this new direction of research had remained the main subject of 
probability theory. Simpson assumed that the chances of the (random) 
errors corrupting each measurement (of a given series) are represented 
by some numbers; the result of measurement thus became a possible 
value of some random variable and a similar statement held for all of 
them taken together. 

A formal introduction of the random variable was due to Poisson 
(1837, pp. 140 – 141 and 254) who still called it by a certainly 
provisional term chose A. The proper term, random variable, did not 
come into general use all at once. Perhaps its last opponent was 
Markov (letter to Chuprov of 1912; Ondar 1977/1981, p. 65): 

Everywhere possible, I exclude the completely undefined expression 
random and at random. Where it is necessary to use them, I introduce 
an explanation corresponding to the pertinent case. 
    He had not however devised anything better and often wrote 
indefinite magnitude, which was hardly better. Markov had not applied 
the terms normal distribution or correlation coefficient either! 
    In a certain sense, the entire development of the theory of 
probability consisted in an ever more general understanding of random 
variable. At first, randomness in general had been studied (actually, a 
random variable with a uniform law of distribution, see § 2.2.1) as 
contrary to necessity, then random variables having various 
distributions, dependent variables and random functions, cf. § 5.1. The 
level of abstraction in the theory gradually heightened (the same is true 
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about the development of mathematics in general). It is well known 
that, the higher became that level (i. e., the further mathematics moved 
away from nature), the more useful it was. Complex numbers and 
functions of complex variables are absolutely alien to nature, but how 
useful they are in mathematics and its applications! 
 

Chapter 2. Laws of Distribution of Random Variables,  

Their Characteristics and Parameters 

2.1. Distribution Function and Density 
For describing a continuous random variable (call it ξ) we need to 

determine its law of distribution as it was done in § 1.2.3 for discrete 
variables. Denote by F(x) the probability of its being less than some х:  
 
    P(ξ < x) = F(x). 
 
This F(x) is called the distribution (integral) function of ξ. If ξ takes 
any value from – ∞ to ∞, then 
 
    P(ξ < – ∞) = F(– ∞) = 0, P(ξ < ∞) = F(∞) = 1. 
 
    Choose now two arbitrary points, х1 and х2, х2 >  х1, then 
 
    P(ξ < х2) ≥ P(ξ < х1) or F(х2) ≥ F(х1). 
 
Indeed, Р(– ∞ < ξ < х2) cannot be lower than Р(– ∞ < ξ < х1). And if a 
random variable takes no values on interval [х1; х2] (but remains 
continuous beyond it), then  
 
    P(ξ < х2) = P(ξ < х1) or F(х2) = F(х1).                              (2.1) 
 

And so, in any case, the function F(х) does not decrease and if (2.1) 
does not take place, it increases. Note also that 
 
    F(х2) – F(х1) = P(ξ < х2) – P(ξ < х1).                                (2.2) 
 

Integral distribution functions began to be applied in the 20th century, 
although they fleetingly appeared even in 1669. Pursuing a methodical 
aim, Huygens (1669/1895, between pp. 530 и 531) drew a graph of a 
function whose equation can be written as 
 
    y = 1 – F(x), 0 ≤ x ≤ 100.  
 

The curve described the human lifespan (ξ), the probability of Р(ξ ≥ 
х), but it was not based on numerical data. In 1725, De Moivre studied 
the same probability, and similarly Clausius (1858/1867, p. 268) 
investigated the probability of the free path of a molecule to be not less 
than х.  
    Until distribution functions really entered probability, continuous 
random variables had been described by densities φ(х) of their 
distributions (of their probability). Consider an infinitely short interval 
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[х1; х1 + dx1]. A random variable takes there a value depending on х1; 
we may say, takes one and the same value φ(х1). On the adjacent 
interval of the same length on the right side the value of that variable  
may be assumed equal to φ(х2), х2 = х1 + dx1. Thus we get a series of 
values φ(х1), φ(х2), … and can describe the relation of this function, 
φ(х), the density, with F(x):  
 

    F(xn) = φ( ) ,
nx

x dx
−∞

∫  F(x1) = 
1

φ( ) ,
x

x dx
−∞

∫  F(xn) – F(x1) = 
1

φ( )
nx

x

x dx∫ . 

 
    These formulas additionally explain equality (2.2). Strictly speaking,  
by definition, 
 
    F′(x) = φ(x),  
 
but the essence of φ(х) as stated above certainly holds. In more simple 
examples the density is a continuous function existing on a finite or 
infinite interval; according to its definition, the area under the density 
curve is unity.  
    Under, above, to the left or to the right are non-mathematical 
expressions, but we will apply them even without italics.  
    Instead of random variables themselves the theory of probability 
studies their distribution functions or densities just as trinomials  
 
    f(x) = ax2 + bx + c, а ≠ 0 
 
are studied in algebra. Given the parameters a, b and с, we can 
determine whether the roots of the trinomial are real (coinciding or not) 
or complex, can draw its graph. The same way we determine the 
behaviour of random variables. But where are the parameters of 
densities or distribution functions?  

Consider a function f(x). We may write it down as f(x; a; b; c) and 
thus show that its argument is the variable х, but that its behaviour is 
also determined by parameters constant for each given function (for 
each trinomial). The density and the distribution function also have 
parameters peculiar to each random variable. As a rule, statisticians 
estimate those parameters. Suppose that we have a continuous 
triangular distribution (assumptions of such kind should be justified) 
with an unknown parameter а (see § 2.2.2). It is required to estimate it, 
to establish for it some (sample) value ˆ,a  which is only possible when 

having appropriate observations of the random variable, and to 
determine the possible error of that estimate. If there are two 
parameters, certainly both should be estimated. 

2.2. Some Distributions 
2.2.1. The uniform distribution. A random variable having this 

distribution takes all its values with the same probability. Thus, all the 
6 outcomes of a die-fall are equally probable. A continuous random 
variable takes identical values on some interval. The area under this 
interval should be unity; for interval [– a, a] the density will therefore 
be  
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    φ(х) = 1/а = Const 
 
and a can be considered the parameter of this distribution. 

2.2.2. The continuous triangular distribution is usually even. So let 
it cut the x-axis at points A (– a, 0) and C (a, 0). The density is the 
broken line ABC with AB and BC being the equal lateral sides of the 
isosceles triangle ABC. The area under it is unity, so we have B(0, 1/a).  

The only parameter of this distribution is obviously a since only it 
determines the coordinates of all the points A, B and C. I described the 
triangular distribution mostly since it was easy to establish the 
meaning of its parameter. It was introduced by Simpson (§ 1.2.3). 

2.2.3. The binomial distribution. We all remember the formula of 
the square of the sum of two numbers and some of us even managed to 
remember the formula for the cube of the same sum. However, there 
exists a general formula for natural exponents n = 1, 2, 3, …: 
 

    (p + q)n = pn + 1
nC pn–1q + 2

nC pn–2q2 + … + 1n
nC − pqn–1 + qn.  (2.3) 

 
We are only interested in the particular case of р + q = 1, that is, in 

those magnitudes which describe the probabilities of contrary events. 

Here, k
nC  is the number of combinations of n taken k at a time: 

 

    
 ( 1) ... ( 1)

,  .
!

k k n k
n n n

n n n k
C C C

k
−− − +

= =  

 
The numerator has the same number of multipliers as the denominator. 
Thus, 
 

    3
5

5 4 3
,

3!
C

⋅ ⋅
=  3! = 1·2·3. 

 
Required now is the probability of casting a unity twice when 

rolling four dice (or rolling one die four times). Cast a die once, and 
the probability of a unity is р = 1/6, whereas the probability of all the 
other outcomes is q = 5/6. And now consider a binomial [(1/6) + (5/6)] 
raised to the fourth power:  
 
    [(1/6) + (5/6)]4 = [1/64](1 + 4·13·5 + 6·12·52 + 4·1·53 + 54). 
 

The term 6·12·52 will correspond to the probability sought since it, 
and only it, includes the multiplier 12, denoting the studied outcome 
(and another outcome). That probability is 6[1/64]·12·52 = 25/63 = 
25/216. We have thus taken into account the number (6) of the 
possible successive casts (the number of combinations of 4 elements 
taken 2 at a time). Neglecting this coefficient 6, we would have 
obtained the probability sought when the successful casts were fixed; 
for example, if the unity should have occurred in the first and the third 
roll.  
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The number of trials n and the ratio p/q can be chosen as the 
parameters of the binomial distribution (2.3). It is not necessary to 
choose both p and q since only one of these magnitudes is independent 
(p + q = 1). The example above shows that each term of the binomial 
expansion (2.3) is the probability  

 

    р(x) = k
nC р

n–k qk, x = 0, 1, 2, …, n  

 
that the studied random event will occur k times in whichever n trials. 
The frequency is also essential, see § 2.4.1.  
    Interesting examples of the binomial distribution include the studies 
of the sex ratio at births, cf. § 4.2. Its generalization is the multinomial 
distribution with each trial concerning a random variable taking 
several values rather than a random event. It is therefore described by 
a multinomial  
 
    (a + b + c + …)n. 
 

Pertinent qualitative reasoning without mentioning probabilities 
were due to Maimonides (Rabinovitch 1973, с. 74): 

Among contingent things some are very likely, other possibilities are 
very remote, and yet others are intermediate. 

   2.2.4. The normal distribution. The function 
 

    
2

2

1 ( )
φ( ) exp[ ],

2σσ 2π

x a
x

−
= −  – ∞ < х < ∞,                       (2.4) 

 
is the density of the normal distribution. The stochastic meaning of the 
two of its parameters, а and σ > 0, is described in § 2.4.2. The 
corresponding distribution function is 
 

    
2

2

1 ( )
( ) = exp[ ] .

2σσ 2π

z x a
F z dx

−∞

−
−∫  

 
Let а = 0 and σ = 1, then, in the standard case,  

 

    
21

( ) = exp[ ] .
22π

z x
F z dx

−∞

−∫                                            (2.5) 

 
It is however more convenient to tabulate the function  
 
 

    
2

0

1
( ) = exp[ ] .

22π

z x
F z dx−∫                                           (2.6) 

 
    Indeed, the integrand in formula (2.5) is an even function so that the 
integrals (2.5) within (– ∞; 0] and [0; + ∞), are equal to each other and 
equal to 1/2; within, say, (– ∞; – 1] the integral (2.5) is equal to the 
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difference between 1/2 and integral (2.6) at z = 1. The value of the 
function (2.6) at z ≈ 3 is already 0.499; if z → + ∞ its value is 1/2, or, 
which is the same, within infinite limits its value is unity, as it should 
be. 

The utmost importance of the normal distribution follows from the 
so-called central limit theorem (CLT), a term due to Polya (1920): 

The sum of a large number of independent random variables, each 
of them only to a small degree influencing that sum, is distributed 
normally. 
    It was Pearson, who, in 1893, definitively introduced the term 
normal distribution in order to avoid naming it after Gauss (1809) or 
Laplace who extensively applied it after non-rigorously proving 
several versions of the CLT. Galton applied that term before Pearson, 
but the first to suggest it was Peirce (1873, p. 206). 
    De Moivre (§ 4.2) considered the appearance of the normal law 
from a binomial distribution and thus proved a particular case of the 
CLT. Many authors not to mention Laplace had proved various 
versions of the CLT, but its rigorous proof was due to Markov and 
Liapunov, not even to Chebyshev. 

Denote the probabilities of a male and female births by р and q and 
neglect all the other possible births so that р + q = 1. Then the 
probabilities of some number of male births (or of this number 
remaining within some bounds) can be calculated by means of the 
normal distribution. This was indeed De Moivre’s immediate aim. 
From 1711 onward the parameter p/q became an object of numerous 
studies (§ 4.2).  
    About 1874 Galton (1877) invented the so-called quincunx, a device 
for visually demonstrating the appearance of the normal distribution as 
the limiting case of the uniform law. Shot was poured through several 
(say, 20) lines of pins, and each shot 20 times deviated with the same 
probability to the right or to the left and finally fell on the floor of the 
device. Thus appeared a normal curve. A special feature of that device 
was that it showed that the normal law was stable (§ 6.1). 
    2.2.5. The Poisson distribution. The law of this discrete distribution 
(Poisson 1837, p. 205) can be written down as 
 

    Р(х) = 
!

x
aa

e
x

− , х = 0, 1, 2, … 

 
The sum of the probabilities Р(х) over all the infinite set of the values 
of х is 1, as it should be. Indeed, е–а is the common multiplier and 
 

    
2 3

0

(1 ...)
! 1! 2! 3!

x
a a

x

a a a a
e e

x

∞
− −

=

= + + + +∑ = e–aea = 1. 

 
    Here is an interesting pattern leading to the Poisson distribution: 
points are entered on an interval according to a uniform distribution, 
one by one, independently from each other. It occurs that the number 
of points situated on some part of that interval obeys the Poisson 
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distribution. Example: the number of calls entering an exchange. Its 
functioning can therefore be stochastically studied. 

Suppose an exchange serves 300 subscribers and the hourly 
probability of one of them speaking is р = 0.01. What will be the 
probability of four or more independent calls made during an hour? 
The conditions for the appearance of the Poisson distribution are met, 
and а = pn = 3. Then 
 

    P(ξ ≥ 4) = 
0 !

x
a

x

a
e

x

∞
−

=

∑ – P(ξ = 0) – P(ξ = 1) – P(ξ = 2) – P(ξ = 3). 

 
    The sum is unity (see above) and the other terms are easily 
calculated. 

Another example: the distribution of the stars over the sky (Michell 
1767). If they are distributed uniformly (on a sphere rather than 
interval), some of them will be very close to each other (double, 
triple, … stars). Even then many such stars had been known, and 
Michell questioned whether this occurred randomly or not. What is the 
probability that two stars out of all of them are situated not more than 
1° apart? 

Newcomb (1860, pp. 427 – 429) applied the Poisson distribution to 
derive the probability that some small part of the celestial sphere 
contains s stars out of n uniformly distributed across the celestial 
sphere. In a sense, it is this distribution that best describes a random 
arrangement of many points. Its parameter is obviously a. 
    In 1898 Bortkiewicz introduced his law of small numbers, and for a 
few decades it had been considered as the main law of statistics. 
Actually, it only popularized the then yet little known Poisson 
distribution which is what Kolmogorov (1954) stated but did not 
justify his opinion and I (2008) proved that he was correct. 
Botkiewicz’s contribution is deservedly forgotten although mostly 
owing to previous more particular criticisms. 
    2.2.6. The hypergeometric distribution. It is important for 
acceptance inspection of mass production, see below. Consider the 
Additional problem No. 4 (Huygens 1657) first formulated by Pascal. 
Given, 12 counters, 4 of them white (as though defective). Required is 
the probability that 3 white counters occur among 7 counters drawn 
without replacement.  

Well, actually the entire batch should be rejected, but nevertheless I 
go ahead following Jakob Bernoulli (1713, part 3, problem 6), 
although applying the hypergeometric distribution. Huygens, it ought 
to be added, provided the answer, but not the solution. Denote the 
conditions of the problem: N = 12, M = 4, n = 7, m = 3. Simple 
combinatorial reasoning lead to a formula which is indeed the formula 
of that distribution: 
 

    (ξ ) .m n m n
M N M NP m C C C−

−= = ÷  

 
2.3. The Main Characteristics of Distributions 
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    2.3.1. Expectation. For a discrete random variable ξ it is the sum of 
the products of all its values х1, х2, …, хn by their probabilities р1, 
р2, …, рn: 
 

    1 1 2 2

1 2

...
E

...
n n

n

p x p x p x

p p p
ξ

+ + +
=

+ + +
.                                          (2.7) 

 
The denominator is naturally unity. Laplace (1812/1886, p. 189) added 
the adjective mathematical to expectation so as to distinguish it from 
the then topical but now forgotten moral expectation (see below). This 
adjective is regrettably still applied in French and Russian literature.  
    Expectation can be considered a natural ersatz of a random variable, 
as though its mean value; in the theory of errors, it corresponds to the 
generalized arithmetic mean. Denote observations by х1, х2, …, хn, and 
their weights (worth) by р1, р2, …, рn. By definition their mean is 
 

    1 1 2 2

1 2

...
,

...
n n

n

p x p x p x
x

p p p

+ + +
=

+ + +
                                           (2.8а) 

 
although the denominator is not 1 anymore. If all the weights are 
identical 
 

    1 2 ...
.nx x x

x
n

+ + +
=                                                       (2.8b) 

 
In § 2.6 I mentioned the selection of bounds covering a measured 

constant as practised by ancient astronomers. Here, I note that they did 
not choose any definite estimator, such as the arithmetic mean; they 
had applied qualitative considerations and thought about convenience 
of subsequent calculations. For observations corrupted by large errors 
this tradition makes sense. 

So when had that mean become the standard estimator? While 
selecting a mean of four observations, Kepler (1609/1992, p. 200/63) 
chose a generalized mean (2.8a) rather than the letter of the law, i. e., 
as I understand him, rather than the mean (2.8b), see Sheynin (1993b, 
p. 186).  

The mean (2.8a) had sometimes been applied with posterior weights 
pi, equally decreasing on either side of the middle portion of the 
observations. This choice is hardly useful since, first, these weights are 
necessarily subjective; and, second, since that estimator only provided 
a correction of the mean (2.8a) for the unevenness of the sample 
density of probability of the observational errors.  
    The expectation (2.7) and the arithmetic mean (2.8) nevertheless 
essentially differ. The former is a number since it presumably contains 
all the values of a random variable, whereas the latter is compiled from 
the results of observations unavoidably corrupted by random errors (as 
well as by systematic errors, but now we do not need them) and is 
therefore a random variable as well, as though a sample value of the 
unknown expectation. Its error ought to be estimated and a similar 
remark will also apply to other characteristics of a random variable. 
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At the same time the arithmetic mean is assumed as the value of the 
measured constant (§ 6.2). Note that notation x  for the values of xi is 
standard. 
    For a continuous random variable the expectation is expressed by 
the integral 
 

    Еξ = φ( ) .
b

a

x x dx∫                                                            (2.9) 

 
Points a and b are the extreme points of the domain of the density φ(х) 
and possibly а = – ∞,  and b = ∞. 

Expectation had begun to be applied before probability was. It first 
appeared, apparently being based on intuitive and subjective chances 
and in everyday life rather than in science. Maimonides (Rabinovitch 
1973, p. 164): A marriage settlement [insurance for a woman against 
divorce or death of husband] of 1000 zuz can be sold at a present value 
of 100, [but] if the face value were 100 it could not be sold for 10 but 
rather for less. Large (though not more likely) gains had been 
considered preferable, and the same subjective tendency is existing 
nowadays (and the organizers of lotteries mercilessly take advantage 
of it). Similar ideas not quite definite either and again connected with 
insurance appeared in Europe a few centuries later (Sheynin 1977, pp. 
206 – 209). 

The theory of probability which officially originated in 1654, in the 
correspondence of Pascal and Fermat, effectively applied expectation. 
Here is one of their main problems which they solved independently 
from each other. Gamblers А and В agree to play until one of them 
scores 5 points (not necessarily in succession) and takes both stakes. 
For some reason the game is interrupted when the score was 4:3 to A. 
So how should they share the stakes?  
    Even then that problem was venerable; there are indications that a 
certain mathematician had solved it at least in a particular case. Note 
that sharing the stakes proportionally to 4:3 would have been fair when 
playing chess, say, i. e., when the gamblers’ skill is decisive. In games 
of chance, however, everything depends on chance and the past cannot 
influence the future (cf. § 1.2.2). 

Here is the solution. Gambler A has probability р1 = 1/2 (Pascal and 
Fermat kept to chances) of winning the next play; he can also lose it 
with the same probability but then the score will equalize and the 
stakes should be equally shared. A’s share (the expectation of his gain) 
will therefore be 1/2 + 1/4 = 3/4 of both stakes. The expectation of the 
second gambler is therefore 1/4 of both stakes and it could have been 
calculated independently. 
    It was a man about town, De Méré, who turned Pascal’s attention to 
games of chance (Pascal 1654/1998, end of Letter dated 29 July 1654). 
He was unable to understand why the probability of an appearance of a 
six in 4 casts of a die was not equal to that of the appearance of two 
sixes in 24 casts of two dice as it followed from an old approximate 
rule. Here, however, are those probabilities:  
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    Р1 = 1 – (5/6)4 = 0.518, Р2 = 1 – (35/36)24 = 0.492. 
 

So De Méré knew that gamblers had noted a difference of 
probabilities equal to 0.026. Cf. a similar remark made by Galileo (§ 
1.1.1).  

Huygens (1657) published a treatise on calculations in games of 
chance. He formally introduced the expectation in order to justify the 
sharing of stakes and the solutions of other problems. He substantiated 
the expediency of applying it for estimating a random variable (a 
random winning) by reasonable considerations. 

Jakob Bernoulli (1713, part 1) however suggested a much simpler 
justification. Here is a quotation from Huygens and Bernoulli’s 
reasoning (his part 1 was a reprint of Huygens complete with 
important comments). 

Huygens, Proposition 3. Having р chances to get а and q chances to 
get b and supposing that all these chances are the same, I obtain 
 

    .
pa qb

p q

+

+
                                                                           (2.10) 

 
Since р and q are chances rather than probabilities, their sum is not 
unity as it was in formula (2.7). And here is Bernoulli. Suppose there 
are (р + q) gamblers, and each of р boxes contains sum а, and each of 
q boxes contains b. Each gambler takes a box and all together get (ра 
+ qb). However, they are on the same footing, should receive the same 
sum, i. e., (2.10). 

As stated in § 1.2.1, a mathematical theory cannot be based on boxes 
or gamblers, and even De Moivre introduced expectation 
axiomatically, without justifying it. And so it is being introduced 
nowadays, although Laplace (1814/1886, p. XVIII) just stated that it is 
la seule equitable. 
    Several centuries of applications have confirmed the significance of 
the expectation although in 1713 Nikolaus Bernoulli, in a letter to 
Montmort published by the latter (Montmort 1708/1713, p. 402) 
devised a game of chance in which it did not help at all.  
    Gambler A casts a die … However, the die was very soon replaced 
by a coin. And so, if heads appears at once, B pays A 1 écu; if heads 
only appears at the second toss, he pays 2 écus, 4 écus if only at the 
third toss etc. Required is the sum which B ought to receive 
beforehand. 
    Now, A gets 1 écu with probability 1/2, 2 écus with probability 1/4, 
4 écus with probability 1/8 etc and the expectation of his gain is 
 
    1·(1/2) + 2·(1/4) + 4·(1/8) + … = (1/2) + (1/2) + (1/2) + … = ∞. (2.11) 
 
However, no reasonable man will agree to pay B any considerable sum 
and hope for a large (much less, an infinite) gain. He will rather decide 
that heads will first occur not later than at the sixth or seventh toss and 
that he ought to pay beforehand those 1/2 écus not more than six or 
seven times; all the rest infinite terms of the series (2.11) will therefore 
disappear.  
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    Buffon (1777, § 18) reported that 2048 such games resulted in A’s 
mean gain of 4.9 écus and that only in 6 cases they consisted of 9 
tosses, of the largest number of them. His was the first statistical study 
of games of chance. On a much greater scale Dutka (1988) conducted 
a similar investigation by applying a computer.  

This paradox continued to interest mathematicians up to our time, 
but it was Condorcet (1784, p. 714) who left the most interesting 
remark: one game, even if infinite, is still only one trial; many games 
are needed for stochastically considering them. Freudenthal (1951) 
independently repeated this remark and additionally suggested that 
before each game the gamblers ought to decide by lot who will pay 
whom beforehand.  

A similar statement about neglecting low probabilities holds for any 
game of chance (and any circumstance in everyday life). If there are 
very large gains in a lottery available with an extremely low 
probability (which the organizers will definitely ensure), they ought to 
be simply forgotten, neglected just like the infinite tail of the series 
(2.11). 

But then, how low should a neglected probability be? Buffon (1777, 
§ 8), issuing from his mortality table, suggested the value 1/10,000, the 
probability of a healthy man 56 years old dying within the next 24 
hours. What does it mean for the Petersburg game? We have 
 
    1/2n = 1/10,000, 2n = 10,000, nlg2 = 4 and n ≈ 13.3.  
 
    Even that is too large: recall Buffon’s experiment in which the 
maximal number of tosses only amounted to 9. This result also means 
that 1/10,000 was too low; we may often neglect much higher 
probabilities and, anyway, a single value for a neglected probability 
valid in any circumstances should not be assigned at all. And some 
events (the Earth’s collision with a large asteroid) should be predicted 
with a probability much higher than (1 – 1/10,000). It is not however, 
clear how to prevent such global catastrophes. 

Reader! Do you think about such probabilities when crossing the 
road? 

While attempting to solve the paradox of the invented game, Daniel 
Bernoulli (1738) introduced moral expectation (but not the term itself). 
He published his memoir in Petersburg, and thus appeared the name 
Petersburg game. In essence, he thought that the real value of a 
gambler’s gain is the less the greater is his fortune. He applied his 
novelty to other risky operations and for some decades it had been 
widely appraised (but not implemented in practice). At the end of the 
19th century economists had developed the theory of marginal utility 
by issuing from moral expectation. 
    2.3.1-1. The properties of the expectation. 1) Suppose that ξ = c is 
constant. Then 

 

    Ес = φ( ) φ( ) .
b b

a a

c x dx c x dx c= =∫ ∫  
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The expectation of a constant is that very constant. 
    2) The expectation of a random variable аξ is 
 

    Еаξ = φ( ) Eξ.
b

a

a x x dx a=∫   

 
When multiplying a random variable by a constant its expectation is 
multiplied by that very constant.  

3) Two (or more) random variables ξ and η are given; their densities 
are φ(x) and η(y) and the expectation of their sum is sought. It is equal 
to the double integral 
 

Е(ξ + η) = ( )φ( )ψ( )
b d

a c

x y x y dxdy+∫ ∫ = 

                 φ( )ψ( )  φ( )ψ( ) .
b d b d

a c a c

x x y dydx y x y dxdy+∫ ∫ ∫ ∫  

 
Here, c and d are the extreme points of the domain of the second 
function and a and b have a similar meaning (see above). Notation η(y) 
instead of η(x) does not in essence change anything but 
transformations become clearer.  
    The first integral can be represented as 
 

    ψ( ) φ( )
d b

c a

y dy x x dx =∫ ∫ Еξ, 

 
since the integral with respect to y is unity. Just the same, the second 
integral is Еη and therefore 
 
    Е(ξ + η) = Еξ + Еη. 
 
    The expectation of a sum of random variables is equal to the sum of 
the expectations of the terms. A similar statement can be proved about 
the difference of random variables: its expectation is equal to the 
difference of the expectations of the terms.  
    Note however that differences in such theorems (not only in the 
theory of probability) are usually not mentioned since by definition 
subtraction means addition of contrary magnitudes; thus, а – с ≡ а + 
(– с). 

4) Without proof: the expectation of a product of two independent 
random variables equals the product of their expectations:  
 
    Е(ξη) = Еξ·Еη. 
 
This property is immediately generalized on a larger number of 
random variables. 
    All the properties mentioned above also take place for expectations 
of discrete random variables.  



 

69 
 

    2.3.2. Variance is the second main notion characterizing 
distributions of random variables, their scattering. An inscription on a 
Soviet matchbox stated: approximately 50 matches. But suppose that 
actually one such box contains 30 matches, another one, 70. The mean 
is indeed 50, but is not the scattering too great? And what does 
approximately really mean? 

Suppose that only some values х1, х2, …, хn of a random variable ξ 
(a sample of size n) are/is known. Then the sample variance of ξ is 
 

    s2 = 

2

1

( )

.
1

n

i
i

x x

n
=

−

−

∑
                                                         (2.12) 

 
It is also called empirical since the values of хi are the results of some 
experiment or trial. 

Why function (2.12) is chosen as a measure of scattering, and why 
its denominator is (n – 1) rather than n? I attempt at explaining it, but 
first I add that the variance (not sample variance) of the same ξ, varξ, 
of a discrete or continuous variables is, respectively, 

 

    2 2 2
ξ

1

( Eξ) ,  σ ( Eξ) φ( ) ,
bn

i i
i a

p x x x dx
=

− = −∑ ∫                    (2.13) 

 
where a, b and φ(х) have the same meaning as in formula (2.9). 

It was Gauss (1823) who introduced the variance as a measure of 
the scattering of observations. Its choice, as he indicated, is more or 
less arbitrary, but such a measure should be especially sensitive to 
large errors, i. e. should include (х – Еξ) raised to some natural power 
(2, 3, …), and remain positive which excludes odd powers. Finally, 
that measure should be as simple as possible which means the choice 
of the second power of that binomial. Actually, Gauss (1823, §§ 37 – 
38) had to determine only the sample variance and to apply the 
arithmetic mean instead of the expectation. Below, I will say more 
about the advantages of the variance.  

Suppose that хi, i = 1, 2, …, n, are the errors of observation, then the 
sample variance will be 
 
    [xx]/n 
 
where [xx] is Gauss’ notation denoting the sum of the squares of the хi. 
These errors are however unknown, and we have to replace them by 
the deviations of the observations from their arithmetic mean. 
Accordingly, as Gauss proved in the sections mentioned above, the 
sample variance ought to be represented by formula (2.12). He (1821 – 
1823/1887, p. 199) remarked that that change was also demanded by 
the dignity of science.  

But suppose that a series of observations is corrupted by 
approximately the same systematic error. Then those formulas will not 
take it into considerations, will therefore greatly corrupt reality: the 
scattering will not perhaps be large although the observations deviated 
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from the measured constant. Gauss himself had directly participated in 
geodetic observations, therefore did not trust his own formulas 
(because of the unavoidable systematic errors) and measured each 
angle until becoming satisfied that further work was useless. Extracts 
from his field records are published in vol. 9 of his Werke, pp. 278 – 
281. 
    Not only the sample variance, but a square root of it (not only s2, but 
s) is applied as well. That s is called standard deviation, or, in the 
theory of errors, mean square error. 

And now we can specify statements similar to approximately 50 
matches in a box. Carry out a thankless task: count the matches х1, 
х2, …, х10 in 10 boxes, calculate their mean x  (their sample mean, 
since the number of such boxes is immense), the deviations (х1 – x ), 
(х2 – x ), …, (х10 – x ), and finally the sample variance (or standard 
deviation). A deviation of some xi from the approximately promised 
value that exceeds two mean square errors is already serious. 
    The expectation of a random variable can be infinite, as in the case 
of the Petersburg game, and the same can happen with the variance. 
Example. A continuous random variable distributed according to the 
Cauchy law 
 

    φ(x) = 
2

2
,

π(1 )x+
 0 ≤ x < ∞.                                          (2.14) 

 
Note that equalities such as х = ∞ should be avoided since infinity is 
not a number but a variable. Also bear in mind that the distribution 
(2.14) first occurred in Poisson (1824, p. 278). 
    Now, the variance. It is here 
 

    varξ = 2

2
0

2 1

π 1
x dx

x

∞

⋅
+∫ = 

2
0 0

2 1
1   

π 1
dx dx

x

∞ ∞ 
⋅ − 

+ 
∫ ∫  

 
The second integral is 
 

    ] 0arctg  x ∞  = π/2,  

 
but the first does not exist (and the variance is infinite): 
 

    ] 0

0

 dx x
∞

∞=∫  → ∞. 

 
The arithmetic mean of observations, if they are so unsatisfactory 

that their errors obey the Cauchy distribution, is not better than an 
isolated observation. Indeed, according to formula (2.16) from § 2.3.2-
2 the variance of the mean of n observations is n times less than the 
variance of a single observation, that is, n times less than infinity and 
is therefore also infinite.  
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2.3.2-1. A second definition of variance. Definition (2.13b) can be 
written as 
 

    varξ = 2φ( )
b

a

x x dx∫  – 2 )Eξφ(
b

a

x x dx∫  + 2ξ) φE .(( )
b

a

x dx∫   

 
Now, Eξ is constant and can be separated: 

 

    varξ = 2φ( )
b

a

x x dx∫  – 2Eξ )φ(
b

a

x x dx∫  +(Eξ)2 .φ( )
b

a

x dx∫   

 
    By definition, the first integral is Eξ2, and the second, Eξ. The third 
integral is unity according to the property of the density. Therefore, 
 
    varξ = Eξ2 – 2(Eξ)2 + (Eξ)2 = Eξ2 – (Eξ)2.                       (2.15) 
 
    This formula is usually assumed as the main definition of variance. 
    2.3.2-2. The properties of density. 

1) The density of a sum of independent random variables. By the 
second definition of variance we have 

 
    var(ξ + η) = E(ξ + η)2 – [E(ξ + η)]2 =  
    Eξ2 + 2E(ξη) + Eη2 – [(Eξ)2 + 2EξEη + Eη2].  
 
Then, according to the fourth property of expectation of independent 
random variables (§ 2.3.1-1),  
 
    E(ξη) = Eξ·Eη 
 
so that 
 
    var(ξ + η) = [Eξ2 – (Eξ)2] + [Eη2 – (Eη)2] = varξ + varη.  
 
    The variance of a sum of independent random variables is equal to 
the sum of their variances.  

2) Corollary: Variance of the arithmetic mean. Given observations 

х1, х2, …, хn and their arithmetic mean (2.8b) 
 

    1 2 ... nx x x
x

n

+ + +
=  

 
is calculated. Formula (2.12) provides the sample variance of 
observation хi, but now we need the variance of the mean. By the 
theorems on the variance of the sum of random variables (the results of 
observation are random!) and on the product of a random variable by a 
constant (here, it is 1/n), we obtain at once a simple but important 
formula 
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    var
2 2 2

1 2( ) ( ) ... ( )
.

( 1)
nx x x x x x

x
n n

− + − + + −
=

−
                  (2.16) 

 
The variance of the arithmetic mean of n observations is n times less 

than the variance of each of them. 
Here, like in formula (2.12), we certainly assume that the 

observations are possible values of one and the same random variable.  
3) The variance of a linear function of a random variable. Suppose 

that η = а + bξ is a linear function of random variable ξ (and therefore 
random as well just like any function depending on a random variable). 
The variance of ξ, varξ, is known and required is varη. Such problems 
occur often enough. 

By formula (2.15) 
 
    varη = Eη2 – (Eη)2 = E(a + bξ)2 – [E(a + bξ)]2. 
 
    The first term is 
 
    E(a2 + 2abξ + b2ξ2) = a2 + 2abEξ + b2Eξ2.  
 
The second term is 
 
    [Ea + E(bξ)]2 = (Ea)2 + 2EaE(bξ) + (Ebξ)2 = a2 + 2abEξ + b2(Eξ)2  
 
and their difference is b2[Eξ2 – (Eξ)2]. 
    According to formula (2.15) varη = b2var ξ. 

And so, an addition of a constant to a random variable does not 
change the variance, and, when multiplying such a variable by a 
constant coefficient, its variance is multiplied by the square of that 
constant: 
 
    var(a + ξ) = varξ, var(bξ) = b2varξ. 
 

2.4. Parameters of Some Distributions 
    In § 2.2 we have determined the parameters of a few distributions, 
but the binomial and the normal laws are still left. 

2.4.1. The binomial distribution. Suppose that µk is a random 
number of the occurrences of an event in the k-th trial, 0 or 1. If the 
probability of its happening is р, then 
 
    Eµk = 1·p + 0·q = p. 
 

In a series of n trials that event occurs 
 
    (µ1 + µ2 + … + µn) = µ times, Eµ = Eµ1 + Eµ2 + … + Eµn = pn.  
 
    Then, see formula (2.15), 
 

    varµk = E 2µk  – (Eµk)
2. 
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However, 2µk takes the same values, 0 and 1, as µk, and with the same 

probabilities, p and q, so that 
 
    varµk = p – p2 = p(1 – p) = pq, varµ = varµ1 + varµ2 + … + varµn = pqn. 
 

The magnitudes Eµ and varµ characterize the frequency µ. Recall 
that in § 2.2.3 we discussed the parameters of the binomial distribution 
proper. 

2.4.2. The normal distribution. It follows from formula (2.4) that the 
form of the normal curve depends on the value of σ; the less it is, the 
more is the area under that curve concentrated in its central part. The 
values of the random variable ξ close to the abscissa of the curve’s 
maximum become more probable, the random variable as though 
shrinks. 

At а = 0 the graph of the density of the normal distribution becomes 
symmetrical with respect to the y-axis so that а is the location 
parameter. Note that this term is applied to any densities whose 
formula contains the difference х – а. 

The analytical meaning of both parameters is very simple: 
 
    а = Еξ, σ2 = varξ.                                            (2.17а, 2.17b) 
 
We will prove (2.17a) and outline the proof of (2.17b). We have 
 

    Еξ = 
2

2

1 ( )
exp[ ] .

2σσ 2π

x a
x dx

∞

−∞

−
−∫  

 
Now, х = [(х – а) + а] and the integral can be written as 
 

    
2 2

2 2

1 ( ) ( )
{ ( )exp[ ] exp[ }.

2σ 2σσ 2π

x a x a
x a dx a dx

∞ ∞

−∞ −∞

− −
− − + −∫ ∫  

 
In the first integral, the integrand is an odd function of (х – а), 

which, just as х, changes unboundedly from – ∞ to ∞. This integral 
therefore disappears (the negative area under the x-axis located to the 
left of the y-axis is equal to the positive area above the x-axis located 
to the right of the y-axis). 
    Then, in the second integral, let 
 

    ,  σ 2 ,
σ 2

x a
z dx dz

−
= =                                                 (2.18) 

 
so that it is equal to 
 

    2exp( ) σ 2.z dz
∞

−∞

− ⋅∫  
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Euler was the first to calculate it; without the multiplier σ√2 it is equal 
to √π. Finally, taking into account all three multipliers,  

a, σ√2 и 1/σ 2π , we arrive at а, QED. 
    Now the formula (2.17b): 
 

    varξ = E(ξ – Eξ)2 = 
2

2

2

1 ( )
( ) exp[ ] .

2σσ 2π

x a
x a dx

∞

−∞

−
− −∫  

 
We have applied here the just derived formula (2.17a). Now we ought 
to introduce a new variable, see (2.18), and integrate by parts. 

2.5. Other Characteristics of Distributions 
2.5.1. Those replacing expectation. For a sample (sometimes the 

only possibility) those characteristics replace the arithmetic mean or 
estimate the location of the measured constant in some other way.  

2.5.1-1. The median. Arrange the observations х1, х2, …, хn of a  
random variable in an ascending order and suppose that the thus 
ordered sequence is х1 ≤ х2 ≤ … ≤ хn. Its median is the middlemost 
observation, quite definite for odd values of n. Suppose that n = 7, the 
median will then be х4. For even values of n the median will be the 
halfsum of the two middle terms; thus, for n = 12, the halfsum of х6 
and х7.  

For continuous random variables with density φ(х) the median is 
point х0 which divides the area under the density curve into equal parts: 
 

    
0

0

φ( ) φ( ) 1/ 2.
x b

a x

x dx x dx= =∫ ∫  

 
In other words, the median corresponds to equality F(х) = 1/2. To 
recall: the entire area under the density curve is unity; а and b are the 
extreme points of the domain of φ(х). 
    For some densities, as also when the density is unknown, the 
median characterizes a random variable more reliably then the 
arithmetic mean. The same is true if the extreme observations possibly 
are essentially erroneous. Indeed, they can considerably displace the 
mean but the median will be less influenced. 

Mendeleev (1877/1949, p. 156), who was not only a chemist, but an 
outstanding metrologist, mistakenly thought that, when the density 
remained unknown, the arithmetic mean ought to be chosen. 

Continuous distributions are also characterized by quantiles which 
correspond to some probabilities р, that is, points х = хр  for which F(x) 
= р, so that the median is a quantile corresponding to р = 1/2. Its exact 
location can be not quite certain, cf. the case of the median.  

2.5.1-2. The mode. This is the point (or these are the points) of 
maximal density. It (one of them) can coincide with the arithmetic 
mean. Accordingly, the density is called unimodal, bimodal, … or 
even antimodal (when a density has a point of minimum). In case of 
discrete random variables the mode is rarely applied.  

2.5.1-3. The semi-range (mid-range). This is a very simple but 
unreliable measure since the extreme values can be considerably 
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erroneous and no other observations are taken into account. It had been 
widely applied in the 18th century for estimating mean monthly values 
of meteorological elements (for example, air temperatures). It was 
certainly easier to calculate the mid-range than the mean of 30 values. 
Interestingly, Daniel Bernoulli (1778, § 10) indicated that he had 
found it to be less often wrong than [he] thought …  

2.5.2. Characteristics replacing the variance 

    2.5.2-1. The range. The (sample) range is the difference between the 
maximal and the minimal measured values of a random variable, cf. § 
2.5.1-3. The not necessarily equal differences (хn – x ) and ( x  – х1) 
are also sometimes applied. All these differences are unreliable. In 
addition to the remarks in that subsection I note that they can well 
increase with the number of observations; there can appear a value less 
than х1 or larger than хn. 

It is certainly possible to apply instead the fractions (хn – х1)/n, (хn – 
x )/n and ( x  – х1)/n. The denominator coincides with the possibly 
increasing number of observations but the numerator changes 
uncertainly. All the measures mentioned here concern a series of 
observations rather than a single result. 

2.5.2-2. The mean absolute error. It, just as the probable error (see 
2.5.2-3), characterizes a single observation. Denote observations by х1, 
х2, …, хn, then the mean absolute error will be 

 

    
1

| | .
n

i
i

x n
=

÷∑  

 
It had been applied, although not widely, when treating observations.  

2.5.2-3. The probable error. It was formally introduced by Bessel 
(1816, pp. 141 – 142) as a measure of precision, but even Huygens 
(1669/1895), in a letter to his brother dated 28 Nov. 1669, mentioned 
the idea of a probable value of a random variable. Discussing the 
random duration of human life, he explained the difference between 
the expected interval (the mean value derived from data on many 
people) and the age to which a person with equal probabilities can live 
or not.  
    Both durations of life should be calculated separately for men and 
women, which in those times was not recognized. Women generally 
live longer and this possibly compensates them for a life more difficult 
both in the biological and social sense but they seem to recall this 
circumstance rather rarely. 
    Bessel had indeed applied that same idea, repeatedly found in 
population statistics and, for example, when investigating minor 
changes in the period of the swings of a pendulum (Daniel Bernoulli 
1780). According to Bessel, a probable error of an observation is such 
that with equally probability will be either less or larger than the 
really made error. 

For symmetric distributions the probable error is numerically equal 
to the distance between the median and the qauntile corresponding to р 
= 1/4 or 3/4; it is the probability that an observation thus deviates in 
either side from the median. For the normal distribution that distance is 
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0.6745σ, and many authors had understood (still understand?) that 
relation as a universal formula or had tacitly thought that they have 
dealt with the normal distribution.  
    Moreover, I am not sure that there exists a generally accepted 
definition of the probable error suitable for asymmetric distributions, i. 
e., when the distances from the median to the quantiles р = 1/4 and 3/4 
do not coincide. If in such cases the probable error is still meaningful, 
it is perhaps permissible to say that it is equal to half the distance 
between those quantiles. 

The idea of the probable error is so natural that that measure became 
universally adopted whereas, perhaps until the second half of the 20th 
century, the mean square error had been all but forgotten. In the third 
(!) edition of his serious geodetic treatise Bomford (1971, pp. 610 – 
611) reluctantly abandoned it and went over to the mean square error. 

So why is the latter better? We may bear in mind that the probable 
error is connected with the median which is not always preferable to 
the arithmetic mean. Then, it, the mean square error (or, rather, the 
variance), is the most reliable measure. The variance (we may only 
discuss the sample variance) is a random variable, it therefore has its 
own sample variance. True, as mentioned above, a similar remark is 
applicable to any sample measure (in particular, to the arithmetic 
mean). However, unlike other measures of scattering, the variance of 
the variance is known, first derived by Gauss (1823, § 40). True, he 
made an elementary mistake corrected by Helmert (1904), then 
independently by Kolmogorov et al (1947).  

One circumstance ought to be however indicated. Practically applied 
is not the variance, but its square root, the standard deviation (the 
mean square error); and if the variance of the variance is a, it does not 
at all mean that the variance of the latter is √а; for that matter, it is 
only known for the normal distribution, see below. Again, the sample 
variance is an unbiased estimate of the general, of the population 
variance which means that its expectation is equal to that variance, 
whereas the sample standard deviation has no similar property. Recall 
that Gauss (§ 2.3.2) remarked that the formula for the sample variance 
had to be changed; now I additionally state that he had thus 
emphasised the essential role of unbiasedness although currently it is 
much less positively estimated. 

2.5.2-4. An indefinite indication of scattering. We sometimes meet 
with indications such as This magnitude is equal to а ± c. It can be 
understood as … equal to any value between a – с and а + с, but it is 
also possible that с is not the maximal but, for example, the probable 
error. And, how was that c obtained? We have approached here the 
important subject of interval estimation. 

2.6. Interval Estimation 
Denote some parameter of a function or density by λ and suppose 

that its sample value λ̂  is obtained. Required is an estimate of the 

difference | λ̂  – λ|. Its interval estimation means that, with α and δ 
being indicated, 
 

    Р(| λ̂  – λ| < δ) > 1 – α. 
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Now, we may state that the confidence interval ˆ ˆ[ δ;  δ] λ λ− +  

covers the unknown λ with confidence probability (confidence 
coefficient) (1 – α). This method of estimation is reasonable if α is 
small (for example, 0.01 or 0.05, but certainly much larger than the 
Buffon value 1/10,000), and such that δ is also sufficiently small. 
Otherwise the interval estimation will show that either the number of 
observations was too small or that they were not sufficiently precise. 
Note also that in any case other observations can lead to other values 

of λ̂  and δ.  
Suppose that a constant A is determined by observations. Then, 

adopting simplest assumptions (Bervi 1899), we may assume that the 
obtained range [x1; xn] covers it with probability 

 
    P(x1 ≤ A ≤ xn) = 1 – 1/2n–1. 
 
I indicated the deficiency of this trick in § 2.5.1-3. Similar conclusions 
were made by astronomers in the antiquity (Sheynin 1993b, § 2.1). 
Issuing from all the existing observations (not only his own) the 
astronomer selected some bounds (а and b) and stated that a ≤ A ≤ b. 
Probabilities had not been mentioned but the conclusion made was 
considered almost certain. 

When determining a constant, any measure of scatter may be 
interpreted as tantamount to a confidence characteristic. Indeed, 
suppose that the arithmetic mean x  of observations is calculated and 
its mean square error m determined. Then the probability P( x  – m ≤ 
x  ≤ x  + m) can be established by statistical tables of the pertinent law 
of distribution as P(0 ≤ x  ≤ x  + m) – P(0 ≤ x  ≤ x  – m); the 
difference between strict and non-strict inequalities can be neglected. 
So exactly that P is indeed the confidence probability and [ x  – m; x  
+ m ], the confidence interval. 

2.7. The Moments of a Random Variable 
    This subject can be quite properly included in § 2.6, but it deserves 
a separate discussion. Moments characterise the density and can 
sometimes establish it. 

The initial moment of order s of a discrete or continuous random 
variable ξ is, respectively, 
 

    αs(ξ) = ( ), φ( ) .s s
s

x

x p x x x dxν =∑ ∫                                  (2.19) 

 
In the first case, the summing is extended over all the values of х 
having probabilities р(х) whereas the integral is taken within the 
extreme points of the domain of the known or unknown density φ(х) of 
the continuous random variable. 
    Also applied are the central moments 
 

    µ s(ξ) = ( Eξ) ( ),  µ (ξ) = ( Eξ) φ( ) .s s
i i s

i

x p x x x dx− −∑ ∫    (2.20) 
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Both these formulas (the integral is taken between appropriate bounds) 
can be represented as  
 
    µ s(ξ) = E(ξ – Eξ)s. 
 
    Sample (empirical) initial moments for both discrete and continuous 
random variables certainly coincide: 
 

    ms(ξ) =  ,s
i

i

x n÷∑                                                        (2.21) 

 
where n is the number of measured (observed) values of ξ. 
    The central sample moments are 
 

    ms(ξ – 
1

) ( ) .s
ix x x

n
= −∑  

 
    The measured (observed) values are often combined within certain 
intervals or categories. Thus (Smirov & Dunin-Barkovski 1959/1969, 
§ 1 in Chapter 3), 70 samples containing 5 manufactured articles each 
were selected for checking the size of such articles. In 55 samples the 
size of each of the 5 articles was standard, in 12 of them 2 were non-
standard, and in 3, 1 was non-standard: 
 
    Number of samples                                 55           12           3 
    Number of defective articles                   0             1           2  
    Frequencies of the various outcomes      0.786      0.171    0.043 
 
Here the frequency, for example in the fist column is 55/70.  

Many definitions of mathematical statistics have been offered, but 
only once were statistical data mentioned (Kolmogorov & Prokhorov 
1974/1977, p. 721): they denote information about the number of 
objects which possess certain attributes in some more or less general 
set. 

Those numbers above are indeed statistical data; they were 
separated into sets with differing numbers of defective articles in the 
samples. Such separation can often be made in several ways; however, 
if the range of the values of the random variable (the number of 
defective articles) is sufficiently wide (here, we have a very small 
range from 0 to 5, but actually even from 0 to 2), there should not be 
too few sets or intervals. On the other hand, there should not be too 
many of them either: too many subdivisions of the data is a 
charlatanisme scientifique (Quetelet 1846, p. 278) 

And so, when combining the data, formula (2.21) becomes 
 

    ms(ξ) = 
1

,
i

s
x i

i

n x
n
∑                                                       (2.22) 

 
where nx is the number of the values of the random variable in interval 
х. In our example 
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    ms(ξ) = 
1

70
(55·0s + 12·1s + 3·2s) = 0.786·0s + 0.171·1s + 0.043·2s.  

 
The cases of s = 1 and 2 (see the very beginning of this section) 

coincide with expectation and variance respectively and formulas 
(2.20) correspond to formulas (2.13). The first moment is the 
expectation, the second moment is the variance. But is it possible and 
necessary to establish something about the other almost infinitely 
many moments? Suffice it to consider the next two of them.  

Suppose that the density φ(х) is symmetrical with respect to the y-
axis. Then for odd values of s the moments 
 

    νs = φ( ) 0.sx x dx
∞

−∞

=∫   

 
Indeed, in this case the integrand is the product of an odd and an even 
function and is therefore odd and the integral is taken between 
symmetrical bounds. 
   If some odd moment differs from zero, the density cannot be 
symmetric (i. e., even) and this moment will therefore characterize the 
deviation of φ(х) from symmetry. But which moment should we 
choose as the measure of asymmetry? 

All sample moments depend on the observed values of the 
appropriate random variable, are therefore random variables as well 
and possess a variance. It is also known that the variances of the 
moments of higher orders are larger than those of the first few. The 
moments of higher orders are therefore unreliable. 

It is thus natural to choose the third moment as the measure of 
asymmetry of the density φ(х) of a random variable; more precisely, 
the third sample moment since apart from observations we have 
nothing to go on: 
 

    m3(ξ) = 31
( ) .

1 ix x
n

−
−
∑                                           (2.23) 

 
One more circumstance. The dimensionality of the third moment is 

equal to the cube of the dimensionality of ( )ix x− . For obtaining a 

dimensionless measure, (2.23) should be divided by s3, see formula 
(2.12). The final measure of asymmetry of φ(х) is thus 
 

    sk = 3
3 .m s÷  

 
When discussing that formula (2.12), we indicated why its 

denominator should be (n – 1) rather than n. The same cause 
compelled us to change the denominator in formula (2.23). 

Now the fourth moment. For a normal random variable it is 3σ4, 
whereas the second moment is σ2, see § 2.4.2. For that distribution we 
therefore have 
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    4
4ν /σ 3.=  

 
If we now calculate the so-called excess (more precisely, the sample 
excess) 
 
    εk = m4/s4 – 3, 
 
its deviation from 0 can be chosen as a measure of the deviation  
of un unknown density of distribution from the normal law (for which 
the excess disappears). The excess is here useful since in one or 
another sense the normal distribution is usually best. Pearson (1905, p. 
181) introduced the excess when studying asymmetric laws.  

In general, if the density is unknown, the knowledge of the first four 
moments is essential: when considering them as the corresponding 
theoretical moments of the density, it will be possible to imagine its 
type and therefore to calculate its parameters (hardly more than four of 
them). 
To repeat: the normal law has only two parameters; therefore, if the 
calculated excess is sufficiently small, the unknown distribution will 
be determined by the first two moments. But what, indeed, is 
sufficiently small? We leave this question aside. 

2.8. The Distribution of a Function of Random Variables 
Suppose that random variables ξ and η have densities φ1(х) and φ2(у) 

and that η = f(ξ) with a continuous and differentiable function f. The 
density φ1(х) is known and it is required to derive φ2(у). This problem 
is important and has to be solved often. 

First of all, we (unnecessarily?) provide information about inverse 
functions and restrict our description to strictly monotone (increasing 
or decreasing) functions. The domain of an arbitrary function can 
however be separated into intervals of monotonic behaviour and each 
such interval can then be studied separately. 

Suppose now that the function у = f(х) strictly decreases on interval 
[a; b]. Turn its graph to the left until the y-axis is horizontal, and you 
will see the graph of the inverse function х = ψ(у), also one-valued 
since the initial function was monotone. True, the positive direction of 
the y-axis and therefore of the argument y (yes, y, not x anymore) will 
be unusual. This nuisance disappears when looking with your mind’s 
eye on the graph from the other side of the plane. 

Return now to our problem. When ξ moves along [a; b], the random 
point (ξ; η) moves along the curve у = f(х). For example, if ξ = х0, then 
η = f(х0) = у0. It is seen that the distribution function (not the density) 
F(у) of η, or Р(η < у), is 
 

    Р(η < у) = Р(x < ξ < b) = 1 1 φ ( )  = φ ( ) ,
b b

x x

x dx z dz∫ ∫   

 
where (х; у) is a current point on the curve у = f(х). 
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    Pursuing a methodical aim, we have changed the variable in the 
integral above but certainly did not alter the lower bound. However, it 
can be expressed as a function of у: х = ψ(у). So now  
 

    F(y) = Р(η < у) = 1

ψ( )

 φ ( ) .
b

y

z dz∫   

 
Differentiate both parts of this equality with respect to у, and obtain 

thus the density 
 
    F′(у) = φ2(у) = – φ1[ψ(у)]·ψ′(у). 
 

For a strictly increasing function f(x) the reasoning is the same 
although now it is the upper variable bound rather than the lower and 
the minus sign will disappear. Both cases can be written as  
 
    φ2(у) = φ1[ψ(у)]·|ψ′(у)|. 
 
    Example (Ventzel 1969, p. 265). 
 

    η = 1 – ξ3, φ1(х) = 
2

1
,

π(1 )x+
 – ∞ < х < ∞. 

 
Here, φ1(х), is the Cauchy distribution (mentioned in § 2.3.2 in a 
slightly different form). We have 
 

    x = ψ(у) = 3 1 ,y−   

 

    ψ′(у) = – 3
12 23 3

1 1
,  φ [ψ( )] [ 1 ] ,

3 (1 ) π[1 (1 ) ]
y f y

y y
= − =

− + −
 

 

    φ2(y) = 
23

1

π[1 (1 ) ]y+ − 23

1

3 (1 )y−
. 

 
    Such a simple function … The y can certainly be replaced by x. 

2.9. The Bienaymé – Chebyshev Inequality 
    This is 
 
    P(|ξ – Eξ| < β) > 1 – σ2/β2, β > 0                                 (2.24) 
 
or, which is evident,  
 

P(|ξ – Eξ| ≥ β) < σ2/β2. 
 
    Inequality (2.24), and therefore its second form as well, take place 
for any random variable having an expectation and a variance and are 
therefore extremely interesting from a theoretical point of view. 
However, exactly this property means that the inequality is rather 
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rough (I discuss any one of them). In a way, it combines the two 
magnitudes, σ and β, without needing any other information. 
    Bienaymé (1853) established that inequality, but, unlike Chebyshev 
(1867 and later), did not pay special attention to his discovery since 
the subject of his memoir was not directly connected with it. 

William Herschel (1817/1912, p. 579)  
presumed that any star promiscuously chosen […] out of [more than 

14 thousand] is not likely to differ much from a certain mean size of 
them all.  

Stars unimaginably differ one from another and do not belong to a 
single population at all. The variance of their sizes is practically 
infinite, the notion of their mean size meaningless, and the inequality 
(2.24) cannot be applied. From another point of view, we may add: no 
positive data – no conclusion (Ex nihilo nihil fit!).  
    The English physician J. Y. Simpson (1847 – 1848/1871, p. 102) 
had similar thoughts: The data [about mortality after amputations] 
have been objected to on the ground that they are collected from too 
many different hospitals and too many sources. But […] I believe […] 
that this very circumstance renders them more, instead of less, 
trustworthy.  
 

Chapter 3. Systems of Random Variables. Correlation 

3.1. Correlation 
In the first approximation it may be stated that the variable у is a  

function of argument x on some interval or the entire number axis if, 
on that interval (on the entire axis), one and only one value of у 
corresponds to each value of х. Such dependence can exist between 
random variables. For example, Bessel (1838, §§ 1 – 2): the error of a 
certain type of measurements is η = аξ2.  
    Less tight connections between random variables are also possible 
(the stature of children depending on the stature of parents). Their 
study is the aim of an important chapter of mathematical statistics, of 
the theory of correlation. That word means comparison. More 
precisely, correlation considers the change in the law of distribution of 
a random variable depending on the change of another (or other) 
random variable(s) and as a rule on accompanying circumstances as 
well. 
    Lacking that specification and certainly without quantitative studies 
of phenomena (qualitative) correlation had been known in antiquity. 
(As stated in § 1.1.3, the entire ancient science had been qualitative.) 
Thus, Hippocrates (1952, No. 44): Persons who are naturally very fat 
are apt to die earlier than those who are slender. Climatic belts were 
isolated in antiquity, but only Humboldt (1817, p. 466) connected 
them with mean yearly air temperatures. 
    Seidel (1865 – 1866), a German astronomer and mathematician, 
first quantitatively investigated correlation. He studied the dependence 
of the monthly cases of typhoid fever on the level of subsoil water, and 
then both on that level and the rainfall. 
    Galton (1889) had begun to develop the theory of correlation proper,  
and somewhat later Pearson followed suit. Nevertheless, it had been 
sufficiently improved much later. Markov (1916/1951, p. 533) 
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disparagingly but not altogether justly declared that the correlation 
theory’s 
   positive side is not significant enough and consists in a simple usage 
of the method of least squares for discovering linear dependences. 
However, not being satisfied with approximately determining various 
coefficients, the theory also indicates their probable errors, and enters 
here the realm of imagination […]. 

Discovering dependences, even if only linear, is important and 
estimation of precision is certainly necessary. Linnik (Markov 1951, p. 
670) noted that in those times correlation theory had still being 
developed so that Markov’s criticism made sense. However, Hald 
(1998, p. 677), without mentioning either Markov or Linnik, described 
Fisher’s pertinent contribution of 1915 (which Markov certainly did 
not see) and thus refuted Linnik. Anyway, here is Slutsky’s reasonable 
general comment (letter to Markov of 1912, see Sheynin 1999b, p. 
132): 

The shortcomings of Pearson’s exposition are temporary and of the 
same kind as the known shortcomings of mathematics in the 17th and 
18th centuries.  

Now we shall discuss the correlation coefficient. Two random 
variables, ξ are η, are given. Calculate the moment 
 
    µξη = E[(ξ – Eξ)(η – Eη)] = E(ξη) – 2Eξ Eη + Eξ Eη = 
              E(ξη) – Eξ Eη 
 
and divide it by the standard deviations σξ and ση to obtain a 
dimensionless measure, the correlation coefficient 
 

    rξη = ξη

ξ η

µ

σ σ
. 

 
For independent ξ and η both µξη and (therefore) rξη disappear. The 

inverse statement is not true! Cf.: a sparrow is a bird, but a bird is not 
always a sparrow. One case is sufficient for refuting the inverse 
statement here also. So suppose that the density of ξ is an even 
function, then Еξ = 0 and Еξ3 = 0. Introduce now η = ξ2, then µξη = Еξ3 
– 0 = 0, QED. It follows that (even a functional) dependence can exist 
between random variables when the correlation coefficient is zero.  
   That coefficient takes values from – 1 до 1. Correlation can therefore 
be negative. Example: the correlation (the dependence) between the 
stature and the weight of a person is positive, but between the distance 
from a lamp and its brightness is negative. Accordingly, we say that 
the correlation is direct or inverse. 

3.2. The Distribution of Systems of Random Variables 
Consider the probability Р(ξ < х, η < у). Geometrically, these 

inequalities correspond to an infinite region – ∞ < ξ < х, – ∞ < η < у, 
whereas analytically P is expressed by the distribution function 
 
    F(x; y) = Р(ξ < х, η < у). 
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Taken separately, the random variables ξ and η have distribution 
functions F1(x) and F2(y) and densities f1(x) and f2(y). Thus, for an 
infinitely large x the inequality ξ < х is identical and 
 
    F(+ ∞; y) = F2(y). 
 
     The density is also introduced here similar to the one-dimensional 
case: 
 

    Р[(ξ; η) belongs to region D] = ( ; ) .
D

f x y dxdy∫∫  

 
Function f(x; y) is indeed the density. For independent ξ and η we have 
 
    f(x; y) = f1(x) f2(y). 
 
For the bivariate (two-dimensional) normal law the density f (х; у) is 
 

    
2 2

2 2 2
ξ ξ η η

1 1 ( Eξ) 2 ( Eξ)( Eη) ( Eη)
exp{ [ ]}.

2πσ σ 2(1 ) σ σ σ σx y

x r x y y

r

− − − −
− − +

−
 

 
Apart from the previous notation, r is the correlation coefficient for ξ 
and η.  

3.2.1. The distribution of a sum of random variables. Given, random 
variables ξ and η with densities φ1(х) and φ2(у). Required is the law of 
distribution of their sum ω = ξ + η. For the distribution function of 
their system we have 
 

    F(x, y) = φ( ,  ) .x y dxdy∫ ∫   

 
In case of infinite domains of both functions the integration is over an 
infinite half-plane  
 

    F(x; y) = φ( ; )
x

dx x y dy
ω∞ −

−∞ −∞
∫ ∫ . 

 
    Differentiating it with respect to ω, we will have 
 

    ω ( ; ) φ( ;ω ) (ω)F x y x x dx f
∞

−∞

′ = − =∫ , 

 
or, after changing the places of х and у, 
 

    ω ( ; ) φ(ω ; ) (ω)F x y y y dy f
∞

−∞

′ = − =∫ . 
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    In case of independent random variables the distribution sought is 
called composition (of their densities). The formulas above lead to 
 

    f(ω) = 1 2 1 2φ ( )φ (ω ) φ (ω )φ ( )x x dx y y dy
∞ ∞

−∞ −∞

− = −∫ ∫ . 

 
Calculations are sometimes essentially simplified by geometrical 

considerations (Ventzel 1969, §§ 12.5 – 12.6). We only remark that 
the encounter problem (§ 1.1.2) can also be interpreted by means of 
the notions of random variable and density of distribution. Indeed, a 
random point (ξ; η) should be situated in a square with opposite 
vertices O(0, 0) and C(60, 60), and the sum (ξ + η) should be between 
two parallel lines, y = x ± 20 (I have chosen 60 and 20 in that section). 
The distribution of that point could have ensured the derivation of the 
probability of the encounter. To recall, the moments ξ and η of the 
arrival of the two friends were independent.  
 

Chapter 4. Limit Theorems 

4.1. The Laws of Large Numbers 

The statistical probability p̂  of the occurrence of an event can be 

determined by the results of independent trials, see formula (1.7), 
whereas its theoretical probability р is given by formula (1.1).  

We (§ 1.1.1) listed the shortcomings of that latter formula and only 
repeat now that it is rarely applicable since equally probable cases are 
often lacking. Consequently, we have to turn to statistical probability. 
    4.1.1. Jakob Bernoulli. Bernoulli (1713/2005, pp. 29 – 30) 
reasonably remarked that 

Even the most stupid person […] feels sure that the more […] 
observations are taken, the less is the danger of straying from the goal. 
Nevertheless, he (p. 30) continued: 
    It remains to investigate whether, when the number of observations 
increases, […] the probability of obtaining [the theoretical probability] 
continually augments so that it finally exceeds any given degree of 
certitude. Or [to the contrary …] that there exists such a degree of 
certainty which can never be exceeded no matter how the observations 
be multiplied.  

In other words, will the difference |р – p̂ | continually decrease or 

not so that the statistical probability will not be a sufficiently good 
estimate of р.  

Bernoulli proved that, in his restricted pattern, induction (trials) is 
(are) not worse than deduction: as n → ∞ the difference |р – p̂ | tends 

to disappear. His investigation opened up a new vast field. 
Nevertheless, not that difference itself, but its probability tends to zero. 
As n → ∞  
 
    lim P(|р – p̂ | < ε) = 1                                                     (4.1)  

 
with an arbitrarily small ε. This limit is exactly unity, not some lesser 
number, and induction is indeed not worse than deduction. But, 
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wherever probabilities are involved, a fly appears in the ointment. The 
deviation of the statistical probability p̂  from its theoretical 

counterpart can be considerable, even if rarely. A doubting Thomas 
can recall the example in § 1.2.3: the occurrence of an event with zero 
probability. Here, such an event is |р – p̂ | ≥ ε. The limit of probability 

essentially differs from the usual limit applied in other branches of 
mathematics. Nothing similar can happen there! 
    Formula (4.1) is called the (weak) law of large numbers (a term due 
to Poisson). There also exists the so-called strong law of large numbers 
which removes the described pitfall, but I do not discuss it.  
    Strictly speaking, Bernoulli wrote out formula (4.1) in a somewhat 
different way, then continued his investigation. He proved that the 
inequality 
 
    P(|р – p̂ | ≤ ε) ≥ 1 – δ, δ > 0 

 
will hold at given ε and δ as soon as n exceeds some N, which depends 
on those two numbers. He managed to determine how exactly N must 
increase with the tightening of the initial conditions.  

His investigation was not really successful: the demanded values of 
N had later been considerably decreased (Pearson 1924; Markov 1924, 
p. 46 ff) mostly because it became possible to apply the Stirling 
formula unknown to Bernoulli. True, neither did De Moivre (§ 4.2) 
know that formula, but he derived it (even a bit before Stirling). 

Mentioning Bernoulli’s crude estimates Pearson (1925) 
inadmissibly compared his law with the wrong Ptolemaic system of 
the world. He missed its great general importance and, in particular, 
paid no attention to Bernoulli’s existence theorem, of the very 
existence of the limit (4.1). It seems that Pearson did not set great store 
by such theorems.  
    In 1703 – 1705, before Bernoulli’s posthumous Ars Conjectandi 
appeared, Bernoulli had exchanged letters with Leibniz; the Latin text 
of their correspondence are partially translated into German (Gini 
1946; Kohli 1975); Bernoulli himself, without naming Leibniz, 
answered his criticisms in Chapter 4 of pt. 4 of his book. Leibniz did 
not believe that observations can ensure practical certainty and 
declared that the study of all the pertinent circumstances was more 
important than delicate calculations. Much later Mill (1843/1886, p. 
353) supported this point of view: 
    A very slight improvement of the data by better observations or by 
taking into fuller considerations the special circumstances of the case 
is of more use, than the most elaborate application of the calculus of 
probabilities founded on the [previous] data. 

He maintained that the neglect of that idea in applications to 
jurisprudence made the calculus of probability the real opprobrium of 
mathematics. Anyway, considerations of the circumstances and 
calculations do not exclude each other. 

In a letter of 1714 to one of his correspondents Leibniz (Kohli 1975, 
p. 512) softened his doubts about the application of the statistical 
probability and mistakenly added that the late Bernoulli had cultivated 
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[the theory of probability] in accordance with his, Leibniz’, 
exhortations.  
    4.1.2. Poisson. Here is his qualitative definition of the law of large 
numbers (1837, p. 7):  

Les choses de toutes natures sont soumises à une loi universelle 
qu’on peut appeler la loi des grands nombres. Elle consiste en ce que, 
si l’on observe des nombres très considérables d’événements d’une 
même nature, dépendants de causes constantes et de causes qui 
varient irrégulièrement, tantôt dans un sens, tantôt dans l’autre, c’est-
à-dire sans que leur variation soit progressive dans aucun sens 
déterminé, on trouvera, entre ces nombres, des rapports à très peu 
près constantes. 

This is a diffuse definition of a principle rather than law. And here is 
a contemporary qualitative definition of that law (Gnedenko 1954, § 
30, p. 185): it is 

The entire totality of propositions stating with probability, 
arbitrarily close to unity, that there will occur some event depending 
on an indefinitely increasing number of random events each only 
slightly influencing it. 

The equality  
 

    lim P(|
µ

p
n

− | < ε) = 1, n → ∞                                      (4.2) 

 
is now called the Poisson theorem. Here, µ/n is the frequency of an 
event in n independent trials and pk (from which x  is calculated) is the 
probability of its occurrence in trial k. Note that for the Bernoulli trials 
the probability of the occurrence of the studied event was constant (not 
pk but simply p). Unlike formula (4.1), the new equality is general and 
therefore much more applicable. 

4.1.3. Subsequent history. Chebyshev (1867) proved a more general 
theorem and Khinchin (1927) managed to generalize it still more. 
Finally, I provide another, not quite general formula for the law of 
large numbers: if  
 

    lim P(| ξ |n a−  < ε) = 1, n → ∞, 

 
where a is some number, the sequence of magnitudes ξk obeys that law.  

4.2. The De Moivre – Laplace Theorem 
Suppose that a studied event occurs in each trial with probability р 

and does not occur with probability q, p + q = 1 and that in n such 
independent trials it happened µ times. Then, as n → ∞,  
 

    lim P(a ≤ 
2µ 1

) exp( )
22π

b

a

np z
b dz

npq

−
≤ = −∫ .                   (4.3) 

 
In the limit, the binomial distribution thus becomes normal. This is 
what De Moivre proved in 1733 for the particular case of p = q = 1/2 
(in his notation, a = b = 1/2), but then he correctly stated that a 
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transition to the general case is easy; furthermore, the heading of his 
(privately printed Latin) note mentioned the binomial (a + b)n. To 
recall, np = Eµ and npq = varµ. Note also that the formula (4.3) is a 
particular case of the central limit theorem (§ 2.2.4).  
    Like other mathematicians of his time, De Moivre applied 
expansions into divergent series, only took into account their first 
terms, and neglected all the subsequent terms as soon as they began to 
increase (as soon as the series really began to diverge). 

Laplace (1812, Chapter 3) derived the same formula (4.3) by means 
of a novelty, the Euler – Maclaurin summation formula. Furthermore, 
he added a term taking account of the inaccuracy occurring because of 
the unavoidable finiteness of n. Markov (1914/1951, p. 511), certainly 
somewhat mistakenly, called the integral after De Moivre and Laplace. 
That name persisted in Russian literature although, tacitly, in the 
correct way, as describing the integral theorem due to both those 
scholars. There also exists the corresponding local theorem  
 

    
21 (µ )

(µ) exp[ ].
22π

np
P

npqnpq

−
≈ −                                (4.4) 

 
Assigning some µ in the right side of this formula and inserting the 

appropriate values of n, p, q, we will approximately calculate the 
probability of that µ. Exponential functions included in formulas (4.3) 
and (4.4) are tabulated in many textbooks. 

A few additional remarks. Formula (4.3) describes a uniform 
convergence with respect to a and b (those interested can easily find 
this term), but Laplace (or certainly De Moivre) did not yet know that 
notion. Again, strict inequalities had not been then distinguished from 
non-strict ones. In formula (4.3), we should now apply a strict 
inequality in the second case (… < b). Then, the convergence to the 
normal law worsens with the decrease of p or q from 1/2 which is seen 
in a contemporary proof of the theorem (Gnedenko 1954, § 13). 
   In 1738 De Moivre included his own English translation of his 
private note in the second edition of the Doctrine of Chances and 
reprinted it in an extended form in the last edition (1756) of that book. 
However, the English language was not generally known by scientists 
on the Continent and the proof of (4.3) was difficult to understand 
since English mathematicians had followed Newton in avoiding the 
symbol of integral. Finally, Todhunter (1865, p. 192 – 193), the most 
eminent historian of probability of the 19th century, described the 
derivation of the formula (4.3) rather unsuccessfully and did not notice 
its importance. He even stated that De Moivre had only proved it for 
the particular case of p = q = 1/2. De Moivre’s theorem only became 
generally known by the end of the 19th century. 

Already in 1730 De Moivre independently derived the Stirling 

formula; the latter only provided him the value of the constant, 2π . 
Both Pearson (1924) and Markov (1924, p. 55 note) justly remarked 
that the Stirling formula ought to be called after both authors. I 
additionally remark that in 1730 De Moivre had compiled a table (with 
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one misprint) of lgn! for n = 10(10)900 with 14 decimal points; 11 or 
12 of them are correct. 

Suppose now that it is required to determine the probability of 
casting a six 7 times in 100 rolls of a die. We have р = 1/6 and n = 100, 

then np = 16.7 and npq  = 13.9. By formula (4.4) 

 

    P(µ = 7) ≈ 
21 (7 )

exp[ ].
22π

np

npqnpq

−
−  

 

I have isolated the factor 2π  since the exponential function is 

tabulated together with 1/ 2π .  
Another point. In § 2.2.4 I mentioned that De Moivre had studied 

the sex ratio at birth. Now I say that exactly this subject (rather topical 
as the following shows) became the immediate cause for the derivation 
of formula (4.3).  

Arbuthnot (1712) collected the data on births (or rather on baptisms) 
in London during 1629 – 1710. He noted that during each of those 82 
years more boys had been born than girls and declared that that fact 
was not the effect of chance, but Divine Providence, working for a 
good end since mortality of boys and men was higher than that of 
females and since the probability of the observed fact was only (1/2)–82.  

His reasoning was not good enough but the problem itself proved 
extremely fruitful. Baptisms were not identical with births, London 
was perhaps an exception, Christians possibly somehow differed from 
other people and the comparative mortality of the sexes was not really 
studied. Then, by itself, an insignificant probability had not proved 
anything and it would have been much more natural to explain the data 
by a binomial distribution.  

In a letter of 1713 Nikolaus Bernoulli (Montmort 1708/1713, pp. 280 

– 285) had indeed introduced that distribution. Denote the yearly 
number of births by n, µ of them boys, the unknown sex ratio at birth 
by m/f and р = m/(m + f). Bernoulli indirectly derived the approximate 
equality (lacking in Bernoulli’s letter) 
 

    
2| µ |

( ) 1 exp[ ],
2

np s
P s

npq

−
≤ ≈ − −  

 

where s had order √n, see Sheynin (1968; only in its reprint). He thus 
effectively arrived at the normal law much earlier than De Moivre. 

Youshkevich (1986) reported that three mathematicians concluded 
that Bernoulli had come close to the local theorem (4.4) although I 
somewhat doubt it and the very fact that three mathematicians had to 
study Bernoulli’s results testifies that these are difficult to interpret.  

The initial goal of the theory of probability consisted in separating 
chance and design. Indeed, Arbuthnot, Nikolaus Bernoulli and De 
Moivre pursued this very aim. The last-mentioned devoted the first 
edition of his Doctrine of Chances to Newton and reprinted this 
dedication in the third edition of that book (p. 329). He attempted to 
work out, to learn from Newton’s philosophy, 
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A method of calculating the effects of chance [… and to fix] certain 
rules for estimating how far some sort of events may rather be owing 
to design rather than chance … 

Note that De Moivre then did not yet prove his limit theorem.  
4.3. The Bayes Limit Theorem 

    His main formula was (1764)  
 

P(b ≤ r ≤ c) = (1 )
c

p q

b

u u dx−∫  ÷ 
1

0

(1 )p qu p dx−∫ .              (4.5) 

 
Bayes derived it by applying complicated logical constructions, but  
I interpret its conditions thus: given, a unit interval and segment [b;  
c] lying within it. Owing to complete ignorance (Scholium to 
Proposition 9), point r is situated with equal probability anywhere on 
that interval; in n = p + q trials that point occurred p times within [b; c] 
and q times beyond it.  
    In other words, Bayes derived the posterior distribution of a random 
variable having a uniform prior distribution. The denial of that 
assumption (of the uniform distribution) led to discussions about the 
Bayes memoir (§ 1.1.1-5). In addition, the situation of point r is not at 
all random but unknown. Thus, the formula (4.5) should not be applied 
for deriving the probability of a certain value of a remote digit in the 
expansion of π (Neyman 1938a/1967, p. 337). 

At that time there did not exist any clear notion of density; now, 
however, we may say that the formula (4.5) does not contradict its 
definition. Bayes derived the denominator of the formula and thus 
obtained the value of the beta-function (Euler). Both the pertinent 
calculation and the subsequent work were complicated and not easy to 
retrace. However, Timerding, the editor of the German version of 
Bayes’ memoir (1908), surmounted the difficulties involved. 
Moreover, he invented a clever trick and wrote out the result as a limit 
theorem. For large р and q he arrived at  
 

    limP(
2

3

/ 1
) exp( ) 

22π/

b

a

p p n z
a b dz

pq n

−
≤ ≤ = −∫ , n → ∞.      (4.6)  

 
Here p  is a statistical estimate of the unknown probability р that 

point r is within [b; c], and 3/ E ,  / var .p n p pq n p= =   

    A comparison of the formulas (4.3) and (4.5) convinces us that they 
describe the behaviour of differing random variables 
 

    
ξ  Eξ

varξ
i i

i

−
, i = 1 (De Moivre), i = 2 (Bayes). 

 
The variance in the Bayes formula is larger. The proof is not really 
needed; indeed, statistical data are present in both cases, but additional 
information (the theoretical probability) is only given in formula (4.3). 
And it is extremely interesting that Bayes, who had no idea about the 
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notion of variance, understood that the De Moivre formula did not 
describe good enough the determination of that theoretical probability 
by its statistical counterpart. Both Jakob Bernoulli and De Moivre 
mistakenly stated the opposite, but Price, an eminent statistician who 
communicated (and extended) the posthumous Bayes memoir, 
mentioned this circumstance.  
    But why did not Bayes himself represent his result as a limit 
theorem? In another posthumous contribution of the same year, 1784, 
Bayes clearly indicated, for the first time ever, that the application of 
divergent series (in particular, by De Moivre) is fraught with danger. 
Timerding, it ought to be remarked, managed to avoid them. Note 
however that such series are still cautiously applied.  

I believe that Bayes had completed the first version of the theory of 
probability which included the Jakob Bernoulli law of large numbers 
and the theorems due to De Moivre and Bayes himself. In addition, 
Bayes was actually the main predecessor of Mises (which the latter 
never acknowledged). See also Sheynin (2010b). 

 
Chapter 5. Random Processes. Markov Chains 

5.1. Random Functions 
    Random functions are random variables changing discretely or 
continuously in time; for example, unavoidable noise occurring during 
the work of many instruments. Fixing some definite moment, we 
obtain the corresponding random variable, a section of a random 
function.  
    The law of distribution of a random function is naturally a function 
of two arguments one of which is time. For this reason the expectation 
of a random function is not a number but a (usual rather than a random) 
function. When fixing the moment of time, the expectation will pertain 
to the corresponding section of the random function and a similar 
statement concerns the variance. Another new point has to do with the 
addition of dependent random functions: the notion of correlation 
ought to be generalized.  
   A random function without after-effect is such for which there exists 
a definite probability of its transferring from a certain state to another 
one in such a way that additional information about previous situations 
does not change that probability. A good example is the Brownian 
motion (discovered by the English botanist Brown in 1827), the 
motion of tiny particles in a liquid under the influence of molecular 
forces.  
    About half a century ago, a new important phenomenon, the chaotic 
motion differing from random motion, began to be studied. However 
complicated and protracted is a coin toss, its outcomes do not change 
and neither do their probabilities. Chaotic motion, on the other hand, 
involves a rapid increase of its initial instability (of the unavoidable 
errors in the initial conditions) with time and countless positions of its 
possible paths.  

It was Laplace (1781; 1812, § 15) who introduced subjective 
opinions (end of § 1.1.1-6) and, actually, a random process. Suppose 
that some interval is separated into equal or unequal parts and 
perpendiculars are erected from their ends. Let there be i 
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perpendiculars, their total length unity, forming a non-increasing 
sequence in one of the two directions. Their ends are connected by a 
broken line and a proper number of curves, and all this construction is 
repeated n times after which the mean values of the current 
perpendiculars are calculated. 

Laplace supposes that the lengths of the perpendiculars are assigned 
by n different people and that the worth of candidates or the 
significance of various causes can thus be ordered in a non-increasing 
order. Each curve can be considered a random function; their set, a 
random process; and the mean curve, its expectation. True, the 
calculations occurred very complicated.  

Evolution according to Darwin provides a second example. Consider 
a totality of individuals of, say, the male sex, of some species. Each 
individual can be theoretically characterised by the size of its body and 
body parts; the unimaginable multitude n of such sizes is of no 
consequence. Introduce the usual definition of distance in an n-
dimensional space and each individual will be represented by its point. 
The same space will contain the point or the subspace U of the sizes 
optimal for the chosen species. In the next generation, the offspring of 
any parents will be the better adapted to life the nearer they are to U 
which means that, in spite of the random scattering of the offspring 
around their midparents (a term due to Pearson), one generation after 
another will in general move towards U. However, that U will also 
move according to the changes in our surrounding world (and, if that 
movement is too rapid, the species can disappear). And so, individuals 
remote from U will in general perish or leave less offspring and our 
entire picture can be understood as a discrete random process with 
sections represented by each generation. 

Our pattern is only qualitative; indeed, we do not know any numbers, 
any probabilities, for example, the probability of the mating of two 
given individuals of different sexes and we are therefore ignorant of 
any information about their offspring. Moreover, Darwin reasonably 
set great store by the habits of animals about which we are ignorant as 
well. Finally, there exists correlation between body parts of an 
individual. Darwin himself (1859/1958, p. 77) actually compared his 
theory (or, rather, hypothesis) with a random process: 

Throw up a handful of feathers, and all fall to the ground according 
to definite laws; but how simple is the problem where each shall fall 
compared with problems in the evolution of species.  

Opponents of evolution mostly cited the impossibility of its being 
produced by chance, by uniform randomness which once again 
showed that for a very long time that distribution had been considered 
as the only one describing randomness. Baer (1873, p. 6) and 
Danilevsky (1885, pt. 1, p. 194) independently mentioned the 
philosopher depicted in Gulliver’s Travels (but borrowed by Swift 
form Raymond Lully, 13th – 14th centuries). That inventor, hoping to 
learn all the truths, was putting on record each sensible chain of words 
that appeared from among their uniformly random arrangements. Note 
that even such randomness does not exclude the gradual movement of 
the generations to U (but the time involved will perhaps be enormous). 
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    Evolution began to be studied anew after Mendel’s laws have been 
unearthed (after about 40 years of disregard) and, once more anew, 
after the important role of mutations has been understood. 

5.2. Markov Chains (Processes with Discrete Time) 

Suppose that one and only one of the events ( ) ( ) ( )
1 2,  ,...,  s s s

kA A A  

occurs in trial s and that in the next trial the (conditional) probability 

of event ( 1)s
iA +  depends on what happened in event s, but not on those 

preceding s. These conditions, if fulfilled in any trial, determine a 
homogeneous Markov chain.  

Denote the conditional probability of ( 1)s
jA +  as depending on ( )s

iA  by 

pij, then the process described by such chain is determined by a square 
matrix (table) of such probabilities, the transition matrix. Its first row 
is p11, p12, …, p1k, the second one, p21, p22, …, p2k, …, and the last one, 
pk1, pk2, …, pkk, and the sum of the probabilities, the transition 
probabilities, in each row is unity.  
    It is possible to construct at once both a transition matrix for n trials 
and the limiting matrix which exists (that is, the corresponding 
limiting probabilities exist) if for some s all the elements of the matrix 
are positive. Markov derived this result and discovered some other 
findings which were later called ergodic theorems. In particular, it 
occurred that under certain conditions all the limiting probabilities are 
identical. 
    This remarkable property can explain, for example, the uniform 
distribution of the small planets along the ecliptic: a reference to these 
limiting probabilities which do not depend on the initial probabilities 
would have been sufficient. Actually, however, the small planets 
(more precisely, all planets) move along elliptical orbits and in 
somewhat differing planes.  

Poincaré (1896/1987, p. 150), who had not referred to any Russian  
author, not even to Laplace or Poisson, justified this fact although in a 
complicated way. (Also, by introducing hypercomplex numbers, he 
proved that after a lot of shuffling the positions of the cards in a pack 
tended to become equally probable.)  

Markov himself only applied his results to investigate the 
alternation of consonants and vowels in the Russian language 
(Petruszewycz 1983). He possibly obeyed his own restriction (Ondar 
1977/1981, p. 59, Markov’s letter to Chuprov of 1910):  

I shall not go a step out of that region where my competence is 
beyond any doubt. 

The term itself, Markov chain, first appeared (in French) in 1926 
(Bernstein 1926, first line of § 16) and pertained to Markov’s 
investigations of 1906 – 1913. Some related subjects are Brownian 
motion, extinction of families, financial speculation, random walk. 

The urn problem discussed below can be understood as a (one-
dimensional) random walk, as a discrete movement of a particle in one 
or another direction along some straight line with the probabilities p 
and q of movement depending on what had happened in the previous 
discrete moment. Diffusion is a similar but three-dimensional process, 
but a random walk with constant р and q, like the walk of the number 
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of winnings of one of the two gamblers in a series of games, is not 
anymore a Markov chain. 

And so, we will discuss the urn problem of Daniel Bernoulli (1770) 
and Laplace which is identical to the celebrated Ehrenfests’ model 
(1907) considered as the beginning of the history of discrete random 
processes, or Markov chains. The first urn contains n white balls, the 
second urn, the same number of black balls. Required is the (expected) 
number of white balls in the first urn after r cyclic interchanges of a 
ball.  

In his second problem Bernoulli generalized the first by considering 
three urns and balls of three colours. He managed to solve it elegantly, 
and discovered the limiting situation, an equal (expected) number of 
balls of each colour in each urn. A simplest method of confirming this 
result consists in a reference to the appropriate ergodic theorem for 
homogeneous Markov chains, but first we should prove that this 
Bernoulli problem fits the pattern of that theorem. It is not difficult. 
Indeed, for example, in the case of two urns, four events are possible at 
each interchange and the probability of each event changes depending 
on the results of the previous interchange. These four events are: white 
balls were extracted from each urn; a white ball was extracted from the 
first urn and a black ball from the second etc.  

Laplace (1812, chapter 3) generalized the Bernoulli problem (but did 
not refer to him) by admitting an arbitrary initial composition of the 
urns, then (1814/1886, p. LIV) adding that new urns are placed 
amongst the original urns, again with an arbitrary distribution of the 
balls. He (p. LV) concluded, probably too optimistically, that 

On peut étendre ces résultats à toutes les combinaisons de la nature, 
dans lesquelles les forces constantes dont leurs éléments sont animés 
établissent des modes réguliers d’action, propres à faire éclore du sein 
même du chaos des systèmes régis des lois admirables.  
 

Chapter 6. The Theory of Errors  

and the Method of Least Squares 

6.1. The Theory of Errors 
This term (in German) is due to Lambert (1765, § 321). It only 

became generally used in the middle of the next century; neither 
Laplace, nor Gauss ever applied it although Bessel did. The theory of 
errors studies errors of observation and their treatment so that the 
method of least squares (MLSq) belongs to it. I have separated that 
method owing to its importance. 

The theory of errors can be separated into a stochastic and a 
determinate part. The former studies random errors and their influence 
on the results of measurements, the action of the round-off errors and, 
the dependence between obtained relations. The latter investigates the 
patterns of measurement for a given order of errors and studies 
methods of excluding systematic errors (or minimizing their influence). 

Denote a random error by ξ, its expectation will then be Еξ = 0. 
Otherwise (as it really is) ξ is not a purely random error and Еξ = а is 
the systematic error. It shifts the even density of random errors either 
to the right (if а > 0), or to the left (if а < 0).  
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From 1756 (Simpson, § 1.2.3) until the 1920s the stochastic theory 
of errors, as stated there, had remained the most important field of 
application of the theory of probability. In a posthumous publication 
Poincaré(1921/1983, p. 343) noted that La théorie des erreurs était 
naturellement mon principal but and Lévy (1925, p. vii) strongly 
indicated that without the theory of errors his contribution on stable 
laws n’aurait pas de raison d’être. 

Stable laws became an essential notion of the theory of probability, 
but for the theory of errors they are absolutely useless. As a corollary 
to the definition of a stable law it follows that the sum ∑ξi and the 

arithmetic mean ξ  have the same distribution as the independent and 

identically distributed random variables ξi, and Lévy proved that a real 
estimation of the precision of those functions of random variables, if 
their distribution is not stable, is very difficult. However, an observer 
can never know whether the errors of his measurements obey a stable 
law or not. Moreover, the Cauchy law is also stable, but does not 
possess any variance (§ 2.3.2). 

In turn, mathematical statistics took over the principles of maximal 
likelihood and least variance (see § 6.3 below) from the stochastic 
theory of errors. 
    Now the determinate theory of errors. Hipparchus and Ptolemy 
could not have failed to be ignorant about them (in the first place, 
about those caused by the vertical refraction). Nevertheless, it was 
Daniel Bernoulli (1780) who first clearly distinguished random and 
systematic errors although only in a particular case. 

Also in antiquity astronomers had been very successfully observing 
under the most favourable conditions. A good example is an 
observation of the planets during their stations, that is, during the 
change of their apparent direction of motion, when an error in 
registering some definite moment least influences the results of 
subsequent calculations. Indeed, 

One the most admirable features of ancient astronomy [was] that all 
efforts were concentrated upon reducing to a minimum the influence of 
the inaccuracy of  individual observations with crude instruments by 
developing […] the mathematical consequences of very few elements 
[of optimal circumstances] (Neugebauer 1950/1983, p. 250). 
    Actually, however, the determinate theory of errors originated with 
the differential calculus. Here is a simplest geodetic problem. Two 
angles, α and β, and side а are measured in a triangle and the order of 
error of these elements is known. Required is the order of error in the 
other (calculated) elements of the triangle, and thus the determination 
of the optimal form of the triangle.  

Denote the length of any of the calculated sides by W. It is a 
function of the measurements:  
 
    W = f(a; α; β), 
 
and its differential, approximately equal to its error, is calculated by 
standard formulas. 
    From studying isolated geodetic figures the determinate theory 
moved to investigating chains and even nets of triangles. And here is a 
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special problem showing the wide scope of that theory (Bessel 1839). 
A measuring bar several feet in length is supported at two points 
situated at equal distances from its middle. The bar’s weight changes 
its length and the amount of change depends on the position of the 
supporting points. Where exactly should you place these points so that 
the bar’s length will be least corrupted? Bessel solved this problem by 
means of appropriate differential equations. For a contemporary civil 
engineer such problems are usual, but Bessel was likely the first in this 
area. 

Gauss and Bessel originated a new stage in experimental science. 
Indeed, Newcomb (Schmeidler 1984, pp. 32 – 33) mentioned the 
German school of practical astronomy but mistakenly only connected 
it with Bessel. True, the appropriate merits of Tycho Brahe are not 
known adequately. Newcomb continued:  

Its fundamental idea was that the instrument is indicted […] for 
every possible fault, and not exonerated till it has proved itself  
corrected in every point. The methods of determining the possible 
errors of an instrument were developed by Bessel with ingenuity and 
precision of geometric method … 
    Gauss had detected the main systematic errors of geodetic 
measurements (those caused by lateral refraction, by the errors of 
graduating the limbs of the theodolites, and inherent in some methods 
of measurement) and outlined the means for eliminating/decreasing 
them. 
    For a more detailed description of this subject see Sheynin (1996, 
Chapter 9).  

6.2. The True Value of a Measured Constant 

Many sciences and scientific disciplines have to measure constants; 
metrology ought to be mentioned here in the first place. But what 
should we understand as a true value of a constant? Is it perhaps a 
philosophical term? 

Fourier (1826) suggested its definition undoubtedly recognized 
earlier even if tacitly: the true value of a constant is the limit of the 
arithmetic mean of its n measurements as n → ∞. It is easy to see that 
the Mises’ frequentist definition of probability (§ 1.1.3) is akin to 
Fourier’s proposal. Fourier also stated that the measurements ought to 
be carried out under identical conditions which was really essential for 
metrology but inadmissible in geodesy: differing (but good enough) 
external conditions were necessary for some compensation of 
systematic errors.  
    I failed to find a single reference to his definition but many authors 
repeated it independently from him or one another. One of them 
(Eisenhart 1963/1969, p. 31) formulated the unavoidable corollary: the 
mean residual systematic error had to be included in the true value: 
    The mass of a mass standard is […] specified […] to be the mass of 
the metallic substance of the standard plus the mass of the average 
volume of air adsorbed upon its surface under standard conditions. 

Statisticians have done away with true values and introduced instead 
parameters of densities (or distribution functions) and their properties. 
A transition to more abstract notions is a step in the right direction (cf. 
end of § 1.2.3), but they still have to mention true values; Gauss (1816, 
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§§ 3 и 4) even discussed the true value of a measure of error, of 
something not existing in nature. For more detail see Sheynin (2007). 

6.3. The Method of Least Squares 
    This standard method of treating observations is usually regarded as 
a chapter of mathematical statistics rather than probability. 

Suppose that the unknown constants х and у are connected with 
observations w1, w2, …, wn by linear equations 
 
    aix + biy + … + wi = 0, i = 1, 2, …, n.                                 (6.1) 
 
In the general case the number of the unknowns, k, is arbitrary, but if 
k > n, the solution of (6.1) is impossible, and if k = n, no special 
methods of its solution are needed. Therefore, k < n. The coefficients 
ai, bi, … ought to be provided by the appropriate theory, and the 
system (6.1) can be supposed linear if the unknowns are small.  

Indeed. Suppose that a system is not linear and that its first equation 
is 

 
a1x

2 + b1y
2 + w1 = 0. 

 
We actually know the approximate value of the unknowns, x0 and y0, 
so that, for example, the first term of our equation is a1(x0 + ∆x)2 with 
an unknown small ∆x. The term (∆x)2 can be neglected and that first 
term will be a1(x0

2 + 2x0∆x). The unknown magnitude is now linear, 
2a1x0∆x, and the second term of our equation, b1y

2, can be linearized 
in a similar way.  
    And now the main question: how to solve the system (6.1)? 
Observations are supposed to be independent (or almost so) and 
rejecting the (n – k) redundant equations (which exactly?) would have 
been tantamount to rejecting worthy observations. A strict solution is 
impossible: any set (x, y, …) will leave some residual free terms (call 
them vi). We are therefore obliged to impose one or another condition 
on these residuals. It became most usual to choose the condition of 
least squares  
 
    v1

2 + v2
2 + … + vn

2 = min,                                          (6.2) 
 
hence the name, MLSq. And 
 

    2
iv  = (ai x + bi y + … + wi)

2. 

 
We ought to determine the values of х, у, …, leading to condition 

(6.2), and these unknowns are therefore considered here as variables. 
We have 
 

    
2
iv

x

∂
=

∂
 2ai(ai x + bi y + … + wi). 

 
According to the standard procedure,  
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22 2

1 2 ... nvv v

x x x

∂∂ ∂
+ + +

∂ ∂ ∂
 = 2∑(aiaix + aibiy + … + aiwi) = 0, 

 
so that, applying the Gauss elegant notation (§ 2.3.2), 
  
    [aa]x + [ab]y + … + [aw] = 0. 
 

Differentiating 2
iv  with respect to у, we similarly get 

 
    [ab]x + [bb]y + … + [bw] = 0. 
 

The derived equations are called normal, and it is clear that their 
number coincides with the number of the unknowns (yes, they became 
again unknown); the system of normal equations can therefore be 
solved in any usual way. Note, however, that the solution provides a 
certain set ˆ ˆ, ,...x y , a set of estimators of {x, y, …}, of magnitudes 

which will remain unknown. Even the unknowns of the system of 
normal equations already are ˆ ˆ, ,...x y  rather than x, y, … It is also 

necessary to estimate the errors of ˆ ˆ, ,...x y , but we leave that problem 

aside.  
    Condition (6.2) ensures valuable properties to those estimators 
(Petrov 1954). It corresponds to the condition of minimal variance, to 
 

    m2 = 
2 2 2

1 2 ...
min .nv v v

n k

+ + +
=

−
                                             (6.3) 

 
The denominator is the number of redundant observations; the same is 
true for the formula (2.12) which corresponds to the case of one single 
unknown. For this case system (6.1) becomes simpler, 
 
    aix + wi = 0, 
 
and it is easy to verify that it leads to the generalized arithmetic mean. 

Classical systems (6.1) had two unknown parameters of the ellipsoid 
of rotation best representing the figure of the Earth. After determining 
the length of one degree of a meridian in two different and observed 
latitudes it became possible to calculate those parameters whereas 
redundant meridian arc measurements led to equations of the type of 
(6.1). They served as a check of field measurements, they also 
heightened the precision of the final result (and to some extent 
compensated local irregularities of the figure of the Earth).  

The lengths of such arcs in differing latitudes were certainly 
different and thus indicated the deviation of that figure from a 
circumference.  

Legendre (1805, pp. 72 – 73; 1814) recommended the MLSq 
although only justifying it by reasonable considerations. Moreover, he 
(as also Laplace) mistakenly called the vi ’s errors of measurements 
and, finally, according to the context of his recommendation, he 
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thought that the MLSq led to the minimal value of the maximal |vi|. 
Actually, this condition is ensured by the method of minimax, see § 6.4.  
    Gauss had applied the MLSq from 1794 or 1795 and mistakenly 
thought that it had been known long ago. In general, Gauss did not 
hurry to publish his discoveries; he rather connected priority with the 
finding itself. He (1809, § 186) therefore called the MLSq unser 
Princip which deeply insulted Legendre. Note, however, that, unlike 
Legendre, Gauss had justified the new method (but later substantiated 
it in a different way since then, in 1809, the normal law became the 
only law of error).  
    As I see it, Legendre could have simply stated in some subsequent 
contribution that no one will agree that Gauss was the author of the 
MLSq. However, French mathematicians including Poisson (see below 
a few words about Laplace) sided with Legendre’s opinion and, to 
their own great disadvantage, ignored Gauss’ contributions on least 
squares and the theory of errors.  

Much later Gauss (letter to Bessel of 1839; Werke, Bd. 8, pp. 146 – 
147) explained his new attitude towards the MLSq: 

Ich muß es nämlich in alle Wege für weniger wichtig halten, 
denjenigen Wert einer unbekannten Größe auszumitteln, dessen 
Wahrscheinlichkeit die größte ist, die ja doch immer unendlich klein 
bleibt, als vielmehr denjenigen, an welchen sich haltend man das am 
wenigsten nachteilige Spiel hat.  

In other words, an integral measure of reliability (the variance) is 
preferable to the principle of maximal likelihood which he applied in 
1809. Then, in 1809, Gauss did not refer either to Lambert (1760, § 
295) or to Daniel Bernoulli (1778). The former was the first to 
recommend that principle for an indefinite density distribution. He had 
only graphically shown that density; it was a more or less symmetrical 
unimodal curve of the type φ(х – x̂ ), where x̂  can be understood as a 
location parameter. For observations х1, х2, …, хn Lambert 
recommended to derive x̂  from the condition (of maximum likelihood 
nowadays applied in mathematical statistics) 
 

    φ(х1 – x̂ ) φ(х2 – x̂ ) … φ(хn – x̂ ) = max. 
 
    So Gauss assumed that the arithmetic mean of observations was at 
the same time the most probable (in the sense of maximum likelihood) 
estimator and discovered that only the normal distribution followed 
from this assumption.  

In 1823 Gauss published his second and final justification of the 
MLSq by the principle of minimal variance (see above his letter to 
Bessel of 1839). Unlike his considerations in 1809, his reasoning 
which led him to equations (6.2) was very complicated whereas the 
law of error was indeed more or less normal. Thus, Maxwell (1860) 
proved (non-rigorously) that the distribution of gas velocities 
appropriate to a gas in equilibrium was normal; Quetelet (1853, pp. 64 
– 65) maintained that the normal law governed the errors faites par la 
nature.  

No wonder that Gauss’ first formulation of the MLSq persisted (and 
perhaps is still persisting) in spite of his opinion. I (2012) noticed, 
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however, that Gauss actually derived formula (6.3) as representing the 
minimal value of the (sample) variance independently from his 
complicated considerations and that, when taking this into account, his 
memoir (1823) becomes much easier to understand. And facts showing 
that the normal law was not universal in nature continued to multiply 
so that that memoir should be considered much more important. 
    The first serious opponent of the normal law was Newcomb (1886, 
p. 343) who argued that the cases of normal errors were quite 
exceptional. For treating long series of observations he recommended 
a mixture of differing normal laws, but the calculations proved 
complicated whereas his pattern involved subjective decisions. 
Later Eddington (1933, § 5) proved that that mixture was not stable. 
    Bessel (1818) discussed Bradley’s series of 300 observations and 
could have well doubted the existence of an appropriate normal law. 
He noticed that large errors had appeared there somewhat more often 
than expected but somehow explained it away by the insufficient (!) 
number of observations. Much later he (1838) repeated his mistake. I 
(2000) noted many other mistakes and even absurdities in his 
contributions. 
    Unlike other French mathematicians, Laplace objectively described 
Legendre’s complaint: he was the first to publish the MLSq, but Gauss 
had applied it much earlier. However, Laplace never recognized the 
utmost importance of Gauss’ second substantiation of the method. 
Instead, he persisted in applying and advocating his own version of 
substantiating it. He proved several versions of the central limit 
theorem (CLT) (§ 2.2.4), certainly, non-rigorously (which was quite 
understandable) and very carelessly listing its conditions, then 
declared that the errors of observation were therefore normal. Laplace 
(1814/1886, p. LX) maintained that his finding was applicable in 
astronomy where long series of observations are made; cf., however, 
Newcomb’s opinion above. Then he (1816/1886, p. 536) stated that 
the CLT holds in geodesy since, as it followed from his reasoning, the 
order of two main errors inherent in geodetic observations have been 
equalized. Here again he did not really take into account the conditions 
of that theorem. 
    Markov’s work on the MLSq has been wrongly discussed. Neyman 
(1934) attributed to him Gauss’ second justification of 1823 which 
even until our time (Dodge 2003, p. 161) is sometimes called after 
both Gauss and Markov. David & Neyman (1938) repeated the latter’s 
mistake but the same year Neyman (1938b/1952, p. 228) corrected 
himself. 

Then, Linnik et al (1951, p. 637) maintained that Markov had in 
essence introduced concepts identical to the modern notions of 
unbiased and effective statistics. Without explaining that latter notion I 
simply note that these authors should have replaced Markov by Gauss. 
    Markov (1899) upheld the second justification of the MLSq perhaps 
much more resolutely than his predecessors (the first such opinion 
appeared in 1825). However, he (1899/1951, p. 246) depreciated 
himself: 
    I consider [that justification] rational since it does not obscure the 
conjectural essence of the method. […] We do not ascribe the ability 
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of providing the most probable or the most plausible results to the 
method … 

Such a method does not need any justification. Furthermore, the 
MLSq does have optimal properties (Petrov 1954, cited above as well). 
Also see Sheynin (2006). 

6.4. The Minimax Method 
    There also exist other methods of solving systems (6.1). They do not 
lead to the useful properties of the MLSq estimators but are expedient 
in some cases. And there also exists a special method leading to the 
least absolute value of the maximal residual  
 
    |vmax| = min.                                                                   (6.4) 
 
    Least means least among all possible solutions (and therefore sets of 
vi’s); in the simplest case, among several reasonable solutions. The 
minimax method does not belong to probability theory, does not lead 
to any best results, but it allows to make definite conclusions. 
Recall that the coefficients ai, bi, … in system (6.1) are given by the 
appropriate theory and ask yourselves: do the observations wi confirm 
it? After determining ˆ ˆ, ,...x y  (this notation does not infer the MLSq 

anymore) we may calculate the residual free terms vi and determine 
whether they are not too large as compared with the known order of 
errors. In such cases we ought to decide whether the theory was wrong 
or that the observations were substandard. And here the minimax 
method is important: if even condition (6.4) leads to inadmissible |vi|, 
our doubts are certainly justified. 

Both Euler and Laplace had applied the minimax method (the latter 
had devised an appropriate algorithm) for establishing whether the 
accomplished meridian arc measurements denied the ellipticity of the 
figure of the Earth. Kepler (1609/1992, p. 334/143) could have well 
applied elements of that method for justifying his rejection of the 
Ptolemaic system of the world: the Tychonian observations were 
sufficiently precise but did not agree with it. In astronomy, equations 
are neither linear, nor even algebraic, and Kepler had to surmount 
additional difficulties (irrespective of the method of their solution).  
    Condition (6.4) is identical to having  
 

    lim( 2 2 2
1 2 ... )k k k

nv v v+ + + = min, k → ∞,  

 
which is almost obvious. Indeed, suppose that |v1| is maximal. Then, as 
k → ∞, all the other terms of the sum can be neglected. For arriving at 

a minimal value of the sum, 2
1

kv , and therefore |v1| also, should be as 

small as possible. 
    Without looking before he leapt, Stigler(1986, pp. 27, 28) 
confidently declared that Euler’s work (see above) was a statistical 
failure since he 
    Distrusted the combination of equations, taking the mathematician’s 
view that errors actually increase with aggregation rather than taking 
the statistician’s view that random errors tend to cancel one another. 
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    However, at the turn of the 18th century Laplace, Legendre and other 
scientists refusa de compenser les angles of a triangulation chain 
between two bases. Being afraid of corrupting the measured angles by 
adjusting them, they resolved to calculate each half of the chain from 
its own base (and somehow to adjust the common side of both parts of 
the triangulation), see Méchain & Delambre (1810, pp. 415 – 433).  
Later, in the Third Supplement to his Théorie analytique, Laplace (ca. 
1819/1886, pp. 590 – 591) explained that decision by the lack of the 
vraie théorie which he (rather than Gauss whom he had not mentioned) 
had since created. See also Sheynin (1993а, p. 50). 

In the Soviet Union, separate triangulation chains were included in 
the general adjustment of the entire network only after preliminarily 
adjustment (§ 1.1.4). This pattern was necessary since otherwise the 
work would have been impossible. In addition, the influence of the 
systematic errors should have been restricted to separate chains (as 
stated in a lecture of ca. 1950 of an eminent Soviet geodesist, A. A. 
Isotov), and this consideration was akin to the decision of the French 
scientists described above. 

 

Chapter 7. Theory of Probability, Statistics, Theory of Errors 

7.1. Axiomatization of the Theory of Probability 
    Following many previous author, I noted (§ 1.1.1) that the 

classical definition of probability is unsatisfactory and that Hilbert 
(1901/1970, p. 306) recommended to axiomatize the theory of 
probability: 

Durch die Untersuchungen über die Grundlagen der Geometrie 
wird uns die Aufgabe nahe gelegt, nach diesem Vorbilds diejenigen 
physikalischen Disziplinen axiomatisch zu behandeln, in denen schon 
heute die Mathematik eine hervorragende Rolle spielt: dies sind in 
erster Linie die Wahrscheinlichkeitsrechnung und die Mechanik. 

The theory of probability had then still been an applied 
mathematical (but not physical) discipline. In the next lines of his 
report Hilbert mentioned the method of mean values. That method or 
theory had been an intermediate entity divided between statistics and 
the theory of errors, and Hilbert was one of the last scholars (the last 
one?) to mention it, see Sheynin (2007, pp. 44 – 46). 

Boole (1854/1952, p. 288) indirectly forestalled Hilbert: 
The claim to rank among the pure sciences must rest upon the 

degree in which it [the theory of probability] satisfies the following 
conditions: 1° That the principles upon which its methods are founded 
should be of an axiomatic nature. 

Boole formulated two more conditions, both of a general scientific 
nature. Attempts to axiomatize the theory began almost at once after 
Hilbert’s report. However, as generally recognized, only Kolmogorov 
attained quite satisfactory results. Without discussing the essence of 
his work (see for example Gnedenko 1954, § 8 in chapter 1), I quote 
his general statements (1933, pp. III and 1): 
    Der leitende Gedanke des Verfassers war dabei, die Grundbegriffe 
der Wahrscheinlichkeitsrechnung, welche noch unlängst für ganz 
eigenartig galten, natürlicherweise in die Reihe der allgemeinen 
Begriffsbildungen der modernen Mathematik einzuordnen. 
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Die Wahrscheinlichkeitstheorie als mathematische Disziplin soll 

und kann genau in demselben Sinne axiomatisiert werden wie die 
Geometrie oder die Algebra. Das bedeutet, daß, nachdem die Namen 
der zu untersuchenden Gegenstände und ihrer Grundbeziehungen 
sowie die Axiome, denen diese Grundbeziehungen zu gehorchen haben, 
angegeben sind, die ganze weitere Darstellung sich ausschließlich auf 
diese Axiome gründen soll und keine Rücksicht auf die jeweilige 
konkrete Bedeutung dieser Gegenstände und Beziehungen nehmen 
darf.  

For a long time these ideas had not been generally recognized 
(Doob 1989; 1994, p. 593): 
    To most mathematicians mathematical probability was to 
mathematics as black marketing to marketing; […] The confusion 
between probability and the phenomena to which it is applied […] still 
plagues the subject; [the significance of the Kolmogorov monograph] 
was not appreciated for years, and some mathematicians sneered that 
[…] perhaps probability needed rigor, but surely not rigor mortis; […] 
The role of measure theory in probability […] still embarrasses some 
who like to think that mathematical probability is not a part of analysis.  

 
    It was some time before Kolmogorov’s basis was accepted by 
probabilists. The idea that a (mathematical) random variable is simply 
a function, with no romantic connotation, seemed rather humiliating to 
some probabilists … 
    For a long time Hausdorff’s merits had remained barely known. His 
treatise on the set theory (1914, pp. 416 – 417) included references to 
probability, but much more was contained in his manuscripts, see 
Girlich (1996) and Hausdorff (2006). I also mention Markov (1924). 
On p. 10 he stated a curious axiom and on p. 24 referred to it (without 
really thinking how the readers will manage to find it):  
    Axiom. [Not separated from general text!] If […] events p, q, r, …, u, 
v are equally possible and divided with respect to event A into 
favourable and unfavourable, then, [if] A has occurred, [those] which 
are unfavourable to event A fall through, whereas the others remain 
equally possible …  

 
The addition and multiplication theorems along with the axiom 

mentioned above serve as an unshakeable base for the calculus of 
probability as a chapter of pure mathematics. 
    His axiom and statement have been happily forgotten.  

Shafer & Vovk (2001) offered their own axiomatization, possibly 
very interesting but demanding some financial knowledge. They (2003, 
p. 27) had explained their aim: 

[In our book] we show how the classical core of probability theory 
can be based directly on game-theoretic martingales, with no appeal 
to measure theory. Probability again becomes [a] secondary concept 
but is now defined in terms of martingales … 
    Barone & Novikoff (1978) and Hochkirchen (1999) described the 
history of the axiomatization of probability. The latter highly estimated 
an unpublished lecture of Hausdorff read in 1923. 
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7.2. Definitions and Explanations 
    As understood nowadays, statistics originated in political arithmetic 
(Petty, Graunt, mid-17th century). It quantitatively (rather than 
qualitatively) studied population, economics and trade, discussed the 
appropriate causes and connections and applied simplest stochastic 
considerations. Here is a confirmation (Kendall 1960): 

Statistics, as we now understand the term, did not commence until 
the 17th century, and then not in the field of ‘statistics’ 
[Staatswissenschaft]. The true ancestor of modern statistics is […] 
Political Arithmetic. 

Statistics had gradually, and especially since the second half of the 
19th century, begun to penetrate various branches of natural sciences. 
This led to the appearance of the term statistical method although we 
prefer to isolate three stages of its development.  
    At first, conclusions were being based on (statistically) noticed 
qualitative regularities, a practice which conformed to the qualitative 
essence of ancient science. See the statements of Hippocrates (§ 3.1) 
and Celsus (§ 1.1.3).  

The second stage (Tycho in astronomy, Graunt in demography and 
medical statistics) was distinguished by the availability of statistical 
data. Scientists had then been arriving at important conclusions either 
by means of simple stochastic ideas and methods or even directly, as 
before. A remarkable example is the finding of an English physician 
Snow (1855/1965, pp. 58 – 59) who compared mortality from cholera 
for two groups of the London population, of those whose drinking 
water was (somehow) purified or not. Purification decreased mortality 
by 8 times and he thus discovered the way in which cholera epidemics 
had been spreading.  

During the present stage, which dates back to the end of the 19th 
century, inferences are being checked by quantitative stochastic rules. 

The questions listed by Moses (Numbers 13:17 – 20) can also be 
attributed to that first stage (and to political arithmetic): he sent scouts 
to spy out the land of Canaan, to find out  

whether the people who dwell in it are strong or weak, whether they 
are few or many, […] whether the land is rich or poor … 

In statistics itself, exploratory data analysis was isolated. Already 
Quetelet discussed its elements (1846); actually, however, the 
introduction of isolines was a most interesting example of such 
analysis. Humboldt (1817, p. 466) invented isotherms and (much later) 
mentioned Halley who, in 1791, had shown isolines of magnetic 
declination over North Atlantic.  

That analysis belongs to the scientific method at large rather than 
mathematics and is not therefore recognized by mathematical statistics. 
It only belongs to theoretical statistics which in my opinion should 
mostly explain the difference between the two statistical sisters. Some 
authors only recognize either one or another of them. In 1953 
Kolmogorov (Anonymous 1954, p. 47), for example, declared that 
    We have for a long time cultivated a wrong belief in the existence, in 
addition to mathematical statistics and statistics as a socio-economic 
science, of something like yet another non-mathematical, although 
universal general theory of statistics which essentially comes to 
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mathematical statistics and some technical methods of collecting and 
treating statistical data. Accordingly, mathematical statistics was 
declared a part of this general theory of statistics. Such views […] are 
wrong. […] 
    All that which is common in the statistical methodology of the 
natural and social sciences, all that which is here indifferent to the 
specific character of natural or social phenomena, belongs to […] 
mathematical statistics. 
    These technical methods indeed constitute exploratory data analysis. 

Kolmogorov & Prokhorov (1974/1977, p. 721) defined 
mathematical statistics as  

the branch of mathematics devoted to the mathematical methods for 
the systematization, analysis and use of statistical data for the drawing 
of scientific and practical inferences.  

Recall (§ 2.7) that they also defined the notion of statistical data and 
note that a similar definition of the theory of statistics had appeared in 
the beginning of the 19th century (Butte 1808, p. XI): it is 

Die Wissenschaft der Kunst statistische Data zu erkennen und zu 
würdigen, solche zu sammeln und zu ordnen. 

The term mathematical statistics appeared in the mid-19th century 
(Knies 1850, p. 163; Vernadsky 1852, p. 237), and even before Butte 
Schlözer (1804) mentioned the theory of statistics in the title of his 
book. He (p. 86) also illustrated the term statistics: Geschichte ist eine 
fortlaufende Statistik, und Statistik stillstehende Geschichte. 
Obodovsky (1839, p. 48) offered a similar statement: history is related 
to statistics as poetry to painting. 

Unlike Shlözer, many statisticians understood his pithy saying as a 
definition of statistics; as well we may say today: a car is a landed 
plane, and a plane, a car taken wing.  
    For us, the theory of statistics essentially originated with Fisher. A 
queer episode is connected here with Chuprov’s book (1909/1959). Its 
title is Essays on the Theory of Statistics, but on p. 20 he stated that A 
clear and strict justification of the statistical science is still needed!  

The determinate theory of errors (§ 6.1) has much in common with 
both the exploratory data analysis and Fisher’s creation, the 
experimental design (a rational organization of measurements 
corrupted by random errors). However, the entire theory of errors 
seems to be the application of the statistical method to the process of 
measurement and observation in experimental science rather than a 
chapter of mathematical statistics, as it is usually maintained. Indeed, 
stellar statistics is the application of the statistical method to 
astronomy, and medical statistics is etc. Furthermore, unlike 
mathematical statistics the theory of errors cannot at all give up the 
notion of true value of a measured constant (§ 6.2).  

7.3. Penetration of the Theory of Probability into Statistics 
Hardly anyone will deny nowadays that statistics is based on the 

theory of probability, but the situation had not always been the same. 
Already Jakob Bernoulli (§ 4.1.1) firmly justified the possibility of 
applying the latter but statisticians had not at all been quick to avail 
themselves of the new opportunity. In those times, this might have 
been partially due to the unreliability of data; the main problem was 
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their general treatment. Then, statistical investigations are not reduced 
to mathematical calculations; circumstances accompanying the studied 
phenomena are also important, cf. Leibniz’ opinion in § 4.1.1. Finally, 
their education did not prepare statisticians for grasping mathematical 
ideas and perhaps up to the 1870s they stubbornly held to equally 
possible cases, that is, to the theoretical probability.  

Lack of such cases meant denial of the possibility to apply 
probability theory. But forget the 1870s! In 1916 A. A. Kaufman 
(Ploshko & Eliseeva 1990, p. 133) declared that the theory of 
probability is only applicable to independent trials with constant 
probability of success and certainly only when those equally possible 
cases existed. 
    Now, Quetelet. He had introduced mean inclinations to crime and 
marriage (although not for separate groups of population), but 
somehow statisticians did not for a long time understand that mean 
values ought not to be applied to individuals. As a consequence, by the 
end of his life and after his death (1874), mathematically ignorant 
statisticians went up in arms against those inclinations and probability 
in general (Rümelin 1867/1875, p. 25): 
    Wenn mir die Statistik sagt, daß ich im Laufe des nächsten Jahres 
mit einer Wahrscheinlichkeit von 1 zu 49 sterben, mit einer noch 
größeren Wahrscheinlichkeit schmerzliche Lücken in dem Kreis mir 
theurer Personen zu beklagen haben werde, so muß ich mich unter den 
Ernst dieser Wahrheit in Demuth beugen; wenn sie aber, auf ähnliche 
Durchschnittszahlen gestützt, mir sagen wollte, daß mit einer 
Wahrscheinlichkeit von 1 zu so und so viel [I shall commit a crime] so 
dürfte ich ihr unbedenklich antworten: ne sutor ultra crepidam! 
[Cobbler! Stick to your last!].  
    A healthy man could have just as well rejected the conclusions 
drawn from a life table (Chuprov 1909/1959, pp. 211– 212). 
    Lexis infused a fresh spirit into (population) statistics. His followers, 
Bortkiewicz, Chuprov, Bohlmann, Markov, founded the so-called 
continental direction of statistics. In England, Galton, and Pearson 
somewhat later created the Biometric school which had been 
statistically studying Darwinism. The editors of its journal, Biometrika, 
a Journal for the Statistical Study of Biological Problems, were 
Weldon (a biologist who died in 1906), Pearson and Davenport (an 
author of a book on biometry and several articles) in consultation with 
Galton. Here is its Editorial published in 1902, in the first issue of that 
journal:  
    The problem of evolution is a problem in statistics. […] We must 
turn to the mathematics of large numbers, to the theory of mass 
phenomena, to interpret safely our observations. […] May we not ask 
how it came about that the founder of our modern theory of descent 
made so little appeal to statistics? […] The characteristic bent of 
Darwin’s mind led him to establish the theory of descent without 
mathematical conceptions; even so Faraday’s mind worked in the case 
of electro-magnetism. But as every idea of Faraday allows of 
mathematical definition, and demands mathematical analysis, […] so 
every idea of Darwin – variation, natural selection […] – seems at 
once to fit itself to mathematical definition and to demand statistical 
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analysis. […] The biologist, the mathematician and the statistician 
have hitherto had widely differentiated field of work. […] The day will 
come […] when we shall find mathematicians who are competent 
biologists, and biologists who are competent mathematicians …  

During many years the Biometric school had been keeping to 
empiricism (Chuprov 1918 – 1919, t. 2, pp. 132 – 133) and he and 
Fisher (1922, pp. 311 and 329n) both indicated that Pearson confused 
theoretical and empirical indicators. And here is Kolmogorov (1947, p. 
63; 1948/2002, p. 68): 

The modern period in the development of mathematical statistics 
began with the fundamental works of […] Pearson, Student, Fisher 
[…]. Only in the contributions of the English school did the 
application of probability theory to statistics cease to be a collection 
of separate isolated problems and become a general theory of 
statistical testing of stochastic hypotheses (of hypotheses about laws of 
distribution) and of statistical estimation of parameters of these laws.  

 

The main weakness of the [Biometric] school [in 1912] were: 1. 
Rigorous results on the proximity of empirical sample characteristics 
to the theoretical ones existed only for independent trials. 2. Notions of 
the logical structure of the theory of probability, which underlies all 
the methods of mathematical statistics, remained at the level of 
eighteenth century results. 3. In spite of the immense work of 
compiling statistical tables […], in the intermediate cases between 
‘small’ and ‘large’ samples their auxiliary techniques proved highly 
imperfect. 

I (2010) have collected many pronouncements about the Biometric 
school and Pearson; hardly known outside Russia was Bernstein’s high 
opinion. I note that Kolmogorov passed over in silence the Continental 
direction of statistics. Chuprov had exerted serious efforts for bringing 
together that Continental direction and the Biometric school, but I am 
not sure that he had attained real success. And this I say in spite of the 
Resolution of condolence passed by the Royal Statistical Society after 
the death of its Honorary member (Sheynin 1990/2011, p. 156). It 
stated that Chuprov’s contributions (not special efforts!) did much to 
harmonize the methods of statistical research developed by continental 
and British workers. Even much later Bauer (1955, p. 26) reported that 
he had investigated how both schools had been applying analysis of 
variance and concluded (p. 40) that their work was going on side by 
side but did not tend to unification.  
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Preface 
This educational aid is intended for [students of] technical academic 

institutions whose mathematical curriculum includes elements of the 
theory of probability and mathematical statistics taught for not more 
than 30 hours. The reader is supposed to master mathematical analysis 
as usually demanded by those institutions. This aid describes the main 
notions and some methods of the theory of probability which are 
nowadays necessary in many branches of technology. Not discussed is 
the theory of random processes or some special issues requiring more 
serious mathematical knowledge. Some of the more difficult parts of 
this aid are provided in small print and can at first be omitted. The 
examples are essential for explaining the main notions and I 
recommend the readers to study them attentively.  

The aid is based on my lectures reads for ten years at the Moscow 
power engineering institute. Acknowledgements are due to A. M. 
Yaglom for his inestimable advice and comments as well as to R. Ya. 
Berry, I. A. Brin, M. I. Vishik, S. A. Stebakov and R. S. Khasminsky 
for useful indications. 

 
Introduction 

In various branches of technology and manufacturing it is ever more 
needful to deal with mass phenomena having special inherent 
peculiarities. Thus, when machine parts are processed by an automatic 
lathe, their sizes fluctuate around some standard value. These 
fluctuations are random: the knowledge of the sizes of the finished 
parts will not enable us to predict precisely the size of the next part. 
However, the distribution of the sizes in a large batch reveals a rather 
precise regularity. Their arithmetical means in different batches are 
approximately identical, and deviations of a given magnitude of one or 
another size from their mean in different batches occur almost equally 
often. A similar regularity is observed when repeatedly weighing the 
same object on a precise balance. Here also separate results differ but 
the mean of many of them will remain practically invariable. The 
frequency of some deviation from that mean can be precisely 
calculated. Such regularities are certainly unable to predict a separate 
result but allow us to treat the outcome of mass measurements. 

It is a special mathematical science, the theory of probability, that 
studies the regularities inherent in various mean characteristics, in the 
repetition of random deviations of a given magnitude [from the 
appropriate mean] etc. 

Such regularities had been first revealed when solving problems in 
games of chance, especially in dice games in the 17th century [the 
author neglects card games!]: when repeatedly casting a die, each of 
the six outcomes occurs almost equally often, with relative frequency 
of ca. 1/6. When rolling two dice, the sum of the occurring points takes 
its unequally possible values from 2 to 12. However, in a large number 
of casts their relative frequencies will be close to certain numbers 
which can be calculated beforehand by simple rules (see § 2.2.1). 

The establishment of such rules and the solution of somewhat more 
complicated problems connected with dice games had been important 
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during the initial period of the development of probability theory. 
Even now some main notions of that theory (random event and its 
probability, random variable etc) are expediently illustrated by 
examples about dice games. The six outcomes of a cast of a die clearly 
elucidates the notion of a trial with some equally possible outcomes 
and the numbers of the occurring points provide a simple example of a 
random variable, of a magnitude whose values depend on chance. 

However, the simplest patterns worked out for solving problems 
connected with those games are very restrictedly applicable. Various 
other problems, formulated in the 19th and 20th centuries by the 
developing technology and natural sciences [and even earlier by 
population statistics and insurance], required a study of random 
variables of an essentially more complicated nature and especially of 
continuous random variables (the size of a manufactured machine part 
and the result of weighing (see Preface).  

This aid pays main attention to such random variables and their 
characteristics; accordingly, the initial notions of random event and 
probability are only briefly discussed here, in Chapter 1. The second 
Chapter deals with (chiefly one-dimensional) random variables of the 
two separately discussed most important types, discrete and 
continuous, and their functions.  

The third Chapter treats the main numerical characteristics of 
random variables, their simplest properties are proved. The most 
important properties of mean values connected with the so-called law 
of large numbers are discussed in Chapter 4. The fifth is devoted to a 
central issue of probability theory, to the limiting theorems 
ascertaining the role of the so-called normal law of distribution (in 
particular, for estimating the mean values). Chapter 6 is concerned 
with some applications of the theory to the mathematical treatment of 
measurements (to the theory of errors), and, finally, the seventh 
Chapter considers the problem of linear correlation between random 
variables, an issue important for practical applications.  

 
Chapter 1. Random Events and Probabilities 

1.1. Random events. Frequency and probability 

Random events are such that can occur or not after a certain set of 
conditions had been realized. These conditions are certainly supposed 
to be essentially connected with the possibility of the occurrence of 
these events and to be unboundedly reproducible. Each such 
reproduction is called a trial.  

Example: a cast of a die. The random event is here the outcome of a 
six, of an even number of points etc. Another example: weighing an 
object. The random variable is the restriction of the error of that 
weighing: it does not exceed a number established beforehand [a very 
clumsy explanation]. The error is understood as the difference between 
the result obtained and the true value1 of the object’s weight. 

Relative frequency of a random event is the ratio of the number m of 
its occurrences to the total number n of trials. Experience shows that 
after numerous trials the frequency m/n of the random event possesses 
certain stability. If, for example, after a large number of trials the 
frequency became m/n = 0.2, then, in any other set of a sufficiently 
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large number n1 of trials the frequency m1/n1 will be close to 0.2. 
Therefore, the frequencies of a certain random variable in such series 
of trials as though group themselves around some number. If, for 
example, a precise and homogeneous cube (a regular die) is cast, the 
frequencies of each possible outcome fluctuate around one and the 
same number, 1/6.  

The stability of relative frequencies can only be explained as a 
manifestation of some objective property of random events. The fact 
just described is a corollary of the regularity of the die and therefore of 
the equally possible outcomes 1, 2, …, 6. The degree of the objective 
possibility of the occurrence of a random event can be measured by a 
number, the probability of the random event. The relative frequencies 
of the occurrence of that random event are grouped around that very 
number.  

Both that frequency and the probability of a random event should be 
dimensionless magnitudes situated between 0 and 1. However, given 
the set of conditions, the former also depends on the executed trials 
whereas the probability of a random event is only connected with the 
conditions. Probability is an initial main notion; in general, it cannot 
be defined by simpler notions. It can only be directly calculated in 
some simplest patterns (§ 1.2). An analysis of such patterns allows us 
to establish the main properties of probability, necessary for 
continuing the description of our subject. 

1.2. Classical definition of probability 
First, some terminology. Random events are called incompatible 

(exclusive) if they cannot occur at the same time. If one and only one 
of them ought to occur in every trial, they make up a complete group 
of pairwise incompatible events2. In this section, we restrict our 
attention to trials with equally possible outcomes but will not explain 
the notion of equal possibility by simpler notions. It is usually justified 
by some consideration of symmetry (see the example with the casting 
of a die). In practice, it is connected with the equality of relative 
frequencies of all the outcomes in a large number of trials. In this 
section, the number of cases is always supposed finite.  

More precisely, we suppose that the outcomes of the trials can be 
represented as a complete group of pairwise incompatible and equally 
possible random events or cases. If the complete group consists of N 
cases, each of them is assigned probability 1/N. This assumption 
agrees with the fact that in a large number of trials equally possible 
cases occur almost equally often. In other words, those cases have 
relative frequencies close to 1/N. In a cast of a regular die all the 
possible cases constitute a complete group and each has probability 1/6. 

Consider now a compound event A, the occurrence of any of M 
fixed cases out of N possible ones. By definition, the probability of A, 
P(A), is M/N. For example, the probability of the occurrence of an 
even number of points of a die is 3/6 since it only occurs in 3 cases out 
of 6. The formula 

 
P(A) = M/N                                                                         (1.1) 
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expresses the so-called classical definition of probability: if the results 
of a trial can be represented as a complete group of N equally possible 
and pairwise incompatible cases and a random event A only occurs in 
M cases, its probability is M/N, the ratio of the number of cases 
favouring A to the total number of all cases. 

Example. Toss two coins and heads can appear twice, once, or not at 
all. Required are the probabilities of each of these three random events. 
For each coin the occurrence and non-occurrence of heads is supposed 
equally possible. The listed events constitute a complete group of 
obviously incompatible but not equally possible events. For applying 
formula (1.1) we ought to represent all the possible outcomes of the 
trial as a complete group of equally possible events. So, the cases are: 

 
heads, heads; heads, tails; tails, heads; tails, tails 
 

    It is natural to consider that these four outcomes are equally possible, 
and once again they form a complete group of pairwise incompatible 
events. And now we may indeed apply the classical definition of 
probability. The appearance of 2, 1 and 0 heads have probabilities 1/4, 
2/4 = 1/2 and 1/4. 

I emphasize once more: the definition (1.1) is essentially based on 
the assumption of equal possibility of all the outcomes. All the 
problems to which this definition is applicable belong to the following 
simple pattern of random sampling: we randomly choose one element 
out of a set of N elements so that all of them have the same possibility 
of being selected. The event A is the choice of one of the M elements 
possessing a definite indication. 

This pattern is easiest to imagine by introducing an urn. And so, an 
urn contains N balls identical to the touch, and only M of them are 
white. The trial consists in blindly extracting a ball, and the random 
event is the occurrence of a white ball. Its probability is M/N.  

1.3. Main properties of probabilities.  

Addition of probabilities 
An analysis of definition (1.1) allows us to reveal the following 

main properties of probabilities. 
1) The probability of a random event is a non-negative number 
 
P(A) ≥ 0.                                                                        (1.2) 
 
2) A certain event, such that under a given set of conditions it ought 

to occur certainly, has probability 
 
P(certain event) = 1.                                                       (1.3) 
 
3) The probabilities of random events obey the addition rule. If 

event C consists in the occurrence of any one of two incompatible 
events A and B, its probability is the sum of their probabilities: 

 
P(A + B) = P(A) + P(B).                                                  (1.4) 
 

This equality also represents the property of additivity of probabilities. 
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The first two properties, (1.2) and (1.3), directly follow from (1.1) in 
which M ≥ 0 and N > 0 and for a certain event M = N. The third 
property (1.4) for the pattern of random sampling is proved thus. 
Suppose that an urn contains N balls, K of them red, L, blue, and the 
rest are white. A ball is extracted and A and B are the occurrences of a 
red and a blue ball. Then the event (A + B) is the appearance of a 
coloured ball. A direct calculation of probabilities by formula (1.1) 
provides 

 
P(A) = K/N, P(B) = L/N, P(A + B) = (K + L)/N, QED. 
 
It is extremely important that the properties of probabilities as 

described above hold not only for the pattern of random sampling but 
for any system of random events. Indeed, recall that we have 
established the general notion of probability by issuing from the 
stability of the relative frequencies of random events. It is therefore 
natural to suppose that the main properties of probabilities of random 
events coincide with those of relative frequencies for which the 
properties mentioned are easily confirmed: 

1*) Relative frequency m/n cannot be negative since m ≥ 0 and n > 0. 
2*) By its definition, a certain event takes place in each trial and its 

relative frequency is therefore n/n = 1. 
3*) If events A and B are incompatible, the event (A + B) occurs 

when at least one of them appears, see the example above. The relative 
frequency of (A + B) is therefore equal to the sum of the relative 
frequencies of A and B. 

Issuing from the considerations above, we admit the three described 
properties of probability for any system of random events. It is useful 
to note that by issuing from these and some other properties we can 
construct axiomatically the entire probability theory. Such a strict 
construction is due to Kolmogorov.  

1.3.1. Remark about the subject of probability theory. This theory 
only studies the numerical relations between the probabilities of 
various random events rather than their physical essence. The main 
properties of probabilities and the derived rules of calculation are here 
important. Indeed, the following formulation of a problem is typical 
for the theory and its applications.  

Given, some set of simple random events whose probabilities are 
known. Required are the probabilities of other random events 
conclusively connected with the given events3. Thus, the occurrence of 
heads in each coin toss is assumed to be 1/2; determine the probability 
that heads appears not less than 50 times in a hundred tosses. Such 
problems are solved by definite rules of calculating probabilities; one 
of them, the addition rule, was established above. 

How are the probabilities of the initial set of random events 
determined? For applications, it is of no consequence. It is only 
important that, if the relative frequencies of the initial events in a large 
number of trials were close to their probabilities, the same happens 
with the frequencies of the complex event whose probability was 
calculated according to the adopted rules. Those rules obey this main 
requirement. 
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1.3.2. Corollaries of the main properties of probability 
Corollary 1. If random events A1, A2, …, An are pairwise 

incompatible, 
 
P(A1 or A2 or … or An) = P(A1) + P(A2) + … + P(An).     (1.5) 
 
Corollary 2. If such events form a complete group the sum of their 

probabilities is unity. Indeed, for such a group the event (A1 or A2 or … 
or An) is certain and 

 
P(A1 or A2 or … or An) = 1. 
 

Apply formula (1.5) to the left side of this equality, then 
 

P(A1) + P(A2) + … + P(An) = 1.                                       (1.6) 
 
Of special interest is the particular case in which the complete group 

only consists of two incompatible events; the occurrence of one of 
them is tantamount to the non-occurrence of the other. Such random 
events are called mutually contrary and denoted A and A  (non-A). The 
sum of the probabilities of mutually contrary events is unity: 

 
P(A) + P( A ) =1.                                                              (1.7) 
 
1.3.3. Impossible events. An event is impossible if it cannot occur 

no matter how long we repeat the trials. Thus, it is impossible to 
extract a white ball from an urn that does not contain any such balls at 
all. An impossible event can be considered contrary to any certain 
event and its probability is therefore 0. This agrees with the fact that 
the frequency of an impossible event is also 0.  

According to the classical definition of probability, the probability is 
zero then and only then, when the event is impossible (M = 0). When 
studying continuous random variables, we will see that a zero 
probability of a random event does not yet lead to its impossibility. 

1.4. Products of random events. Independent events 
A product of random events A and B is a random event made up of 

the occurrence of both A and B and is denoted by (A and B).  
Example. A number is randomly chosen from the first hundred of 

natural numbers; events A and B are the divisibility of the selected 
number by 3 and 4. Then event (A and B) is the divisibility by both 3 
and 4, that is, by 12. It is easily shown4 that 

 
P(A) = 33/100, P(B) = 25/100, P(A and B) = 8/100 
 

since 33 numbers are divisible by 3; 25, by 4; and 8, by 12. 
The simplest relation between the probabilities of random events A 

and B and the probability of (A and B) takes place when these initial 
events are independent. We will first explain this notion by the pattern 
of random sampling. Suppose that a ball is blindly extracted from each 
of two urns. Events A and B will be the occurrences of a white ball 
from these urns respectively. These events are in essence independent 
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since the colour of the ball extracted from one urn cannot influence the 
colour of the other ball. Calculate now the probability of the product of 
event (A and B), of both balls being white. If the urns contain N1 and 
N2 balls, M1 and M2 of them white, then 

 
P(A) = M1/N1, P(B) = M2/N2. 
 
Each of the N1 outcomes concerning the first urn can be linked with 

each of the N2 outcomes concerning the second urn so that the total 
number of outcomes is N1N2; and white balls only appear in M1M2 
cases, so that the probability sought is 

 
P(A and B) = M1M2/N1N2 = P(A)P(B).                              (1.8) 
 
This formula expresses the multiplication rule for independent 

random events. Recall that that formula is only derived for a particular 
case and the notion itself of independence ought to be defined. This 
can be done by issuing from formula (1.8) whose simplicity ensures its 
importance for calculations. 

Definition. Two random events A and B are independent if the 
multiplication rule is represented for them by formula (1.8), i. e., if the 
probability of their product is equal to the product of their 
probabilities.  

Note that independence of random events A and B leads to the 

pairwise independence of events A  and B; A and B ; and  and A B . 
This statement can be easily proved in a formal way but we leave this 
task for the readers; see Exercise 5 in §1.6.  

The definition of independence for two random events can be 
extended: Events A1, A2, …, An are independent in total if the 
probabilities of the products of any 2, 3, … n of them are equal to the 
products of the respective probabilities.  

Thus, three events A, B and C are independent in total if 
 
P(A and B) = P(A)P(B); P(A and C) = P(A)P(C); P(B and C) = P(B)P(C);  
P(A and B and C) = P(A)P(B) P(C).                               (1.9) 
 
Random events can be independent pairwise but not in total. Indeed, 

suppose that a ball is blindly extracted from an urn having 4 balls 
numbered 1, 2, 3 and 123; that events A, B and C are the appearances 
of the numbers 1, 2 and 3 respectively on the extracted ball. These 
events are pairwise independent since5 

 
P(A) = P(B) = P(C) = 2/4 = 1/2, 

P(A and B) = P(B and C) = P(C and A) = 1/4 (= 1/2·1/2). 
 

They are not, however, independent in total since 
 
P(A and B and C) = 1/4 ≠ 1/2·1/2·1/2  
 
[here, 1/4 is the probability of extracting a ball numbered 123]. 
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Note also that equality (1.9) all by itself does not ensure the 
independence of A, B and C in total. Indeed, suppose that an urn 
contains 8 balls numbered 1, 2, 3, 12, 13, 20, 30 and 123 and that 
events A, B and C are the same as above. Then  
 

P(A) = P(B) = P(C) = 4/8 = 1/2;  
P(A and B and C) = 1/8 = 1/2(1/2·1/2)  
 

and even P(A and B) = P(A and C) = 2/8 = 1/2·1/2 but  
    P(B and C) = 1/8 ≠ P(B)P(C).  

 
1.4.1. Generalized addition rule. If random events A and B are 

independent, 
 
P(A or B) = P(A) + P(B) – P(A)P(B).                              (1.10) 
 

Proof. Note first of all that events (A or B) and (  and )A B  are 

contrary: the occurrence of at least one of the two events, A and B, 
means that the respective contrary event cannot happen, and neither 

the product of the contrary events,  and .A B  By formula (1.7) and the 
multiplication rule we have 

 

P(A or B) = 1 – P (  and )A B  = 1 – ( ) ( )P A P B =   

1 – [1 – P(A)][1 – P(B)] = P(A) + P(B) – P(A)P(B), QED. 
 
I adduce now without proof the general addition rule for not 

necessarily independent events A and B: 
 
P(A or B) = P(A) + P(B) – P(A and B).                                 (1.11) 
 
Exercise 1. Prove formula (1.11) by issuing from the classical 

definition of probability.  
Exercise 2. Geometrically interpret formula (1.11) by considering 

the throw of a point on a unit square as a trial and assuming that the 
probability of the fall of the point on some figure situated within the 
unit square is equal to the area of the figure. 

Example 1. Two shots are independently firing at the same target. 
The probabilities of hitting it are P(A) = 0.9 and P(B) = 0.8 
respectively. Required is the probability of at least one hit. By formula 
(1.10) 

 
P(A or B) = 0.9 + 0.8 – 0.9·0.8 = 0.98. 
 
Example 2. Several (n) shots are firing at the same target; the 

probabilities of a hit are identical and equal to p. How many shots are 
required to hit the target with probability not lower than P? 

The probability of missing the target by a shot is 1 – p, and of each 
of them missing it is (1 – p)n. The contrary event has therefore 
probability 1 – (1 – p)n and the required condition is 
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1 – (1 – p)n ≥ P; therefore, n ≥ lg(1 – P)/lg(1 – p). 
 

1.5. Conditional probabilities. General multiplication rule. 

The formula of total probability 
We generalize the multiplication rule (1.8) on dependent random 

events. At first, just like in § 1.4, we consider the pattern of random 
sampling. The trial consists of blindly extracting a ball from an urn 
containing N balls identical to the touch but differing in colour and 
whether marked or not. We denote 

 
K, the number of coloured balls; (N – K) balls are white 
L, the number of marked balls; (N – L) balls are unmarked 
M, the number of coloured marked balls 
 
The events A and B are the appearances of a coloured and a marked 

ball and event (A and B) is then the appearance of a marked coloured 
ball. The probabilities of these events are 

 
P(A) = K/N, P(B) = L/N, P(A and B) = M/N. 
 

Analogous to formula (1.8) we connect the probabilities of (A and B) 
and A:  
 

M/N = (K/N)(M/K).                                                    (1.12) 
 
The ratio M/K of the number of marked coloured balls to the 

number of all coloured balls is also in essence a probability, a 
conditional probability of event B if event A had occurred, and it is 
denoted by P(B/A):  

 
P(B/A) = M/K. 
 
Now we may write (1.12) as 
 
P(A and B) = P(A)P(B/A).                                         (1.13) 
 

This relation expresses the general multiplication rule: The probability 
of the product of two random variables is the product of the 
probability of one of them by the conditional probability of the other. 

Formula (1.13) is derived for the classical pattern. Now we turn to 
the general case of any random variables A and B. That formula will 
determine the conditional probability, the probability of event B after 
the occurrence of event A: 

 
P(B/A) = P(A and B)/P(A) if P(A) ≠ 0.                                (1.14) 
 

Similarly 
 

P(A/B) = P(A and B)/P(B) if P(B) ≠ 0.                                  (1.15) 
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It is not difficult to verify that conditional probabilities possess all the 
main properties of probabilities. 

Formula (1.13) can be generalized on a larger number of random 
events. For three of them 

 
P(A and B and C) = P(A and B)P(C/A and B) = P(A)P(B/A)P(C/A and B).  
 
The notion of conditional probability allows us to interpret 

independence of random events anew. If random events A and B are 
independent, then, by formulas (1.8, 1.14 and 1.15),  

 
P(B/A) = P(A)P(B)/P(A) = P(B), P(A/B) = P(A)P(B)/P(B) = P(A)  
 

which means that the conditional and unconditional probabilities of 
each of these events coincide. It is also obvious that, inversely, if 
P(B/A) = P(B), formula (1.13) is transformed into (1.8). 
    The independence of random events A and B thus means that the 
probability of B (or A) does not change when an additional condition 
of the occurrence of A (or B) is introduced. This interpretation directly 
leads, for example, to the independence of a certain event and any 
random event A. 

To recall, the probability of random event B is invariably connected 
with a definite set of conditions. Add to it the occurrence of some 
other event A, and the probability of B can change. 

In the example above, the independence of random events A and B 
was reduced to the equality 

 
M/K = L/N, 
 

i. e., to the condition that the number of marked and coloured balls is 
to the number of coloured balls as the number of marked balls to the 
total number of balls in the urn. 

1.5.1. The formula of total probability 
Theorem. If random events H1, H2, …, Hn are pairwise incompatible 

and event A can only occur together with one of them, then 
 
P(A) = P(H1)P(A/H1) + P(H2)P(A/H2) + … + P(Hn)P(A/Hn).  (1.16) 
 
Proof. Event A is tantamount to the product of events  
 
[(H1 or H2 or … or Hn) and A]. 
 

However, this product occurs then and only then when one of the 
products (H1 and A) or (H2 and A) … or (Hn and A) takes place. By the 
addition rule 
 

P(A) = P[(H1 or H2 or … or Hn) and A] =  
P(H1 and A) + P(H2 and A) + … + P (Hn and A).             (1.17) 
 
It only remains to apply the general multiplication rule: 
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P(H1 and A) = P(H1)P(A/H1); … 
 

In particular, the formula 
 

P(B) = P(B)P(B/A) + ( ) ( / )P A P B A                                   (1.18) 

 
invariably takes place since the contrary events A and A  are 
incompatible and make up a complete group. 

Example 1. An urn contains N balls, M of them white. Two balls are 
extracted one after the other. Events A and B are the respective 
extractions of a white ball. Obviously 

 
P(A) = M/N, P( A ) = (N – M)/N,  
P(B/A) = (M – 1)/(N – 1), P(B/ A ) = M/(N – 1). 
 
By formula (1.18) 
 

    
1

( ) .
1 1

M M N M M M
P B

N N N N N

− −
= + =

− −
  

 
The probabilities of the appearance of a white ball at each extraction 
are identical. 

Example 2. A ball is thrown on a board and can stop at points (xk, yl), 
k = 1, 2, …, n; l = 1, 2, …, m. The probabilities of the ball occurring in 
those positions are pkl:  

 
p11, p21, …, pn1, if y = y1 
p12, p22, …, pn2, if y = y2, …,                                        (1.19) 
p1m, p2m, …, pnm, if y = ym 
 
Required is the probability of the ball falling in column xk. Abscissa 

xk can only be connected with one of the ordinates y1, y2, …, ym so that 
by formula (1.17) we have 
 

Pk = pk1 + pk2 + … + pkm, k = 1, 2, …, n.                     (1.20) 
 

1.6. Exercises 
1) Three cards are extracted from a deck (of 52 cards). Required is 

the probability that there will be at least one ace. Answer:  
p = 1201/5525 = 0.217. 
2) An operator services three independently functioning lathes. 

During an hour they need the operator’s attention with probabilities 
0.1, 0.2 and 0.3. Required is the probability that during an hour the 
operator will have to attend to at least one lathe. Answer: p = 0.994. 

3) An urn contains 5 white and 20 black balls. They are extracted 
one by one until a white ball appears. Required is the probability that 
there will be 3 extractions (that 2 black balls will appear before a white 
ball). Answer: p = 19/138 = 0.138. 

4) Machine parts of the same type are produced by two lathes. The 
probabilities of the appearance of substandard parts are 0.03 and 0.02 



 

131 
 

respectively. The finished parts are stored together, twice more of 
them from the first lathe than from the second. Required is the 
probability that a randomly chosen part will not be substandard. 
Answer. p = 292/300 = 0.973. 

5) By issuing from formula (1.18) prove that the independence of 
random events A and B leads to independence of A  and B. 

 
Chapter 2. Random Variables and Distribution of Probabilities 

2.1. Discrete random variables 
Here, we study variables whose values depend on chance (the 

number of points achieved when casting a die; the number of calls 
entering a telephone exchange during given time etc). 

Definition. Magnitude ξ is called a discrete random variable if all of 
its values form a finite or infinite number sequence x1, x2, …, xk, … 
and the appearance of each of them (ξ = xk) is a random event having 
a definite probability.  

We denote the probability of ξ = xk by pk, a function of xk. This 
function is called the law of distribution of probabilities of ξ. Any rule 
that allows us to determine the probabilities of all the possible values 
of ξ determines the distribution of its probabilities.  

The two rows, x1, x2, …, xk, … and p1, p2, …, pk, …, form a table of 
that distribution. If ξ can only take a finite number of differing values 
x1, x2, …, xn, the random events ξ = x1, ξ = x2, …, ξ = xn form a 
complete group of incompatible events and the sum of their 
probabilities is unity 

 
p1 + p2 + … + pn = 1.                                                     (2.1) 
 

For the case of infinitely many values of ξ the series p1 + p2 + … + pn 
+ … should converge and [as before] its sum ought to be unity. 

Example 1. The number of points on a die is a discrete random 
variable with the table of distribution:  

 
values: 1, 2, 3, 4, 5, 6; probabilities: 1/6, 1/6, …        (2.2) 
 
For an irregular die the values are the same, but their probabilities 

will not be identical. 
Example 2. A hunter has 3 cartridges and shoots until he hits the 

target (or expends all of them). The number of expended cartridges is a 
random variable ξ with possible values 1, 2 and 3. The probability of a 
hit is 0.8 and required is the distribution of probabilities. We have 

 
P(ξ = 1) = 0.8; P(ξ = 2) = (1 – 0.8)·0.8 = 0.2·0.8 = 0.16. 
 
Here, P(ξ = 2) is the product of two probabilities, of missing the first 

time and then hitting the target. The last probability can be calculated 
either directly or by formula (2.1): 

 
P(ξ = 3) = 0.2·0.2 = 0.04; or, P(ξ = 3) = 1 – P(ξ = 1) – P(ξ = 2).  
 
The table of the distribution of probabilities is: 
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values of ξ: 1, 2, 3; probabilities: 0.8, 0.16, 0.04              (2.3) 
 
Example 3. Shots fire at a target until hitting it. The probability of a 

hit is p, and the number of attempts is a random variable ξ with an 
infinite table of the distribution of probabilities 

 
values:   0,       1,            2,                  n, …  
probabilities p: (1 – p)p, (1 – p)2p, …, (1 – p)n–1p, …      (2.4) 
 

These probabilities form an infinitely decreasing geometrical 
progression with ratio (1 – p). It converges and its sum is  
p/[1 – (1 – p)] = 1. 

Example 4. In some physical and technical problems (when 
considering the number of calls entering an automatic telephone 
exchange or of electrons flying out from an incandescent cathode, in 
both cases during a certain period of time, etc), there appear random 
variables obeying the Poisson law of distribution 

 
0, 1,   2, …,       m, … 
e–a(1, a, a2/2, …, am/m!, …)                                         (2.5) 
 
Here, a is some positive number, see below. The series of 

probabilities converges and its sum is unity: 
 
e–a(1+ a + a2/2 + … + am/m! + …) = e–a·ea = 1. 
 
2.1.1. Linear operations on random variables. We have in mind 

multiplication of a random variable by a number and addition of 
random variables.  

The product Cξ of a discrete random variable ξ by number C is a 
random variable with the distribution of probabilities 

 
values: Cx1, Cx2, …; probabilities: p1, p2, …               (2.6) 
 

All the values of ξ are multiplied by C, but their probabilities remain 
unchanged.  

Somewhat more complicated is the distribution of probabilities of a 
sum of two discrete random variables with values of ξ being x1, x2, … 
and of η being y1, y2, … and probabilities p1, p2, … and q1, q2, … 
Denote the probability of the product of the random events ξ = xk and  
η = yl by pkl. However, the probability of, say, the event ξ + η = x1 + y1, 
can exceed p11 if among the sums xk + yl there are numbers equal to  
x1 + y1. Indeed, according to the addition rule, we ought to consider the 
probability of the event ξ + η = x1 + y1 equal to the sum of all those 
probabilities pkl for whom xk + yl = x1 + y1. 

Therefore, the values of the sum ξ + η are the sums of all the 
possible values of ξ and η, and the probability of each is the sum of the 
probabilities of the products of ξ = xk and η = yl for which their sum 
takes that value. […] 
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Example. The trial consists of casting at once two regular dice. 
Denote by ξ and η the numbers of points appearing on them, and ξ + η 
will be the sum of these points. These ξ and η are random variables 
and have the same table of the distribution of probabilities (2.2). 
Required is the distribution of their sum, ξ + η. The outcomes of the 
casting are independent, so that the probability of each product will be 
1/36. An auxiliary table will be 

 
sums: 1 + 1,  1 + 2,  2 + 1,  2 + 2,  3 + 1, …, 6 + 6 
probabilities: identically 1/36 
  
After combining the equal sums we get the final table of the 

probabilities of the values of (ξ + η): 
 
2          3    …   6       7       8     …  11     12 
1/36  2/36 … 5/36  6/36  5/36  … 2/36  1/36 

 
    Note a singularity: when comparing this table with that for the 
distribution of 2ξ 

 
2, 4, 6, 8, 10, 12 and identical probabilities 1/6 
 

we conclude that the addition of random variables with identical 
distributions of probabilities is not in general reduced to multiplying 
one of them by an integer. 

Addition of random variables or their multiplication by a number 
does not change the known properties of addition and multiplication of 
numbers. In particular, 

 
ξ + η = η + ξ; (ξ + η) + ζ = ξ + (η + ζ); C(ξ + η) = Cξ + Cη. 
 

    2.1.2. Independence of random variables. Discrete random variables 
ξ and η are independent, if the random events ξ = xk and η = yl are 
independent for all values of k and l. In other words, if 

 
pkl = pkql, k = 1, 2, … l = 1, 2, …                                 (2.7)  
 

For example, when casting two dice, the numbers of points on either 
are independent random variables. This has indeed simplified the 
calculation of their sum above. 

Random variables ξ1, ξ2, …, ξn are mutually independent if all the 

random events 1 1 2 2ξ ,  ξ ,...,  ξn nx x x= = =  are independent in total. 

Magnitudes {x} are the values of the given random variables ξi. 
So if random variables ξ1, ξ2, …, ξn are mutually independent and 

the distribution of their probabilities is given, the distribution of the 
probabilities of any of their linear functions with constant coefficients 

 
C1ξ1 + C2ξ2 + … + Cnξn 
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can be easily determined. This circumstance is often made use of by 
representing a studied random variable as a linear function of 
independent random variables with a known distribution of 
probabilities. 

2.2. The distribution of probabilities 

of the relative frequency of random events 
We consider the frequency wn of a random event A after n trials. 

Suppose that the occurrence of A in each trial has the same probability 
p which does not depend on the results of other trials. Such a repetition 
of trials can be imagined as extractions with replacement of balls of 
two different kinds from an urn and it is called the sequence of 
independent trials according to the Bernoulli pattern (or to the pattern 
of the replaced balls).  

In n trials the event A can occur 0, 1, 2, …, n times and therefore wn 
is a discrete random variable with possible values 0, 1/n, 2/n, …, 1. 
Required is the distribution of that frequency. Represent wn as a linear 
combination of simpler random variables by introducing the so-called 
indicator random variables λk, the number of the occurrences of event 
A in the k-th trial. It only takes 2 values, 1, if the event occurs, and 0 
otherwise. The probability of event A in each trial is p, so these 
indicator variables have an identical distribution of probabilities, 

 
values: 1 and 0; probabilities: p and q, q = 1 – p.         (2.8) 
 
According to the adopted condition, all the variables λ1, λ2, …, λn 

are independent in total. Consider now their sum  
 
µn =λ1 + λ2 + … + λn.                                                     (2.9) 
 

The terms are unities or zeros and there are exactly as many unities as 
many times (µn) the event A happens in n trials. The ratio µn/n is the 
relative frequency wn: 
 

wn = µn/n = (1/n)(λ1 + λ2 + … + λn).                             (2.10) 
 
This representation of wn by a linear combination of mutually 

independent random variables λ1, λ2, …, λn with a known distribution 
of probabilities (2.8) allows us to determine the distribution of the 
probabilities of wn. Sum up these random variables consecutively; by 
formula (2.7) we have λ1 + λ2 = w2 with the distribution of probabilities 
being:  

 
values: 2, 1, 0; probabilities: pp, pq + qp, qq, or p2, 2pq, q2  
 
In the same way we determine the law of the distribution of w3 and 

note that the calculated probabilities coincide with the corresponding 
terms of the expansion of binomials (p + q)2 and (p + q)3. Since p + q 
= 1, it is seen at once that the sums of the probabilities in the tables of 
the distribution of probabilities equal 1. It is possible to prove the 
following general statement by mathematical induction: the probability 
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that µn takes some value m is equal to the term which includes pm in 
the expansion of the binomial (p + q)n in powers of p: 

 

P(µn = m) = .m m n m
nC p q −                                                (2.11) 

 
It is possible to derive formula (2.11) by complete induction without 

issuing from (2.9). Moreover, the probability that A occurs in the first 
m trials and will not arrive in the other (n – m) trials can be calculated 
by the multiplication rule for independent events. We get 

 
pmqn–m.                                                                         (2.12)  
 
This probability does not depend on the choice of the successful 

trials which can be made in m
nC  different ways. The probability of the 

event µn = m is therefore equal to (2.12) multiplied by m
nC , QED. 

Formula (2.11) provides the probability that event A will occur 
exactly m times in n trials. Therefore we have the following tables of 
the distribution of probabilities for random variables µn and wn: 

 
values: n, (n – 1), …, m, …, 1, 0; [binomial probabilities]   (2.13) 
 
values: 1, (n – 1)/n, …, 1/n, …, 0; [the same probabilities]  (2.14) 
 
The distribution determined by table (2.13) is called binomial.  
Example. The quality of a large batch of machine parts is checked 

by a sample of 10. It is known that there are 25% substandard parts in 
the entire batch [which should therefore be thrown away in its entirety]. 
It is required to determine the probability that more than 5 parts in the 
sample are substandard. 

The selection of each part for the sample is a trial, and its being 
substandard is a random event A. Its probability is obviously p = 0.25, 
and we have to determine the probability of µ10 > 5. By the addition 
rule 

 
P(µ10 > 5) = P(µ10 = 6) + P(µ10 = 7) + … + P(µ10 = 10). 
 

These probabilities can be calculated by the binomial formula (2.11) 
for p = 0.25, q = 0.75 and n = 10. [The author provides a table for  
µ10 = 0(1)10.] So P(µ10 > 5) ≈ 0.020, a rather low probability. 
    [The author notes that the solution is only rigorous if the sample is 
made with replacement but that this restriction becomes the less 
important the larger is the size of the sample.] 

2.3. Continuous random variables 
The theory of probability often has to consider random variables 

whose possible values completely fill up some interval, with 
continuous random variables, see for example the Introduction. The 
law of the distribution of probabilities of such a variable ξ should 
allow us to determine the probability of its value to be in any interval 
(x1, x2), P(x1 < ξ < x2) [contained within the initial interval]. 
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Example: The uniform distribution of probabilities. In the simplest 
case all the possible values of such random variable ξ fill up some 
finite interval (α1, α2) and the probability P(x1 < ξ < x2) for any interval 
(x1, x2) situated within (α1, α2) is proportional to its length: 

 
P(x1 < ξ < x2) = λ(x2 – x1), α1 ≤ x1 < x2 ≤ α2.              (2.15) 
 
The coefficient λ should ensure the second main property of 

probabilities; the first property is secured by taking λ > 0, and the third 
follows from the addition of the lengths of the intervals necessary 
when they are combined.  

Since all the possible values of ξ are situated within (α1, α2), this 
random variable is certainly there also: 

 
P(α1 < ξ < α2) = λ(α2 – α1) = 1, and λ = 1/(α2 – α1). 
 
The random variable ξ is uniformly distributed on interval (α1, α2) if 

the distribution of its probability is described by formula (2.15).  
2.3.1. Density of the distribution of probabilities. For a random 

variable ξ uniformly distributed on interval (α1, α2) the ratio 
 
P(x1 < ξ < x2)/(x2 – x1)                                                     (2.16) 
 

is constant and equal to λ = 1/(α2 – α1). This ratio is called the density 
of the distribution of probabilities for a uniformly distributed random 
variable ξ.  

That ratio is not in general constant. We have to introduce the 
notion of density in a given point, just like it is done in physics when 
considering the distribution of the mass of a body. 

The density of the distribution of probabilities of random variable ξ 
in point x is the limit as ∆x → 0  

 
( ξ )

lim φ( ).
P x x x

x
x

< < + ∆
=

∆
                                         (2.17) 

 
We only consider random variables for which that limit exists in each 
point x. For them, the probability of the value of ξ to be within the 
interval (x, x + ∆x) is 
 

P(x < ξ < x+ ∆x) ≈ φ(x)dx 
 

to within small magnitudes of higher orders. This main part of the 
probability is called its differential: 
 

dPx = φ(x)dx.                                                                (2.18) 
 
Given this dPx, we can by integrating determine the probability of 

the value of ξ to be within any interval (x1, x2): 
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P(x1 < ξ < x2) = 
2

1

φ( ) .
x

x

x dx∫                                            (2.19) 

 
Thus, for determining the law of the distribution of a continuous 

random variable it is sufficient to provide the density of the 
distribution of its probabilities, i. e., the function φ(x). 

Strictly speaking, a continuous random variable ξ is indeed 
characterized by representing the probability P(x1 < ξ < x2) as the 
integral (2.19) of some function φ(x). 

In any calculations involving a continuous random variable the 
differential φ(x)dx plays the same role as the probabilities pk when 
dealing with discrete random variables. In many formulas it is 
sufficient to replace pk by φ(x)dx and substitute the sum for the 
corresponding integral. 

Remark. The occurrence of a value of a continuous random variable 
in an isolated point is of no consequence, the probability of that event 
is zero. Significant is only its taking place on some interval. The 
probability of the random variable to be on a short interval is 
approximately proportional to the length of that interval. In other 
words, if the continuous random variable taking a definite value is 
considered as a random event, then the probability of that event ought 
to be zero (although it cannot be thought as impossible). The statement 
above does not lead to confusion since the value of any physical 
magnitude can only be measured with some precision; absolutely 
precise values of such magnitudes are only mathematical abstractions. 

2.3.2. The main properties of the density of the distribution. 
1) The density φ(x) is non-negative for all values of x. This directly 

follows from definition (2.17) in which ∆x > 0 and  
P(x < ξ < x+ ∆x) ≥ 0. 

2) The integral of density φ(x) over the domain of random variable ξ 
is unity which follows from the meaning of that integral: it expresses 
the probability of a certain event, of ξ taking some of its values. This 
property is expressed as  

 
2

1

φ( ) 1 or φ( ) 1,  or, in general, φ( ) 1 x dx x dx x dx
α

α

∞

−∞

= = =∫ ∫ ∫  (2.20) 

 
when assuming that the last integral is taken over the domain of ξ.  

Each non-negative function φ(x) satisfying condition (2.20) can be a 
density of some random variable. 

The curve of the distribution of probabilities is the graph of the 
density y = φ(x). It can serve for graphically reckoning probabilities 
since the probability P(x1 < ξ < x2) is expressed by the same integral as 
is the corresponding area under φ(x) if only the complete area under it 
is unity. The probability P(x1 < ξ < x2) is equal to the ratio of those 
areas.  

2.3.3. Examples of continuous distributions of probabilities.  
1) The simplest normal distribution. A continuous random variable 

ξ0 obeys that law if 
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φ0(x) = Cexp(–x2/2), C = 1/ 2π.                                        (2.21) 
 

The value of C thus ensures the condition (2.20) and the curve is 
symmetric with respect to the y-axis. It takes its maximal value 

1/ 2π 0.4≈  at x = 0 and has 2 points of inflexion, x = ± 1. At x → ± ∞ 
the curve very rapidly tends to the x-axis; thus, φ0(3) = 0.0044 and 
φ0(4) = 0.00013. 

The normal distribution is very important in many applications, in 
particular for treating observations (Chapters 5 and 6). The integral of 
φ0(x) cannot be expressed in a finite way by elementary functions and 
very detailed and sufficiently precise tables of the integral of 
probability  

 

2

0

2
( ) exp( /2)

2π

t

t x dxΦ = −∫                                           (2.22) 

 
have been therefore compiled.  

This function is odd: Ф(– t) = – Ф(t) so that the tables only provide 
the values of Ф(t) for t > 0. When t changes from 0 to ∞, Ф(t) very 
rapidly increases from 0 to 1. Thus, Ф(3) = 0.9973, Ф(4) = 0.999937.  

It is possible to apply function Ф(t) for calculating probabilities: 
 

2 1

2 2
1 2

0 0

1
( ξ ) [ exp( /2) exp( /2) ]

2π

x x

P x x x dx x dx< < = − − − =∫ ∫  

                           2 1

1
[ ( ) ( )].

2
x xΦ − Φ                                  (2.23) 

 
For a symmetric interval (– t, t)  
 

P(– t < ξ < t) = 
1

[ ( ) (  )]
2

t tΦ − Φ −  = Ф(t).                        (2.24) 

 
2) The general normal distribution of probabilities has density 
 

φ(x) = 
2

2

1 ( )
exp[ ] ,

2σσ 2π

x a
dx

−
−  σ > 0.                          (2.25) 

 
For a = 0 and σ = 1 this density becomes φ0(x). With an increasing σ 

the curves of the normal distribution become more sloping whereas the 
change of a leads to a shifting of the curve along the x-axis. 

3) An example of an asymmetric distribution of probabilities with 
density 

 
φ(x) = 0 at x ≤ 0; and, at x > 0 and α, β > 0, C1x

α–1e–βx.  (2.26)  
 

C1 is chosen to ensure the fulfilment of condition (2.20): 
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C1 = βα/Г(α), 
α

α 1

0

(α) xx e dx− −Γ = ∫ . 

 
Here Г(α) is the Euler gamma-function. Distribution (2.26) belongs to 
the so-called Pearsonian curves and occurs in many problems 
connected with hydroelectricity. Calculations involving this 
distribution are again possible by means of special tables.  

2.3.4. The distribution function. The distribution function of the 
probabilities of random variable ξ is the probability that ξ takes a value 
smaller than x:  

 
F(x) = P(ξ < x). 
 

For a discrete random variable it is equal to the sum of those of its 
values which are smaller than x: 
 

F(x) = ∑pk, xk < x. 
 

    Thus, for a random variable with a table of distribution (2.3) 
 
F(x) = 0, x ≤ 1; 0.8, 1 < x ≤ 2; 0.96, 2 < x ≤ 3; 1, x > 3. 
 

According to formula (2.19), the distribution function is the integral of 
the density 
 

F(x) = φ( ) .t dt
∞

−∞

∫   

 
For example, in case of the simplest normal distribution (2.21) it is 
 

F(x) = 0

1 1 1
φ ( ) [ ( ) (  )] ( ) .

2 2 2

x

t dt x x
−∞

= Φ − Φ − ∞ = Φ +∫  

 
The main properties of probability and the definition of F(x) require that 

that function is increasing and takes values from 0 to 1. Its graph is 
called the integral curve of the distribution of probabilities. Then, for 
x1 < x2  

 
P(ξ < x2) = P(ξ < x1) + P(x1 ≤ ξ < x2), P(x1 ≤ ξ < x2) = F(x2) – F(x1). 
 
The distribution function can be applied for describing the law of 

distribution both for discrete and continuous (and more complicated) 
random variables. However, in general such applications require the 
use of a special mathematical tool, the Stieltjes integral. 

2.4. Functions of random variables 
Suppose that f(x) is a one-valued function determined for all 

possible values x of random variable ξ. Function f(ξ) is understood as a 
random variable η that takes value y = f(x) whenever ξ takes value x. 



 

140 
 

For example, if ξ is the diameter of a cylinder turned on a lathe, the 
area of its cross-section is random variable η = (π/4)ξ2. 

We ought to establish the connection between the laws of the 
distribution of probabilities of ξ and η and we begin with functions of 
a discrete random variable ξ having values x1, x2, … and probabilities 
p1, p2, … If ξ takes value xk, then η = f(xk). However, the probability of, 
say, η = f(x1) can be higher than p1 if among the values of f(xk) there 
are numbers equal to f(x1). Indeed, by the addition rule we must 
assume that that probability is equal to the sum of all the probabilities 
pk for which f(xk) = f(x1).  

For constituting a table of distribution for f(ξ) we usually begin with 
an auxiliary table 

 
f(x1), f(x2), …; probabilities p1, p2, …,                        (2.27) 
 

then sum up the probabilities of identical values of f(xk). However, if 
all the values of f(xk) are different, the table (2.27) will be final for the 
distribution of function f(ξ), see for example (2.6). 

Example 1. Consider powers λn, n = 1, 2, 3, … of the indicator variable λ 
with distribution of probabilities (2.8). All these powers have the same 
distribution as λ itself since 1n= 1, 0n = 0. 

Example 2. Consider the function sin[(π/2)ξ] of random variable ξ with 
values 1, 2, …, n, … and probabilities 1/2, 1/22, …, 1/2n, … Since 
 

sin[(πn/2)] = 0 if n is even; 1, if n = 4k +1; – 1 if n = 4k +3,  
 
sin[(π/2)ξ] takes values 0, 1, – 1 with probabilities p0, p1, p–1 [k = 0, 1, 
2, …], 
 

p0 = 1/22 + 1/24 + 1/26 + … = 1/3; p1 = 1/2 + 1/25 + 1/29 + … = 8/15; 
p–1 = 1/23 + 1/27 + 1/211 + … = 2/15. 

 
Example 3. Random variable ξ takes values – b and b with 

probabilities p and 1 – p. Consider its square, ξ2; it takes a single value 
b2 with probability 1 and can be thought as being non-random. 
    2.4.1. Functions of continuous random variables. Given, 
function f(x), continuous as is its first derivative over the interval 
of all possible values of x of a random variable ξ. Establish the 
dependence between the densities of the probabilities of φ(x) 
and ψ(y) of random variables ξ and η = f(ξ). 

This aim is attained in the simplest way when f(x) strictly 
increases so that each interval (x1, x2) is in a one-to-one 
correspondence with interval (y1, y2). The probabilities of ξ and η 
to be in those intervals are therefore identical. For short intervals 
(x, x +∆x) and (y, y +∆y) this leads to the equality of the 
differentials of the probabilities 

 
φ(x)dx = ψ(y)dy.                                                      (2.28) 
 
Therefore  
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ψ(y) = φ(x)dx/dy = φ[g(y)]g′(y)                              (2.29) 
 

where x = g(y) is the function inverse to y = f(x). 
If y = f(x) strictly decreases, a negative dy corresponds to a 

positive dx and therefore dy in formula (2.28) should be replaced 
by – dy = |dy|. In general, we thus obtain 

 
ψ(y) = φ(x)|dx/dy| = φ[g(y)]|g′(y)|.                         (2.30) 
 
Example. A linear function η = a + bξ. We have  
 
y = f(x) = a + bx, x = g(y) = (y – a)/b, g′(y) = 1/b and 
 
ψ(y) = (1/|b|)φ[(y – a)/b].                                       (2.31) 
 
If random variable ξ is uniformly distributed on (α1, α2), the random 

variable η = a + bξ will also be uniformly distributed on (a + bα1, a + bα2). 
We leave the proof to the readers. 

Suppose now that random variable ξ0 has the simplest normal distribution 
with density (2.21). Then η = a + bξ0 will have the general normal 
distribution with density 

 
2

2

1 ( )
ψ( ) exp[ ].

22πb

y a
y

b

−
= −  

 
This conclusion allows us to calculate probabilities for the general 

normal distribution (2.25) by formula (2.22). Indeed, suppose that 
random variable ξ has that distribution with density (2.25). Then 
random variable ξ0 = (ξ – a)/σ will have the simplest normal 
distribution (2.21) and the inequalities x1 < ξ < x2 will be tantamount to  

 

1 2
0ξ .

σ σ

x a x a− −
< <   

 
Therefore 
 

1 2
21 0 12

1
( ) ( ) [ ( ) ( )].

σ
ξ ξ

σ 2

x a x a
P P tx x t

− −
= < = Φ − Φ< < <    (2.32)  

 
Here, t1 = (x1 – a)/σ, t2 = (x2 – a)/σ. 
 

2.4.2. Deriving the density of distribution for a non-monotone 
function. We only consider the function η = ξ2 with the unbounded 
domain (– ∞, ∞) for ξ. Here, y = f(x) = x2 ≥ 0. The inverse function has two 
one-valued branches: x = g1(y) = √y and x = g2(y) = – √y. When applying 
formula (2.30) to each of these and combining equal values of y, we will 
have for y > 0 

 

ψ(y) = 
1

[φ( ) φ( )]
2

y y
y

+ −  if y > 0, and ψ(y) = 0 if y < 0. 
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2.4.3. Notion of two-dimensional random variables and functions of 

two random variables. For solving many problems as well as for 
studying functions of several random variables it is necessary to 
consider many-dimensional random variables, i. e. those whose values 
are distributed in two-, three- and many-dimensional spaces. An 
example of a two-dimensional random variable is a hit-point on a 
target. Denoting its coordinates by ξ and η, we get a two-dimensional 
random variable (ξ, η), see a similar example of a discrete two-
dimensional variable in Example 2 of § 1.5.1 and the table (1.19) of 
the distribution of its probabilities. 

I only indicate some formulas describing continuous two-
dimensional random variables; appropriate formulas for discrete two-
dimensional variables are similar. The value of variable (ξ, η) is point 
(x, y) and the distribution of the probabilities is given by the 
differential of probability  

 
dPxy = φ(x, y)dxdy.                                                        (2.33) 
 

    It provides the main part of the probability that point (ξ, η) is in the 
rectangle x < ξ < x + dx, y < η < y + dy. Function φ(x, y) is called the 
two-dimensional density of distribution. The probability of point (ξ, η) 
to be within some region D is determined by the integral over D 

 

[(ξ, η) ] φ( , ) .P D x y dxdy∈ = ∫ ∫                                     (2.34) 

 
Any non-negative function satisfying condition 
 

φ( , ) 1x y dxdy =∫ ∫  

 
with the integral covering all possible values of random variable (ξ, η) 
can be a density. 

The simplest example of a continuous two-dimensional random 
variable is variable (ξ, η) having a uniform distribution on some finite 
region D0. For such variables the probability of their being in any 
region D within D0 is proportional to the area SD and 

 
dPxy = λdxdy for points within D0 and 0 otherwise. 
 

The coefficient λ is defined by the condition 
 

00[(ξ, η) ] λ 1.DP D S∈ = =  

 
And if D is within D0, the probability of (ξ, η) to be within D is the 
ratio of the respective areas. The two-dimensional density is here  
φ(x, y) = 1/(area of D0). 

The coordinates ξ and η of a two-dimensional continuous random 
variable are one-dimensional continuous random variables. Their 
densities ψ1(x) and ψ2(y) are connected with the two-dimensional 
density φ(x, y) by formula 
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1 2ψ ( ) φ( , ) , ψ ( ) φ( , ) .x x y dy y x y dx= =∫ ∫           (2.35, 2.36) 

 
For justifying, say, (2.35) suffice it to note that the differential of 

probability ψ1(x)dx can be considered as the probability of point (ξ, η) 
to be in an infinite band between vertical lines having abscissas x and x 
+ dx. For a discrete variable with distribution (1.19) the similar 
formula is (1.20). 

Random variables ξ and η are independent if  
 
dPxy = ψ1(x)dxψ2(y)dy; that is, if 
 
φ(x, y) = ψ1(x)ψ2(y).                                                  (2.37) 
 

For a discrete variable with distribution (1.19) the similar formula is (2.7).  
For function ς = f(ξ, η) of two random variables ξ and η the 

distribution of probabilities is 
 
P(z < ς < z + dz) = ∫∫φ(x, y)dxdy                                (2.38)  
 

The integral is taken over such a region of the plane (x, y) that z < f(x, y) < z 
+ ∆z. Here, φ(x, y) is the density of distribution of the two-dimensional 
random variable (ξ, η). When isolating the main part, linear with 
respect to ∆z in the integral (2.38), we thus determine the differential dPz 
and therefore the density of the distribution of function ς = f(ξ, η). 

2.4.4. The distribution of a sum of random variables. For the sum ς 
= ξ + η the region covered by integral (2.38) is a band between straight 
lines x + y = z and x + y = z + ∆z. Therefore 

 

( ζ ) φ( , ) .
z z x

z x

P z z z dx x y dy
∞ +∆ −

−∞ −

< < + ∆ = ∫ ∫   

 
The main part of the inner integral is approximately φ(x, z – x)∆z 

and the differential of the probability of ς is  
  

    
φ( , ) .

.

zdP x z x dx z
∞

−∞

= − ∆∫  

The density χ(z) of the distribution of the sum ς = ξ + η will be 
 

χ( ) φ( , ) .z x z x dx
∞

−∞

= −∫                                                     (2.39) 

 
Especially interesting is the case of independent ξ and η. Formula 

(2.37) allows us then to express the density of that sum by the densities 
of ξ and η: 
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1 2χ( ) (ψ ψ) ( , ) .z x x z x dx
∞

−∞

= −∫                                        (2.40) 

 
This integral is called the convolution of ψ1 and ψ2 and denoted by  

ψ1*ψ2. 
2.5. Exercises 

1) Determine the distribution of the probability of the sum of points 
on three dice. Check that the outcome of 11 points is more probable 
than 12 points although both are realized in 6 ways: 

 
11 points: 6, 4, 1; 6, 3, 2; 5, 5, 1; 5, 4, 2; 5, 3, 3; 4, 4, 3 
12 points: 6, 5, 1; 6, 4, 2; 6, 3, 3; 5, 5, 2; 5, 4, 3; 4, 4, 4 
 
2) An urn contains 20 black and 4 white balls. Determine the 

distribution of the probabilities of the number of white balls after 5 
balls have been extracted. Answer: 

 
values: 0, 1, 2, 3, 4; prob.: (1/1771)(646, 1615, 285, 95, 5) 
 
3) Balls are extracted from the same urn until a black ball appears. 

Determine the distribution of the probabilities of the number of white 
balls which had appeared previously. Answer: 

 
values: 0, 1, 2, 3, 4; prob.: 5/6, 10/69, 5/253, 10/5313; 1/10,626 
 
4) Determine the [density of the] sum of two independent variables 

uniformly distributed on interval (– 1, 1). Answer: 
 
φ(x) = 0 if x < – 2 or x > 2; (1/4)(x + 2) if – 2 < x < 0;  

(1/4)(– x + 2) if 0 < x < 2 
 

5) A point falls on a circumference and its position along the 
circumference is uniformly distributed. Required is the distribution of 
the probabilities of the projection of that point on a diameter. Answer: 

 

φ(x) = 0 if x < – R or x > R; 
2 2

1

π R x−
 otherwise  

 
6) Suppose that the linear dimensions of somewhat irregular cubes 

are normally distributed (2.25). Determine the distribution of the 
probabilities of the volumes of these cubes. Answer: the density is  

 

ψ(v) = 
3 2

23 2

1 ( )
exp[ ].

2σ3 σ 2π

v a

v

−
−   

 
7) Prove that the most probable value of frequency µn is integer m0 

such that np + p – 1 ≤ m0 ≤ np + p; if np is an integer, m0 = np. 
Indication: consider the ratio 
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(µ 1) ( )

(µ ) ( 1)
n

n

P m n m p

P m m q

= + −
=

= +
, [q = 1 – p]. 

 
8) The encounter problem. […] [See here Sheynin, end of § 1.1.2] 
 

Chapter 3. Numerical Characteristics  

of the Distributions of Probabilities 
While dealing with discrete or continuous random variables, it is not 

always advisable to use tables or densities of distributions. The former 
can be insufficiently precise and the latter not precisely known 
whereas calculations are often complicated or cumbersome. However, 
many important problems can be solved by a few averaged 
characteristics of distributions, so we begin by averaging. 

3.1. Averaging. Expectation of random variables 
Consider the simplest notion of arithmetic mean. Suppose that we 

have a population of N elements with differing magnitudes of some 
indication x; for example, a batch of bulbs differing in the period of 
work or rainy days in a year differing by the amount of rainfall. 

The arithmetic mean of indication x in a population is the ratio of 
the sum of the values of those indications in the population by the total 
number of its elements. 

Denote by x1, x2, …, xv the differing values of the studied indication, 
by Mk, the number of elements having indication xk (k = 1, 2, …, v) 
and let N = M1 + M2 + … + Mv be the total number of the elements. 
Then the arithmetic mean is  

 

1 1 2 2 1 2
1 2

...
... .v v v

v

x M x M x M MM M
x x x x

N N N N

+ + +
= = + + + (3.1) 

 
The arithmetic mean thus only depends on the relative magnitudes 

M1/N, M2/N, …, Mv/N rather than on M1, M2, …, Mv.  
We turn now to random variables and begin with a discrete variable 

of a special type. Choose randomly an element; this is best imagined, 
just like in § 5.1.2, by extracting balls from an urn. The magnitude y of 
the selected element is a discrete random variable ξ with 

 
values: x1, x2, …, xv; probabilities: M1/N, M2/N, …, Mv/N.    (3.2) 
 
The arithmetic mean of the indications is here as though the mean 

expected value of ξ. And so, the expectation of ξ is 
 
Eξ = x1(M1/N) + x2(M2/N) + … + xv(Mv/N).  
 

Here, however, the sum ought to be interpreted as the sum of the 
products of the values of ξ by their probabilities which allows us to 
extend at once the notion of expectation on any discrete variable ξ with 
values x1, x2, …, xv and probabilities p1, p2, …, pv.  

Definition 1. Expectation Eξ of a discrete random variable ξ is the 
sum of the products of all of its possible values {xk} by their 
probabilities {pk}: 
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Eξ = x1p1 + x2p2 + … = ∑xkpk.                                              (3.3) 
 
If there are infinitely many such values, we will assume that the 

series (3.3) absolutely converges, otherwise Eξ does not exist; we will 
not consider such cases. Now we may extend the notion of expectation 
on continuous random variables by replacing pk by the differential of 
probability dPx = φ(x)dx. 

Definition 2. Expectation Eξ of a continuous random variable ξ is 
the integral of the product of its values by the density of distribution 
φ(x): 

 
Eξ = ∫xφ(x)dx.                                                                      (3.4) 
 
The integral is taken over all the interval of the possible values of ξ. 

It is often written as if that interval is (– ∞, ∞) even if the possible 
values of ξ only cover a finite interval. In such cases we assume that 
beyond that interval φ(x) = 0. If, however, the domain of ξ covers the 
entire numerical axis, the improper integral is assumed to converge 
absolutely; again, the expectation does not otherwise exist and we will 
not consider such cases.  

It is important to note that all the properties of expectation (or, more 
precisely, of the very operation of averaging) are quite identical for 
discrete and continuous random variables. It is also possible to provide 
a single definition of expectation for any random variable, but, just 
like in § 2.3.4, it will require the knowledge of the Stieltjes integral. 

3.1.1. The properties of the expectation. The most important 
property of averaging is linearity: the expectation of a linear 
combination of random variables is [the same] linear combination of 
their expectations:  

 
E(C1ξ1 + C2ξ2 + … + Cnξn) = C1Eξ1 + C2Eξ2 + … + CnEξn   (3.5) 
 

where C1, C2, …, Cn are constants.  
For proving this property, suffice it to prove the following theorems. 
1) A constant factor can be taken out of the sign of expectation 
 
ECξ = CEξ.                                                                           (3.6) 
 
2) The expectation of a sum of two random variables is equal to the 

sum of their expectations (the addition theorem for expectations): 
 
E(ξ + η) = Eξ + Eη.                                                              (3.7) 
 
Formula (3.6) is especially easy to prove for a discrete random 

variable ξ whose multiplication by a constant C is determined by table 
(2.6): 

 
ECξ = ∑Cxkpk = C∑xkpk = CEξ. 
 

See below the proof for continuous variables. 
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We will prove the addition theorem (3.7) for continuous random 
variables. Denote by φ(x, y) the density of the joint distribution [of ξ 
and η] and by χ(z) the density of their sum, ς = ξ + η. Then by 
formulas (3.4) and (2.39)  

 

Eς= χ( ) φ( , ) .z z dz zdz x z x dx
∞ ∞

−∞ −∞

= −∫ ∫ ∫   

 
Change the order of integration and replace z by x + y: 
 

    E(ξ + η) = φ( , ) ( )φ( ) .dx z x z x dz dx x y x y dy
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

− = + +∫ ∫ ∫ ∫  (3.8) 

 
Recall the linearity of the integral and apply formulas (2.35) and 

(2.36): 
 

E(ξ + η) = φ( , ) φ( , )xdx x y dx ydy x y dx
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

+ =∫ ∫ ∫ ∫  

                 1 2ψ ( ) ψ ( )x x dx y y dy
∞ ∞

−∞ −∞

+ =∫ ∫  Eξ + Eη. 

 
For discrete random variables the proof is similar. At first, it is easy 

to be convinced in that the expectation of (ξ + η) can be calculated by 
the formula 

 
E(ξ + η) = ∑(xk + yl)pkl = ∑xkpkl + ∑ylpkl, 
 

where the sums cover all values of xk and yl. By formula (1.20), if pk = 
P(ξ = xk), the first sum is  
 

∑xk(pk1 + pk2 + …) = ∑xkpkl = Eξ. 
 

In a similar way ∑ylpkl = Eη, QED. 
3) The expectation of a constant (non-random) magnitude C is that 

very magnitude. Indeed, C can be considered a random variable with a 
single possible value C and probability 1, so that EC = C. 

4) The expectation of a product of independent random variables is 
the product of their expectations (the multiplication theorem for 
expectations): 

 
Eξη = EξEη.                                                                       (3.9) 
 
Here is a proof for discrete variables. The distribution of the product 

ξη has table 
 
x1y1, x1y2, x2y1, x2y; …; p1q1, p1q2, p2q1, p2q2, … 
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Equal values should be combined as also the probabilities (cf. the 
determination of the sum of discrete variables in § 2.1.1). We can 
therefore write the expectation of ξη as 

 
Eξη = ∑xkylpkql 
 

where the sum covers all possible values of xk and yl of ξ and η 
respectively. We can write this equality as 
 

Eξη = ∑xkpk∑ylql, QED. 
 
For continuous random variables the proof is easily carried out by 

formula (3.13) below but we leave it for the readers. Formula (3.9) is 
not difficult to extend on any number of mutually independent 
multipliers. 

3.1.2. Calculation of expectations of functions 
1) Let ξ be a discrete random variable taking values xk with 

probabilities pk. The function f(ξ) is again a discrete variable and its 
expectation is 

 
Ef(ξ) = ∑f(xk)P[f(ξ) = f(xk)]                                       (3.10)  
 

where the sum covers all the different values of f(xk). 
It occurs that the expectation of f(ξ) can be calculated without 

deriving the distribution of its probabilities but directly by the 
distribution of ξ itself. Indeed, 

 
Ef(ξ) = ∑f(xk)pk                                                                                     (3.11) 
 

where the sum covers all the values xk of ξ. 
Before proving (3.11) in the general case, we note that if all those 

values are different, function f(x) has the table of distribution (2.27) so 
that formula (3.11) coincides with (3.10). In the general case equal 
numbers can occur in the values of f(xk). Suppose for the sake of 
definiteness that only two values are equal, f(x1) = f(x2). Then the 
probability of the event f(ξ) = f(x1) is p1 + p2 and formula (3.10) can 
now be written as 

 
f(x1)P[f(ξ) = f(x1)] = f(x1)(p1 + p2) = f(x1)p1 + f(x2)p2 
 

and (3.11) follows once more. 
    2) Expectation of a function f(ξ) of a continuous random variable ξ 
can also be calculated directly by issuing from the density φ(x) of the 
distribution of ξ itself 

 
Ef(ξ) =∫f(x)φ(x)dx.                                                       (3.12) 
 
We will only prove this formula for an increasing f(x). Denote the 

density of the distribution of η = f(ξ) by ψ(y) and replace y by f(x) in 
the formula for expectation 
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Eη = ∫yψ(y)dy. 
 

Then, by formula (2.28) we have ψ(y)dy = φ(x)dx and immediately 
arrive at (3.12). Thus, for function Cξ (3.12) provides 
 

ECξ = ∫Cφ(x)dx = C∫xφ(x)dx = CEξ 
 

which proves formula (3.6) for continuous variables. 
3) Here without proof are the respective formulas for calculating 

expectations of functions of two variables. For discrete variables 
 
Ef(ξ, η) = ∑f(xk, yl)pkl  
 

where the summation is over all the values of xk and yl of ξ and η and 
pkl is the probability of random events ξ = xk and η = yl. 
    For continuous variables  
 

Ef(ξ, η) = ∫∫f(x, y)φ(x, y)dxdy                                          (3.13) 
 

where φ(x, y) is the density of distribution of the random point (ξ, η). 
Above, see for example formula (3.8), we have discussed particular 
cases of these formulas taking f(x, y) = x + y and xy.  

3.2. The centre of the distribution of a random variable 
The expectation of a random variable provides a convenient 

characteristic of its whereabouts. It has the same dimensionality as its 
values and is located within their possible interval. Thus, if all the 
values of a random variable ξ are within interval (α1, α2),  

 

P(α1 < ξ < α2) = 
2

1

α

α

φ( ) 1x dx =∫   

 
and inequalities  

  
2 2 2

1 1 1

α α α

1 2

α α α

α φ( ) φ( ) α φ( )x dx x x dx x dx< <∫ ∫ ∫  

 
[naturally] lead to  
 

α1 < ξ < α2.  
 
In particular, if all the values of ξ are positive, Eξ is also positive. It 

will be shown that the arithmetic means of the sample values of a 
random variable group around its expectation, see next chapter. The 
following definition stresses the role of expectation. Unlike the 
operation of averaging in itself, it is the main characteristic of the 
location of a random variable. The centre of the distribution of 
probabilities of a random variable is its expectation6. 
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Example 1. Suppose that ξ is the number of expended cartridges 
when firing as in Example 2 of § 1.2. By the table of distribution (2.3) 
we find that the expectation of that number is 

 
Eξ = 1·0.8 + 2·0.16 + 3·0.04 = 1.24. 
 

It is not an integer. For showing the practical usefulness of that 
calculation let us imagine that that trial was made a hundred times and 
denote the number of expended cartridges at trial k by ξk. Then 
 

ξ1 + ξ2 + … + ξ100  
 

is the total number of the expended cartridges. Taking ξk = 1.24, k = 1, 
2, …, 100, we have, bearing in mind the linearity property,  
 

Eξ = Eξ1 + Eξ2 + … + Eξ100 = 124. 
 
2) The centre for the Poisson distribution (2.5) 
 

Eξ = 
2 1

0

(1 ... ...) .
! 2! ( 1)!

m m
a a

m

a a a
m e ae a a

m m

−∞
− −

=

= + + + + + =
−

∑   

 
This explains the meaning of the parameter a: it is the expectation of 

random variable ξ having the Poisson distribution (2.5). 
3) The centre of distribution of frequency µn and relative frequency 

wn of a random event. A direct calculation of the expectation by the 
table of distribution (2.13) leads to 

 

Eµn = 
0

.
n

m m n m
n

m

mC p q −

=

∑   

 
For speeding up calculations we make use of the linearity of the 

expectation and formulas (2.9) and (2.10) providing expressions of the 
expectations of random variables µn and wn by indicator variables λ1, 
λ2, …, λn. A direct calculation by the tables of distribution (2.8) gives 

 
Eλk = 1·p + 0·q = p, k = 1, 2, …, n.                                 (3.14) 
 
Therefore, the centre of distribution of an indicator variable is the 

probability of the studied event. Then, 
 
Eµn = Eλ1 + Eλ2 + … + Eλn = np,                                   (3.15) 
Ewn = (1/n)Eµn = p.                                                         (3.16) 
 
The centre of distribution of the relative frequency wn of a random 

event is its probability in a single trial and the centre for the frequency 
µn is n times larger.  

These conclusions agree with our intuitive idea about expectation. If, 
for example, the probability of a random event is p = 0.2, and 100 
trials are made, we expect np = 20 occurrences of that event. Or, if the 
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probability of a substandard manufactured article in a large batch is p 
= 1%, then in a sample of n = 1000 articles we tend to expect np = 10 
such articles. We certainly admit the possibility of some deviations, 
but here we are discussing the mean expected results.  

Note also that the linearity of the expectation allows us to derive a 
more general result than (3.16) from (3.14). If random event A has 
probability pk in trial k, the centre of the distribution of the relative 
frequency wn of A will be 

 
Ewn = (1/n)(Eλ1 + Eλ2 + … + Eλn) = (1/n)(p1 + p2 + … + pn) 
 

where n is the number of the trials. It will then be equal to the 
arithmetic mean of all the probabilities of A. 

4) If random variable ξ is uniformly distributed on interval (α1, α2), 
its centre of distribution coincides with the midpoint of that interval. 
Indeed, the density of the uniform distribution is constant in that 
interval and equals 1/(α1 – α2) so that 

 

    Eξ =
1

2

α 2 2
2 1 2 1

2 1 2 1α

α  α α + α1
.

α  α α  α 2 2

xdx −
= =

− −∫   

 
    5) The centre of the normal distribution. The centre of the simplest 
normal distribution (2.21) is zero since the density φ0(x) is an even 
function. And a random variable ξ obeying the general normal 
distribution can be expressed by a random variable ξ0 (§ 2.4.1): 

 
ξ = a + σξ0 and Eξ = a + σEξ0 = a. 
 
The centre a of the general normal distribution is its parameter. 

This statement ascertains the meaning of that parameter and indeed 
agrees with the symmetry of the normal curve of distribution with 
respect to straight line x = a. 

Remark. If that curve is symmetric with respect to some line x = a, 
the centre of distribution invariably coincides with point a.  

3.3. Characteristics of the scattering of a random variable. 

Notion of the moments of distribution 
The scattering of random variable ξ is connected with the deviation 

ξ – a from its centre of distribution a = Eξ. A direct averaging of that 
deviation will not provide any numerical characterisation of the 
scattering since 

 
E(ξ – a) = Eξ – a = 0. 
 

In the mean, deviations of contrary signs mutually compensate each 
other. The main numerical characteristic of the scattering of a random 
variable ξ is the mean square deviation σ: 
 

σ = σ(ξ) = 2E(ξ ) ,  Eξ.a a− =                                       (3.17) 
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The magnitude E(ξ – a)2 = σ2(ξ) = varξ, is the variance of ξ. 
In accordance with formulas (3.11) and (3.12), the variances of 
discrete and continuous random variables are  

 
σ2(ξ) = ∑(xk – a)2pk, σ

2(ξ) = ∫(x – a)2φ(x)dx. 
 

It is seen that the mean square deviation has the same dimensionality 
as the values of the random variable. The special role of that deviation 
is discussed in detail below, mostly in Chapters 4 and 5. In particular, 
it will be shown that deviations of random variables many times 
exceeding σ from their centre of distribution do not practically occur. 
Here, however, we restrict our discussion to considering examples of 
the simplest properties of the mean square deviation. 

3.3.1. Main rules of computing mean square deviations 
and variances 

1) If ξ is a random variable and C is constant, 
 
σ(Cξ) = |C|σ(ξ), σ(ξ + C) = σ(ξ).                         (3.18), (3.19) 
 
The following formulas are proved by direct calculations of 

variance: 
 
σ2(Cξ) = E(Cξ – ECξ)2 = E(Cξ – Ca)2 = C2E(ξ – a)2 = C2σ2(ξ). 
σ2(ξ + C) = E[(ξ + C) – E(ξ + C)]2 =  
E(ξ + C) – (a + c)]2 = E(ξ – a)2 = σ2(ξ). 
 
2) For independent random variables the variance of their sum is the 

sum of their variances:  
 
σ2(ξ + η) = σ2(ξ) + σ2(η)                                           (3.20) 
 

(addition theorem for variances) and therefore 
 

σ(ξ + η) = 2 2σ (ξ) σ (η).+   

 
Proof of formula (3.20). Denote Eξ = a, Eη = b, then E(ξ + η) =  

a +b and  
 
σ2(ξ + η) = E[(ξ + η) – (a + b)]2 =  
E[(ξ – a)2 + 2(ξ – a)(η – b) + (η – b)2] =  
E(ξ – a)2 + 2E(ξ – a)(η – b) + E(η – b)2. 
 
For independent ξ and η  
 
E(ξ – a)(η – b) = E(ξ – a)E(η – b) = 0 
 

since, see above, E(ξ – a) = 0 [E(η – b) = 0 as well], QED. 
The addition theorem for variances is easily generalized on any 

number of pairwise independent random variables. 
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Corollary. The variance of a linear combination of pairwise 
independent random variables ξ1, ξ2, …, ξn can be calculated according 
to formula 

 

σ2(C1ξ1 + C2ξ2 + Cnξn) = 2 2 2 2 2 2
1 1 2 2σ (ξ ) σ (ξ ) ... σ (ξ )n nC C C+ + +   

 
which directly follows from formulas (3.20) and (3.18). And, if ξ1, 
ξ2, …, ξn have identical variances,  
 

σ2(ξk) = σ2, k = 1, 2, …, n 
 

the variance of their arithmetic mean is  
 

    
2 2 2 2

2 1 2 1 2
2

ξ ξ ... ξ σ (ξ ) σ (ξ ) ... σ (ξ ) σ
σ [ ] .n n

n n n

+ + + + + +
= =   

 
The mean square deviation of that mean is therefore 
 

1 2ξ ξ ... ξ σ
σ[ ]n

n n

+ + +
= ,                                   (3.21) 

 
a very important formula for treating observations (see Chapter 6). 

    3.3.2. Examples 
    1) The mean square deviation of the relative frequency. Formula 
(2.10) shows that the relative frequency wn is an arithmetic mean of 
mutually independent indicator random variables λ1, λ2, …, λn having 
identical tables of distribution (2.8) λk = 1, 0 with probabilities p and q, 
p + q = 1, k = 1, 2, …, n: 

 

1 2 ...
.n

nw
n

λ λ λ+ + +
=  

 
Now directly calculate the variance of λk bearing in mind that the 

centre of distribution of its probabilities is p: 
 
σ2(λk) = E(λk – p)2 = (1 – p2)p + (0 – p2)q = q2p + p2q = pq. 
 

The mean square deviation is therefore 
 

σ(λk) = ,pq  k = 1, 2, …, n. 

 
From (3.21) we have now 
 

σ(wn) = .
pq

n
                                                            (3.22)  

 
and by formula (3.18) 
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σ(µn) = σ(nwn) = nσ(µn) = .npq   

 
2) The mean square deviation of a random variable ξ uniformly 

distributed on interval (α1, α2). We have calculated the centre of the 
distribution  

 
a = Eξ = (α1 + α2)/2.  

 
Directly calculate now the variance: 
 

σ2(ξ) = 
2

1

2α
2 21 2 1 2 2 1

α
1 2

α α α α (α -α )
E[ξ ] [ ] ,

2 2 α α 12

dx
x

+ +
− = − =

−∫   

σ(ξ) = 2 1α  α
.

2 3

−
 

 
This mean square deviation is proportional to the length of the 

interval (α1, α2) and is approximately equal to 1/3 of it. 
3) The variance of the normal distribution. Let random variable ξ0 

have the simplest normal distribution (2.21) with centre Eξ0 = 0. The 
variance of the distribution is therefore 

 

varξ0 = E
2

2 2
0

1
ξ exp[ ] 1.

22π

x
x dx

∞

−∞

= − =∫                      (3.23) 

 
The integral can be conveniently calculated by parts. For random 
variable ξ = a + σξ0 having the general normal distribution (2.25) the 
variance is  

 
varξ = var(a + σξ0) = σ2varξ0 = σ2.  
 
It follows that σ(ξ) = σ. Together with the formula Eξ = a (see 

above) it completely ascertains the meaning of the parameters a and σ 
of the general normal distribution (2.25): a is the centre of the 
distribution and σ2, the variance. 

3.3.3. The minimality property of the centre. The mean square 
deviation of random variable ξ from the centre of distribution a = Eξ is 
smaller than the same variation from any other number: 

 
E(ξ – a)2 < E(ξ – C)2, C ≠ a. 
 
Proof. Since E(ξ – a) = 0, 
 
E(ξ – C)2 = E[(ξ – a) + (a – C)]2 =  
E(ξ – a)2 + 2(a – C)E(ξ – a) + (a – C)2 = E(ξ – a)2 + (a – C)2 (3.24) 
 

and 
 
E(ξ – a)2 ≤ E(ξ – C)2  
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with the equality only taking place when C = a.  
Formula (3.24) is often applied for calculating variances; note its 

similarity with the corresponding theorem about the moments of 
inertia. When C = 0 this formula provides  

 
σ2(ξ) = Eξ2 – a2.                                                                   (3.25) 
 
So let us calculate the variance of the Poisson distribution (2.5). It is 

easiest to begin with Eξ2: 
 
Eξ2 = E[ξ(ξ – 1)] + Eξ = 
 

2
2 2

0 2

( 1) .
! ( 2)!

m m
a a

m m

a a
m m e a a e a a a

m m

−∞ ∞
− −

= =

− + = + = +
−

∑ ∑   

 
Now the variance:  
 
σ2(ξ) = Eξ2 – a2 = (a2 + a) – a2 = a. 
 
It is useful to note that for the Poisson distribution both its centre 

and variance coincide with the value of its parameter. 
3.3.4. Notion of the moments of distribution. The two main 

characteristics of distributions, their centres Eξ = a and variances  
E(ξ – a)2 = σ2, are particular cases of the moments of distribution 
which Chebyshev introduced for investigating the laws of distribution. 

The k-th initial moment is the expectation of the k-th power of a 
random variable, Eξk. The k-th central moment is the expectation of 
the k-th power of the deviation of a random variable from the centre of 
its distribution, E(ξ – a)k. There exist simple connections between 
these moments, and they are easily established by the Newtonian 
binomial. For example, 

 
E(ξ – a)2 = Eξ2 – 2aEξ + a2 = Eξ2 – a2. 
E(ξ – a)3 = Eξ3 – 3aEξ2 + 3a2Eξ – a3 = Eξ3 – 3aEξ2 + 2a2. 
 
The former formula coincides with (3.25). As stated above, the first 

and the second moments, Eξ and E(ξ – a)2, characterize the centre of 
the location and the scattering of the random variable ξ. The third 
central moment, E(ξ – a)3, is applied for characterizing the asymmetry 
of the distributions. If the curve of distribution is asymmetric with 
respect to the straight line x = a, the third central moment (and all odd 
central moments) will disappear. Indeed, the density of distribution 
ψ(y) of the random variable (of the deviation) η = (ξ – a) will be an 
even function and all products y2k+1ψ(y) will be odd functions. 

Therefore, if the third moment is not zero, the distribution cannot be 
symmetric. The magnitude of asymmetry is usually defined by its 
dimensionless coefficient 

 
C1 = E(ξ – a)3/σ2(ξ). 
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Its sign indicates the direction of asymmetry. Moments higher than the 
third do not occur in elementary problems or the simplest applications 
of probability theory. 

3.4. Exercises 
1) Calculate the expectation of the product of indicator variables λ1 

and λ2 as introduced in the example of § 2.2. Check that in this case 
the multiplication theorem for expectations is not applicable. Answer: 

 
E(λ1λ2) = 25/100·24/99; Eλ1Eλ2 = (25/100)2. 
 
2) Prove by formula (3.13) the multiplication theorem for 

expectations of independent continuous random variables. 
Indication. Apply the condition of independence φ(x, y) = ψ1(x) ψ2(y) 

and express the double integral 
 
∫∫xyψ1(x)ψ2(y)dxdy 
 

as two ordinary integrals. 
3) Find the centre and the mean square deviation for the distribution 

(2.2) of the number of points on a die. Answer: 
 

Eξ = 
1 2 3 4 5 6 35

3.5;  σ 1.71.
6 12

+ + + + +
= = =   

 
4) Solve the same problem for the points on two dice. Answer: 
 

Eξ = 7; 
70

 σ 2.42.
12

= =  

 
Indication: Apply the addition theorems for expectations and 

variances. 
5) Determine the expectation of the number of white balls when 

trials are made as in Exercise 2 in § 2.5. Answer: Eξ = 5/6. 
Indication: Express ξ as a sum of indicator variables connected with 

the extraction of each ball. 
6) Determine the centre and the variance of distribution (2.4) of the 

number of expended cartridges as in Example 3 of § 2.1. Consider a 
numerical example for p = 1/10 and interpret the expectation. Answer: 

 

1

1

Eξ (1 ) 1/ ;  n

n

n p p p
∞

−

=

= − =∑   

2 2 2 2 1

2 2
1

1 1
σ Eξ (Eξ) (1 ) .n

n

p
n p p

p p

∞
−

=

−
= − = − − =∑  

 
If p = 1/10, Eξ = 10. If the probability of a hit is each time 1/10, the 

first hit will be achieved in the mean after 10 attempts. 
Indication: Apply the power series for (1 – q)–2 and (1 – q)–3. 
7) Determine the centre and variance for the Pearson distribution 

(2.26). Answer: 
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α α

α 1 β
α+1

0

β β (α+1) α
Eξ ;

(α) (α)β β
xx x e dx

∞
− − Γ

= = =
Γ Γ∫   

2 2 2σ Eξ (Eξ)= − =
α 2

α+2 2 2

β (α+2) α α
.

(α)β β β
Γ

− =
Γ

 

 
Indication: Apply integration by parts or the main property of the 

gamma-function. 
8) Prove the addition theorem for the third central moments of 

independent random variables ξ and η: 
 
E[(ξ + η) – (a + b)]3 = E(ξ – a)3 + E(η – b)3. 
 
9) Find the coefficient of asymmetry for the binomial distribution of 

the frequency µn. Answer: 
 

3

3 3/2

E(µ ) ( )
.

σ (µ ) ( )
n

n

np npq q p q p

npq npq

− − −
= =   

 
Indication: At first calculate the third central moment for the 

indicator variable λ: 
 
E(λ – p)3 = (1 – p)3p + (0 – p)3q = pq(q – p). 
 

Then apply the addition theorem for the third central moments.  
10) Prove that the coefficient of asymmetry for the Pearson 

distribution (2.26) is twice larger than the so-called coefficient of 
variation 

 
Cv = σξ/Eξ = 1/√α. 
 
Indication. When calculating the central moment E(ξ – a)3 express it 

through the initial moments. 
11) Calculate the fourth moment for the general normal distribution 

(2.25). Answer: 
 

E(ξ – a)4 = 
2

4 4

2

1 ( )
( ) exp[ ] 3σ .

2σσ 2π

x a
x a dx

∞

−∞

−
− − =∫   

 
Indication: replace (x – a) by tσ and integrate by parts. 
 

Chapter 4. The Law of Large Numbers 
It is impossible to foresee the value of a random variable in a trial. 

However, the behaviour of the sum of a large number of random 
variables almost looses randomness and becomes regular. Necessity 
carves its way through a multitude of chances and the pertinent 
theorems are known by the generic name law of large numbers. 

4.1. Random events with very low probabilities 
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To recall, the probability p of a random event is a number 
objectively characterizing, under specified conditions, the possibility 
of its occurrence. The event’s relative frequency is a random variable 
with a distribution of probabilities having at its centre that same p (§ 
3.2, Example 3). The value of the probability cannot be directly 
derived from an experiment but each repetition of n trials provides a 
definite experimental value of relative frequency. In the beginning of 
this book I have indicated that, given a sufficiently large number of 
trials n, its value is, as a rule, very near to probability p. 

This general conclusion connects theory and practice, but it is too 
indefinite for numerical estimates: we know that the relative frequency 
is near to probability, but are unable to say just how near it is. 
Therefore, we will now issue from a narrower but more definite 
principle concerning events having very low probabilities. Such events 
occur extremely seldom. If, for example, an event has probability 
0.000001, it happens approximately once in a million trials. However, 
this certainly does not mean that it occurs in the millionth trial; it can 
happen in one of the first of them.  

Experience convinces us in that as a rule, given a small number of 
trials, such rare events do not happen at all. Thus, having a ticket of a 
lottery in which only 1 prize is won for every million tickets, you will 
hardly hope to be lucky (although someone will actually win!). But if 
there are only 500,000 or 10,000 tickets? A question appears: how low 
should the probability of a random variable be for neglecting its 
appearance in a single trial? The theory of probability cannot say 
anything here since this question belongs to its practical applications. 
Here are examples of two events.  

1) Automatically manufacturing articles; the probability of 
obtaining an article of a non-standard size is 0.01 and the sizes will be 
checked. If these articles are not expensive, it is quite possible to 
abstain from checking all of them, i. e., to neglect the probability of 
0.017.  

2) The same problem concerning parachutes. It is certainly 
inadmissible to neglect probability 0.01 that the parachute will not 
open. Each should be checked.  

A certain boundary of very low probability is assigned in each field 
of the application of probability theory. This boundary is established 
according to the principle of practical impossibility of unlikely events. 
It is assumed that an event having a probability lower than that 
boundary will not occur in a single trial. 

This principle will ascertain the practical meaning of the theorem 
discussed below. It is sometimes called the principle of practical 
certainty [of the contrary event]. 

An important remark is in order. Suppose that, when issuing from 
some hypothesis, we find that the probability of event A is lower than 
the assigned boundary, but that it nevertheless occurred in a single trial. 
It will then be reasonable to question our hypothesis and look for a 
non-random cause of A. This is especially clearly expressed in a 
venerable story (Bertrand 1888, pp. VII – VIII). A man undertook to 
cast three sixes with three dice, and indeed achieved it. You will say 
that such an outcome was possible, but he continued to be successful 2, 
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3, 4 and 5 times in succession. What the hell, cried his adversary, the 
dice are loaded! And so they were.  

The probability of casting three sixes is 1/63 = 1/216; for 5 
successes it should be raised to the power of 5. 

4.2. The Jakob Bernoulli theorem  

and the stability of relative frequencies 
Suppose that random variable A has probability p of appearing in a 

trial and that n such trials are made. We know that the relative 
frequency of A will be the random variable wn whose centre of 
distribution coincides with p. Its mean square deviation will decrease 
with the increase of n, see formula (3.22): 

 

σ(wn) = .
pq

n
 

 
It follows that, as the number of trials increases, the values of the 

relative frequency of a random event will scatter ever less, they will 
ever nearer group around the probability of that event. The remarkable 
Jakob Bernoulli theorem published in 1713 specifies this proposition. 

If the probability p of a random event remains invariable in a 
sequence of n independent trials, the probability that the deviation of 
the relative frequency wn of the event from p exceeds a given number  
ε > 0 tends to disappear with an unbounded increase of n: 

 
limP(|wn – p| > ε)= 0, n → ∞.                                     (4.1) 
 
With a sufficiently large n that probability will thus become lower 

than the assigned boundary of very low probabilities (see § 4.1), and it 
is practically certain that the inequality in (4.1) will not happen, and 
that, consequently, the contrary inequality will be obeyed:  

 
|wn – p| ≤ ε.                                                                  (4.2) 
 
The Bernoulli theorem can also be therefore formulated thus: 
A sufficiently large number of trials ensures a practical certainty 

that the deviation of the relative frequency of a random event from its 
probability will not exceed in absolute value any however small and 
given beforehand ε. 

This theorem is a very particular case of the Chebyshev theorem (§ 
4.3)8. Note that however large is n, we cannot categorically maintain 
that the inequality (4.2) will invariably take place; we are only 
practically certain in its fulfilment. For stressing the distinction of this 
proposition from the usual notion of limit we sometimes introduce a 
special notion of limit in probability. 

If random event A occurred m times in n trials, m/n is a particular 
experimental value of wn. With a sufficiently large n we may be 
practically certain in that the approximate equality 

 
m/n ≈ p                                                                          (4.3) 
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will be satisfied as precisely as desired. In practice, this fact is 
manifested in that the values of m/n are stable; see the discussion of 
this term in the beginning of this book.  

Equality (4.3) can serve for approximately calculating an unknown 
probability of a random event given statistical data. Thus, in the 19th 
century [and even earlier] it was established that the relative frequency 
of a male birth, 0.512, is stable. We can therefore conclude that the 
probability of that event has a probability near to 0.512. When given a 
certain number n, it is necessary to estimate the precision of the 
equality (4.3), see the next chapter. 

4.3. The Chebyshev theorem 
He proved it in 1867 for independent random variables. Consider a 

sequence of pairwise independent random variables ξ1, ξ2, …, ξn, … 
with any distributions of probabilities and suppose that they have 
definite expectations and variances 

 

E 2 2ξ ,  E(ξ ) σk k k k ka a= − = , k = 1, 2, …                 (4.4) 

 
Calculate the arithmetic mean of the first n random variables: 
 

1 2ξ ξ ... ξ
ξ .n

n n

+ + +
=                                               (4.5) 

 
Its expectation is 

 

E ξn  = 1 2 ...
.n

n

a a a
a

n

+ + +
=                                     (4.6) 

 

The variance of ξn  is not equal to the arithmetic mean of the 

variances but n times less: 
 

2 2 2
2 1 2

2

σ σ ... σ
σ (ξ ) .n

n n

+ + +
=                                        (4.7)  

 

Suppose that 2σk  ≤ H, k = 1, 2, … Then, as n → ∞, the variance of the 

arithmetic mean tends to zero since 2σ (ξ )n ≤ H/n. It follows that, as n 

increases, the values of ξn  will scatter ever less, will ever nearer group 

around the centre of its distribution. This can be interpreted as saying 
that the random deviations of both signs are partially compensated in 
the arithmetic mean.  

Now let us estimate those possible deviations by the universal 
[Bienaymé –] Chebyshev inequality. 

4.3.1. The [Bienaymé –] Chebyshev inequality. It estimates the 
probability that the deviation of any random variable ξ from the centre 
of its distribution a = Eξ exceeds a given positive number ε: 

 

P(|ξ – a| > ε) < 
2

2

σ (ξ)
.

ε
                                              (4.8) 
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This probability is the lower the less is the variance σ2(ξ). 

We will prove this inequality for continuous random variables. By 
the main formula (2.19) we have 

 
P(|ξ – a| > ε) =∫φ(x)dx. 
 

The integral is taken over |x – a| > ε or over (– ∞, a – ε) and (a + ε, ∞). 
In both these intervals  
 

2 2

2 2

( ) ( ) φ( )
1 and φ( )

ε ε

x a x a x
x

− −
< ≤  

 
so that the integral above is 
 

2

2

1
φ( ) ( ) φ( ) .

ε
x dx x a x dx≤ −∫ ∫   

 
It only remains to note that 
 

2 2 2( ) φ( ) ( ) φ( ) σ (ξ).x a x dx x a x dx
∞

−∞

− ≤ − =∫ ∫  

Here, in the left side, the integral is taken over |x – a| > ε. We 
recommend the reader to prove in a similar way the [Bienaymé –] 
Chebyshev inequality for discrete variables.  

4.3.2. The Chebyshev theorem. Apply the inequality (4.8) to nξ :   

 

P(
2

2 2

σ (ξ )
| ξ |  ε) .

ε ε
n

n n

H
a

n
− > < <                                       (4.9) 

 
Be ε as small as desired, it is always possible to assign such a large 

n that the right side of this inequality also becomes as small as desired, 
lower than the boundary chosen for very low probabilities. We will 
then be practically certain that the inequality in the left side is not 
obeyed, that the contrary inequality is taking place: 

 

| ξ |n na−  ≤ ε. 

 
Given a sufficiently large number of independent random variables, 

it will be practically certain that the deviation of their arithmetic mean 
from the centre of its distribution will not exceed an arbitrarily small 
and assigned beforehand number ε. 

The law of large numbers consists in the slight scatter of ξn  around 

the centre of its distribution if only n is a large number. The 
Chebyshev theorem provides the exact mathematical expression of this 
proposition: 
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The arithmetic mean ξn  of the first terms of sequence ξ1, ξ2, …, 

ξn, … of pairwise independent random variables with restricted 
variances obeys the equality 

 

limP( | ξ Eξ |  ε) 0n n− > =  as n → ∞.                          (4.10) 

 
This formula follows from (4.9). Indeed, the right side of the latter 

tends to zero as n → ∞ and the left side, being a probability, is not 
negative. 

4.3.3. A particular case of the Chebyshev theorem. Suppose that all 
the random variables ξ1, ξ2, …, ξn, … have the same centre of 
distribution Eξk = a, k = 1, 2, …, n, … Then the centre of distribution 

of ξn  will also be a: 

 

E ξn  = (1/n)[Eξ1+ Eξ2 + … + Eξn] = a. 

 
Formula (4.10) becomes 
 

limP( | ξ |  ε) 0.n a− > =                                                (4.11) 

 
Khinchin (1927) proved that formula (4.11) takes place for 

independent identically distributed random variables without imposing 
any restrictions on σ (which can be infinite) if only a is finite. 

4.3.4. The proof of the Bernoulli theorem. Choose the indicator 
variables as the ξk, then their arithmetic mean will be equal to the 
relative frequency of the random event  

 

1 2λ λ ... λ
λ n

n n

+ + +
=  = wn. 

 
Since Eλk = p, σ2(λk) = pq < 1, formula (4.11) is transformed into 

(4.1); QED. 
4.4. Stability of sample means and the method of moments 

Consider at first the statistical problem of mean values. Suppose that 
n elements differing in some quantitative indication x are randomly 
chosen from a population of N. May we say that the arithmetic means 
of that indication in the sample and population are near? The 
Chebyshev theorem answers this question if only the sample is taken 
with replacement.  

Connect each selected k-th element with random variable ξk, a 
possible value of the k-th indication. Since the sample is selected with 
replacement the choice is always made from the initial population and 
random variables ξ1, ξ2, …, ξn will be independent and have an 
identical distribution of the type of (3.2). As stated in § 3.2, the centre 
of the distribution of all these variables coincides with the arithmetic 
mean of the indication in the general population, i. e., with the so-
called general mean a: 

 
Eξk = a, k = 1, 2, …, n. 
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The Chebyshev theorem (4.11) is therefore valid for ξ  and the 

mean possible sample value of the indication tends in probability to 
the general mean as the size of the sample unboundedly increases.  

Practical conclusion: the experimental value of each random 
variable ξk is the value which we find in the k-th element of the sample; 

the experimental value of random variable ξ is  the sample mean x . 

For a sufficiently large n of a random sample made with replacement 
we can be practically certain in that the sample mean will arbitrarily 
little differ from the general mean and  

 
x  ≈ a.                                                                            (4.12) 
 
The sample means are therefore stable: for two random samples of a 

sufficiently large size taken with replacement they should 
approximately coincide. This conclusion well enough agrees with 
experience. How near is the sample mean to the general mean only 
depends on the sample size but not on its ratio to the size of the 
general population. Thus, for the same values of σ, a sample 
containing 1% of a million elements provides more precise 
information about the general mean than a 2%-sample from a thousand 
elements9.  

If the size of the general population is very large as compared with 
the sample size, replacement becomes insignificant, and the conclusion 
above can also be applied to samples taken without replacement. This 
is especially important for applications since the general mean is often 
unknown and has to be judged by the sample mean. For example, the 
mean life of a bulb from a large batch can only be ascertained by a 
random sample. The necessary estimate of precision in such cases is 
provided in Chapter 6. 

4.4.1. On the method of moments. The approximate equality (4.12) 
can also be interpreted otherwise. Suppose that ξ is a random variable 
with a finite centre of distribution Eξ = a. In independent trials ξ takes 
the values x1, x2, …, xn which can be considered as the values of 
differing random variables ξ1, ξ2, …, ξn with the same distribution of 
probabilities as ξ itself. They can be assumed independent since the 
trials were independent. Then x  can be thought of as an experimental 

value of random variable ξ  for which the Chebyshev theorem in the 

form (4.11) is valid. With a sufficiently large n we can therefore 
expect that the approximate equality  

 
x  ≈ Eξ = a                                                                    (4.13) 
 

is satisfied precisely enough. Therefore, the approximate value of the 
expectation of a random variable is the arithmetic mean of its 
experimental values.  

This proposition allows us to determine approximately not only the 
centre but other moments of the distribution as well. For example, we 
arrive at an approximate formula 
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2
2 2 ( )

σ (ξ) E(ξ ) kx a
a

n

−
= − ≈

∑                                   (4.14) 

 
where the sum covers all the experimental data x1, x2, …, xn. Indeed, 
the right side of the approximate equality can be considered as a 
particular value of the arithmetic mean of n independent and 
identically distributed random variables (ξk – a)2 with expectation  
 

E(ξk – a)2 = E(ξ – a)2 = σ2(ξ), k = 1, 2, …, n. 
 
Therefore, 
 

P[
2

2( )
| σ

ξ –  
ξ( |  ) ε] 0k

n

a
− > →

∑  as n→ ∞.  

 
Formula (4.14) includes the value of the usually unknown centre of 

distribution. It is therefore natural to replace it by its approximate 
value .x  However, unlike the approximate formulas (4.13) and (4.14), 
the thus derived formula 

 
2

2 ( )
σ (ξ) kx x

n

−
≈
∑                                                        (4.15) 

 
will not hold anymore. Although its right side can be considered as a 
particular value of the arithmetic mean of n random variables 

2(ξ ξ ) ,n n−  their expectation will not now be σ2(ξ) because of the 

linear dependence between ξ1, ξ2, …, ξn and their mean ξ . A direct 

calculation provides 
 

E 2 21 2
1 1

ξ ξ ... ξ
(ξ ξ ) E[(ξ ) ( )]n

n a a
n

+ + +
− = − − − =  

22
1

ξξ
E[(ξ )(1 1/ ) ... ]n aa

a n
n n

−−
− − − − − =   

2 2
2 2 22

1 2

σ (ξ ) ... σ (ξ ) 1
σ (ξ )(1 1/ ) σ (ξ)n n

n
n n

+ + −
− + =   

 
and similarly for any k: 
 

E 2(ξ ξ )k n− = 21
σ (ξ)

n

n

−
. 

 
The expectation is linear and the expectation of random variables 
 

1

n

n −
2(ξ ξ )k n−  
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is this very σ2(ξ). Although these variables are not independent, the 
law of large numbers is valid for them just as well (we omit the proof). 
If only n is sufficiently large, the value of their arithmetic mean 
 

2 21 1
(ξ ξ ) (ξ ξ )

1 1k n k n

n

n n n
− = −

− −
∑ ∑  

 
will little deviate from their centre σ2(ξ).  

Formula (4.15) can therefore be corrected by introducing factor  
n/(n – 1) in its right side: 

 

σ2(ξ) ≈ 
2( )

.
1

kx x

n

−

−

∑                                                      (4.16) 

 
The right side is the sample variance denoted b sn

2. It is useful to note 
that for large values of n the correction is relatively small and formulas 
(4.15) and (4.16) do not practically differ. For small values of n the 
difference is however very noticeable. If only n is known, the errors of 
all the approximate formulas provided above should be estimated. 
Some estimates are given in Chapter 6. 

The approximate derivation of the moments of the distribution by 
experimental data ensures the possibility of calculating the parameters 
of the distribution provided that its type is known. Here are examples. 
    1) The parameters a and σ2 of the general normal distribution are its 
centre and variance (§ 3.3). They can be derived by formula (4.14) and 
(4.17) if only experimental data are given. 

2) The unknown parameters of the uniform distribution can be the 
ends of the interval of possible values α1 and α2. The moments are (§ 
3.3) 

 

1 2 2 1
1

α α α α
α Eξ ,  σ σ(ξ) ,

2 2 3

+ −
= = = =   

 
therefore α1 =a – σ√3, α2 =a + σ√3 and formulas (4.14) and (4.17) 
provide a and σ2. 

3) The parameters of the Pearsonian distribution (2.26) α and β are 
connected with its centre and variance: 

 
a = Eξ = α/β, σ2 = σ2(ξ) = α/β2, 
 

see Exercise 7 to Chapter 3. Therefore, after calculating a and σ2 by 
formula (4.14) and (4.17), we have 
 

α = a2/σ2, β = a/σ2. 
 
If the density of distribution is known to depend on l parameters α1, 

α2, …, αl, then, expressing the first l moments of the distribution 
through them, we can, generally speaking, determine them; the 
moments themselves can be established by trials as stated above. We 
ought to remark, however, that, the higher the moment, the more data 
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is needed for determining it more or less precisely. In practice 
therefore we often restrict our calculations to two unknown parameters 
(and two moments). 

4.5. Exercises 
1) Wrong connections were each minute registered at a telephone 

exchange during an hour. Here are the results [the author provided the 
number of those connections for each minute of the hour]. Determine 
the centre and variance of the distribution and check whether the main 
condition for the appearance of the Poisson distribution, Eξ = σ2 = a, is 
fulfilled. Determine that distribution and compare the registered data 
with a table of that distribution. Answer: 

The mean number of wrong connections was x  = 2. The condition 
for the Poisson distribution is sn

2 ≈ 2.1 = .x  The Poisson distribution is 
here 

 

P(ξ = m) = 22

!

m

e
m

−  (a = 2). 

 
2) [The author provides a table of the deviations of the sizes of a 

hundred manufactured articles from the nominal size.] Determine the 
centre and variation of the distribution and construct the appropriate 
normal distribution. Compare the data with a table of that law. Answer. 

Mean deviation x = 0.4; the sample variance sn
2 = 2.57. The 

appropriate normal distribution has σ = 1.6. Each deviation x should be 
considered as the mean for the appropriate interval. Thus, deviations x 
= – 3, – 2, – 1, have frequencies 3, 10 and 15 and frequency 10 is 
attributed to the interval – 2.5 < x < – 1.5. The distribution function of 
the normal law is therefore taken as 

 

F(x + 0.5) = 
1 1 0.5

[ ]
2 2

x a

σ

+ −
+ Φ   

 
where Ф is determined by formula (2.22). 

3) Determine the Pearsonian distribution (2.26) for the following 
data x = 0, 1, 2, 3, 4, 5, 6 and frequency m = 1, 33, 41, 18, 5, 1, 1 (sum 
= 100). Check whether the main condition for the appearance of that 
distribution, Cs = 2Cv, see Exercise 10 in Chapter 3, is fulfilled. 
Answer. 

x = 2.0, sn
2 = 1.0. For distribution (2.26) a = α/β = 2, σ2 = α/β2 = 1, 

so α = 4 and β = 2. The density of the Pearsonian distribution is 
 
φ(x) = (16/3!)x3e–2x, and Cv = σ/a = 0.5, Cs = 1.09 ≈ 2Cv.  
 

Chapter 5. Limiting Theorems  

and Estimation [of the Precision] of the Means 
The distribution of the probabilities of the relative frequency and 

some other means tend to the normal law which is the decisive 
circumstance influencing their estimation. For proving the appropriate 
limiting theorems Liapunov developed a very powerful method of 
characteristic functions which allowed him to prove the so-called 
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central limit theorem. Before discussing limiting theorems we provide 
necessary information about those functions. 

5.1. Notion of characteristic functions 
The characteristic function of random variable ξ is the expectation 
 
f(u) = Eeiuξ.                                                                 (5.1) 
 

Here the parameter u is a real number. For a discrete random variable 
 

f(u) = kiux
ke p∑                                                           (5.2) 

 
where pk is the probability of the value xk and the sum covers all the 
values xk of ξ. For a continuous random variable 
 

f(u) = φ( )iuxe x dx
∞

−∞

∫                                                       (5.3) 

 
where φ(x) is the density of the distribution of ξ. The integral always 
converges absolutely since |eiuxφ(x)| = φ(x) and 

 

|f(u)| ≤ φ( )x dx
∞

−∞

∫ = 1. 

 
5.1.1. Main properties of characteristic functions 
1) They uniquely determine the distribution of probabilities of 

random variables. It is possible to indicate the general expression of 
the distribution function through the characteristic function (Gnedenko 
1954, Chapter 7). There also the reader will find the proofs of the 
properties of characteristic functions. For those acquainted with the 
Fourier integral I note that the integral (5.3) is the Fourier transform of 
density φ(x). If two random variables have identical characteristic 
functions, they also have identical distributions of probabilities. 

2) If the characteristic function f(u) of a continuous random variable 
ξ is the limit of a sequence of characteristic functions fn(u) of any 
random variables ξn (n = 1, 2, …) the distribution function  
F(x) = P(ξ < x) is the limit of functions Fn(x) = P(ξn < x). It follows 
that, as n → ∞, 

 
limfn(u) = f(u) leads to limFn(x) = F(x) for all x. 
 

Gnedenko provides more general theorems of this kind.  
This property is important since in many cases the passage to the 

limit for a sequence of characteristic functions is easier than for a 
sequence of distribution functions. The proof of limiting theorems 
through characteristic functions is then shorter and simpler. The 
properties stated above we provide without proof. 

3) The characteristic function of a sum of independent random 
variables is the product of the characteristic functions of the terms of 
that sum. Suppose we have independent random variables ξ and η with 
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characteristic functions fξ(u) and fη(u). The random variables eiuξ and 
eiuη will also be independent and the characteristic function fξ+η(u) of 
the sum (ξ + η) can be calculated by the multiplication theorem for 
expectations 

 
fξ+η(u) = Eeiu(ξ+ η) = Eeiuξeiuη = EeiuξEeiuη, fξ+η(u) = fξ(u)fη(u). (5.4) 
 
The calculation of a characteristic function of a sum of independent 

random variables is therefore easier than the determination of the 
corresponding distribution of probabilities (which is reduced to the 
convolution of the densities of the distributions of the terms, see § 
2.4.4). 

4) When passing from a random variable ξ to its linear function η = 
A + Bξ, the characteristic function becomes  

 
fη(u) = eiAufξ(Bu).                                                                    (5.5) 
 

This formula can be checked at once: 
 

Eeiuη = Eeiu(A+Bξ) = eiAuEeiBuξ. 
 
5.1.2. Examples 
1) For random variable λ with values 1, 0 and probabilities p and q 

(§ 2.2) the characteristic function according to formula (5.2) is 
 
fλ(u) = eiu1p + eiu0q = peiu + q.  
 
2) The frequency of a random event [in n trials] is the sum 
 
µn = λ1 + λ2 + … + λn 
 

with independent λk having distributions as in the previous example. 
By Property 3 the characteristic function of µn is 
 

1 2µ λ λ λ( ) ( ) ( )... ( ) ( ) .
n n

iu nf u f u f u f u pe q= = +              (5.6) 

 
3) The relative frequency of the same event is wn = µn/n. By 

formulas (5.5) and (5.6) 
 

/
µ( ) ( / ) ( ) .

n n

iu n n
wf u f u n pe q= = +   

 
4) A random variable uniformly distributed on (– a, a) has density 
 
φ(x) = 1/2a, – a < x < a and 0 otherwise.  
 

By formula (5.3) 
 

f(u) = 
1 sin

.
2 2

a iua iua
iux

a

e e au
e dx

a aiu au

−

−

−
= =∫                                 (5.7) 
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5) Random variable ξ0 has the simplest normal distribution (2.21). 

Its characteristic function is 
 

f0(u) = 
2

2
/ 21

exp( ).
22π

iux x u
e e dx

∞
−

−∞

= −∫                                   (5.8) 

 
I am omitting the calculation of the integral. If random variable ξ has 
the general normal distribution (2.25), so that ξ = a + σξ0, its 
characteristic function, according to formulas (5.8) and (5.5), is 
 

f(u) = eiauf0(σu) = eiauexp(– 
2 2σ

).
2

u
                                          (5.9)  

 
It follows that if mutually independent random variables ξ1, ξ2, …, 

ξn have normal distributions with parameters a1, a2, …, an and 
variances σ1

2, σ2
2, …, σn

2, their sum has normal distribution with 
centre a = a1 + a2 + …+ an and variance σ2 = σ1

2 + σ2
2 + … + σn

2. 
Indeed, since  

 
2 2( ) exp( ) exp( σ /2),k k kf u ia u u= −  k = 1, 2, …, n, 

f(u) = f1(u) f2(u)… fn(u) = 2 2exp( )exp( σ /2).iau u−  

 
5.1.3. Connection between the characteristic function and the 

moments of distribution. Since the characteristic function f(u) uniquely 
determines the distribution of the probability of the appropriate 
random variable ξ, all the moments of the distribution can be 
expressed through it. Formally differentiate the equality 

 
f(u) = Eeiuξ 
 

with respect to u (after introducing either a sum or an integral): 
 

f ′(u) = Eiξeiuξ, f ′′(u) = E(iξ)2eiuξ, …, f(k)(u) = E(iξ)keiuξ. 
 
It can be shown that this is admissible if ξ has moments up to the  

k-th inclusive. Now, taking u = 0 we will have the connection sought 
 

f(0) = E1 = 1, f ′(0) = iEξ, f ′′(0) = – Eξ2, …, f(k)(0) = ikEξk. 
 

In applications of probability theory derivations of ψ(u) = lnf(u) are 
sometimes needed. The number ikψ(k)(0) is called the k-th cumulant of 
ξ. It is easy to check that 
 

iψ′(0) = – Eξ, i2ψ′(0) = σ2(ξ). 
 
Cumulants are very important for calculating sums of independent 

random variables: their cumulants are then summed up as well. 
5.2. The De Moivre – Laplace limiting theorem.  
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Estimating relative frequencies 
We are now considering the limiting distribution of the relative 

frequency of a random event as the number of trials unboundedly 
increases. For sampling with replacement the distribution of the 
relative frequency wn is binomial (§ 2.2): 

 

( ) ,m m n m
n n

m
P w C p q

n
−= =  m = 0, 1, 2, …, n.            (5.10) 

 
Here n is the number of (independent) trials, p, the probability of the 

appearance of the studied event in each trial. For a large n calculations 
by formula (5.10) become very difficult. The essence of the appearing 
difficulties will be even clearer when noting that practically we are 
interested in the probability not of the equality wn = m/n but rather of 
the inequality |wn – p| < ε equal to the sum of the expressions in the 
right side of (5.10) covering the values of m for which |m/n – p| < ε or 
the values of m satisfying inequalities np – nε < m < np + nε, see § 4.2.  

Here is an example of such a difficulty. Required is the probability 
that after n = 10,000 trials the relative frequency of the event will not 
deviate from its probability p = 0.2 more than by ε = 0.01. Here np = 
2000, q = 0.8. We have to sum up more than 200 terms such as 

 

10,00010,000!
0.2 0.8 ,

!(10,000 )!
m m

m m
−

−
 np – nε = 1900 < m < np + nε = 2100. 

 
It was understood long ago that for an approximate calculation of 

probabilities the binomial distribution should be replaced by some 
continuous limiting law. Continuous, since then the problem is 
reduced to calculating an integral which is usually much easier than 
calculating sums in case of discrete distributions.  

De Moivre solved it in 1730 for p = q = 1/2 [in 1733 for the general 
case], then Laplace in 1783 followed suit10. It occurred that a binomial 
distribution has a limiting law (n → ∞), the normal distribution. We 
will first norm wn. A [centred and] normed random variable ξ is 

ξ0 = (ξ – Eξ)/σ(ξ). 
 
Denote the normed relative frequency by τn: 
 

τn = 
E

.
σ( ) /
n n n

n

w w w p

w pq n

− −
=                                                 (5.11) 

 
5.2.1. The De Moivre – Laplace theorem. As the number of trials 

unboundedly increases, the simplest normal law becomes the limiting 
distribution of probabilities of the normed relative frequency of a 
random event  

 
limP(|τn| < t) = Ф(t), n → ∞                                           (5.12) 
 

where Ф(t) is the integral (2.22).  
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This theorem is a particular case of a more general proposition (§ 
5.3). Here, we only indicate the manner of its application.  

5.2.2. Application of the De Moivre – Laplace theorem to the 
estimation of relative frequencies. This theorem ensures the estimation 
of probabilities of the inequality |wn – p| < ε for sufficiently large 
values of n (and values of p not too near to 0 or 1). So let us choose 
such a large value of n that the approximate equality  

 
P(|τn| < t) ≈ Ф(t)                                                          (5.13) 
 

will be obeyed with a satisfactory precision. 
Then, since the inequalities 
 

|wn – p| < ε and |τn| = 
| | ε

/
nw p n

pq n pq

−
<  = t                   (5.14) 

 
are equivalent, the probability of the former is approximately equal to 
Ф(t). 
    5.2.3. Notion of interval estimation. Return to the example in § 5.2: 
p = 0.2, q = 0.8, n = 10,000 and ε = 0.01. Since  
 

t = 
0.01 10,000

2.5
0.2 0.8

=
⋅

  

 
probability P(|wn – 0.2| < 0.01) ≈ Ф(2.5) = 0.988. 

Since n is rather large this approximate formula ensures the third 
decimal place. Precise estimates are provided in special papers 
(Bernstein, Feller et al). For n of the order of several hundred (but np 
and nq nevertheless considerably larger than 1) a somewhat more 
precise formula with integer k is 

 

P(|wn – p| ≤ k/n) ≈ Ф
1/2

[ ].
k

npq

+
  

 
I illustrate the precision of this new formula by two examples. […] 

If P ≈ 0.988 is considered sufficiently near to unity, we are 
practically certain that P(|wn – p| < ε) ≈ Ф(t) will be fulfilled here. That 
value, 0.988, is then called the confidence probability of the estimate 
|wn – p| < ε. Confidence probability is assigned beforehand in 
accordance with the stipulated boundary of very low probabilities (§ 
4.1). Thus, if we decide to neglect the possibility of the appearance of 
an event having probability 0.001, the confidence probability will be 
0.999.  

Knowing P we calculate t by issuing from equation Ф(t) = P and an 
appropriate table of the normal distribution. Thus, for P = 0.999, we 
find t = 3.29 and with confidence probability P we have  

 

|wn – p| < ε, ε = t(p) / .pq n                                             (5.15) 
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With an assigned confidence probability P the relative frequency wn 
will be contained within the confidence interval (p – ε, p + ε) with ε 
provided in formula (5.14).  

For our example with confidence probability P = 0.999,  
 

    |wn – 0.2| < 3.29
0.2 0.8

0.0132
10,000

⋅
=   

 
and the relative frequency wn is contained within confidence interval 
(0.1868, 0.2132). For frequency µn = nwn that interval will be n = 
10,000 times wider: 1868 < µn < 2132. Confidence intervals are 
practically useful not only by allowing us to foresee the boundaries of 
(relative) frequencies. If the trials were really carried out and the actual 
frequency was beyond the confidence interval, we ought to doubt the 
results of calculating the confidence probability of the studied event. 

This is important for, say, regulating mass production. Suppose that 
substandard manufactured articles ought to comprise no more than 1% 
of the total. A random sampling inspection with replacement is needed. 
However, if the sample size (n) is very small as compared with the 
total number of the articles, the formulas above will be sufficiently 
precise even without replacing the selected articles. The frequency µn 
= nwn of substandard articles should be contained within interval  

 
n(p – ε) < µn < n(p + ε). 
 

5.3. Confidence estimation of means. 

Notion of the Liapunov central limit theorem 
The normal limiting law in the De Moivre – Laplace theorem is not 

connected with some specific properties of the binomial distribution. It 
is only occasioned by relative frequency wn being an arithmetic mean 
of independent random variables λ1, λ2, …, λn, … That theorem can be 
directly generalized on arithmetic means of any sequence of 
independent identically distributed random variables (if the centre and 
the variance of their distribution are finite). 

Suppose that ξ1, ξ2, …, ξn, … is such a sequence of variables with 
centre and variance of their distribution being Eξk = a and E(ξk – a)2 = 
σ2, k = 1, 2, … Compile 

 

1 2ξ ξ
ξ

... ξn
n n

+ + +
=   

 
and introduce normed [and centred] means 
 

ξ Eξ
τ .

σ(ξ )
n n

n
n

−
=                                                               (5.16) 

 
The variables ξk are independent and therefore (cf. Chapter 3) 
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Eξ ,  σ(ξ ) σ/ ,n na n= =   

 

1 2ξ ξ ξ ... ξ  
τ .

σ/ σ
n n

n

a na

n n

− + + + −
= =   

 
Theorem. The limiting (n → ∞) distribution of the normed means 

(5.16) is the normal law  
 
limP(|τn| < t) = Ф(t)                                                  (5.17) 
 

where Ф is the integral (2.22). 
We will prove it only for continuous random variables by applying 

characteristic functions. […]  
This theorem allows us to derive interval estimates of the means; 

that is, to estimate ε in the inequality | ξ |n a− < ε with an assigned 

confidence probability P. Replace that inequality by an equivalent and 
therefore equally probable inequality 

 

| ξ |  ε ε
 or | τ |  .

σ σσ/
n

n

a n n
t

n

−
< < =  

 
According to (5.13), the probability of |τn| < t will also be 

approximately equal to Ф(t), t ε /σ.n=  Assuming a definite 
probability P sufficiently near to 1, we can find t = t(P) satisfying 
equation Ф(t) = P by a table of the normal law and thus derive an 

interval estimate of the mean ξn : 

 

| ξ |  ε ( )σ/n a t P n− < =  with confidence probability P.  (5.18) 

 
5.3.1. Deviations of the experimental mean from the expectation. 

We are now interested in a single random variable ξ with centre a and 
variance σ2. Suppose that a sufficiently large number n of independent 
trials were made to find its particular values. Whatever are those 
values x1, x2, …, xn, we may state with probability P that the mean x  
will obey the inequality 

 

| |  < ( )σ/x a t P n−                                                        (5.19) 

 
or that it will be contained in a confidence interval (a – ε, a + ε), ε =  

( )σ/t P n . This statement follows from estimate (5.18) if only we 

connect random variable ξk having the same distribution as ξ with each 

k-th trial. The particular values of ξk and ξn  will be xk and x . The 

independence of ξk follows from the supposed independence of the 
trials. 

5.3.2. Deviations of the sample mean from the general mean. 
Consider the possible values of the indication of each element of the 
sample as a random variable with distribution (3.2). Then the sample 
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mean x will be the arithmetic mean of these values. It will therefore 
satisfy inequality (5.18) where a is the general mean, the centre of 
distribution (3.2), and  

 

σ = 2 2 2
1 1 2 2( ) / ( ) / ... ( ) / .v vx a M N x a M N x a M N− + − + + −   

 
In other words, we can expect with probability P that the sample 

mean deviates from the general mean a not more than by ( )σ/ .t P n  

Interval estimation of the mean can be applied for checking and 
regulating manufacturing when some parameter (a size, for example) 
ought to be kept within definite boundaries. If a sample inspection 
shows that some mean value is contained beyond the interval (a – ε,  

a + ε), ε = ( )σ/ ,t P n  it will be necessary to check whether the 

conditions of manufacturing were not violated. The development of 
such principles led to the creation of special methods of statistical 
inspection. 

5.3.3. Notion of the Liapunov central limit theorem (CLT). Above, 
we have established that the normal law is the limiting distribution for 
normed means (for the normed sums of identically distributed terms). 
The CLT establishes the general conditions for the normal distribution 
to be the limiting law of normed sums of mutually independent 
random summands. In a general form this problem was first 
formulated in Chebyshev’s researches, but the conditions which he 
found were rather restrictive11. In 1900, Liapunov proved the CLT 
under very general conditions, proved the sufficiency of two 
conditions: 

1) All the random summands have finite absolute central moments 
of the third order  

 

E 3| ξ | ,k ka−  ak = Eξk, k = 1, 2, …  

2) 3 2 3/2

1 1

| ξ |  { σ (ξ )} 0 as .
n n

k k k
k k

a n
= =

− ÷ → → ∞∑ ∑            (5.20) 

 
This second condition is satisfied for identically distributed 

summands since then 
 

3
3 2 3/2

3

1 E | ξ |
E | ξ |  ( σ ) .

σ
a

n a n
n

−
− ÷ =   

 
The Liapunov conditions thus mean an utmost neglect of separate 

summands of a sum, a uniformly small influence of each of them on 
the sum. This is clearer seen in the somewhat more general Lindeberg 
conditions12 which require a uniform smallness of the probabilities of 
large deviations | ξ |k ka−  as compared with the variance of the sum  

σ2(ξ1 + ξ2 + … + ξn). Roughly speaking, there should be no summands 
whose possible deviations dominate those of all the other ones. 

Liapunov’s CLT explained the prevalence of the normal law in 
nature and technology: the scattering of the studied magnitude is 
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caused by a very large number of random causes whose separate 
influence is negligible. On the other hand, it established the precise 
conditions of the CLT and thus strictly defined the applicability of the 
normal law. 

The importance of the law of large numbers and the CLT for the 
entire probability theory and its applications led to their numerous and 
most various specifications and generalizations. In particular, we note 
the study of dependent random variables originated by Markov and 
continued by Bernstein and Slutsky. The Chebyshev theorem, for 
example, proved to be also valid for sequences of dependent random 
variables with restricted variances if only that dependence rapidly 
lessened with the distance between the terms of those sequences. It 
suffices that the correlation coefficient (§ 7.4) 

 
r(ξi, ξk) → 0 as |i – k| → ∞. 

 
Similar conditions concerning the dependence can ensure the 
generalization of the CLT on dependent variables. 

5.4. Exercises 
1) Directly prove the De Moivre – Laplace theorem by applying the 

characteristic function of the frequency µn (5.6). 
Indication: Derive the characteristic function fn(u) of the normed 

frequency 
 

τn = 
µn np

npq

−
                                                      (5.11) 

 
by formulas (5.6), (5.5) and (5.11); then, after expanding the 
exponents 
 

exp
/ /

[ ] and exp[ ]
iu q p iu p q

n n
−   

 
transform fn(u) into  
 

2 3

[1 ...] .
2 3!

nu u q p
i

n n n pq

−
− − − +   

 
2) Estimate the relative frequency wn assuming p = 0.01, n = 1000, 

and P = 0.99. Answer: 
 

|wn – p| < 2.576 0.0099/1000  0.0081,=  0.0019 < wn < 0.0181. 

 
With confidence probability P = 0.99 we may expect that in a 
thousand trials the studied random event will occur 2 – 18 times  
(2 ≤ µn = nwn ≤ 18). 

3) A coin is tossed 12,000 times and heads appeared in 6019 tosses. 
Does this agree with the supposed probability of heads being 1/2? 
Answer: 
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P(|wn – 1/2| ≥ 19/12,000) ≈ 1 – Ф
19 12,000

[ ]
12,000 0.5 0.5⋅

 = 0.738. 

 
This probability is not low and doubts about the formulated hypothesis 
are unfounded. 

4) The distribution of some indication in a batch of 5000 articles is: 
 
values: 3.40(0.05)3.75  
frequencies M: 150, 380, 1320, 1530, 970, 470, 100, 80  
 

A sample contains 100 articles. Estimate the sample mean with P = 
0.99. Answer: 

General mean a = 3.55, σ = 0.05 1.844  = 0.068, 
 

0.068
| |  2.576 0.0175,

100
x a− < =  3.5325 < x  < 3.5675. 

 
5) A random sample of a batch of a hundred articles resulted in 
 
values: same as in Exercise 4; frequencies m: 3, 5, 12, 28, 28, 14, 8, 2 
 
Suppose that σ is also the same as in the previous Exercise. May we 

decide that the mean value of the indication is the same just as well? 
Answer: 

 
x  = 3.55 + 0.05·57/100 = 3.55 + 0.0285. 
 

P(| x – a| ≥ 0.0285) ≈ 1 – Ф
0.0285 100

[ ]
0.068

 < 0.00003. 

 
This is a very low probability and we cannot think that the new 

batch has mean value a = 3.55.  
6) Prove that the Poisson distribution can be considered the limiting 

case of the binomial law (n → ∞, p → 0, np = a).  
Indication: Replace p by a/n and pass to the limit in formula 
 

./ (1 / ) .m m n m m m m n m
n nC p q C a n a n− −= −   

 
7) A large number n of terms rounded off to 10–m is summed up. 

The error of the approximation is supposed to be a random variable ξ 
uniformly distributed on (– 0.5·10–m, 0.5·10–m). Show that the absolute 

error of the sum will not exceed 0.5·10–m 3n  with P = 0.997. 
Indication. Suppose that the errors of the summands are 

independent and identically distributed and that having a sufficiently 
large n their sum is distributed near-normally with centre 0 and mean 
square deviation 
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σ = σ(ξ)√n = 
10

,
2 3

m n−

  

 
see Exercise 2 in § 3.3.2. 
 

Chapter 6. Application of Probability Theory  

to Mathematical Treatment of Observations 

6.1. Random observational errors, their distribution 
An error of measurement is the difference x – a between the 

measurement and the true value a of the measured magnitude.  
Each measurement is corrupted by errors. The results of 

measurements of the same magnitude even repeated under identical 
conditions usually differ and the measurements themselves and any 
result of their treatment only provide approximate rather than precise 
values of a. From all such approximations we have to select in some 
sense the best one. Then, we ought to estimate the precision of the 
obtained approximation, i. e., to establish the boundaries which with a 
given probability the deviation of the true value from that 
approximation will never exceed. 

The applicability of the probability theory to these problems is 
based on the fact that the possible result of a measurement is a random 
variable with a definite distribution of probabilities. Let us establish 
the type of this distribution in case of direct measurements (when their 
results are directly read on a scale). We assume that the results of 
measurements are not affected by systematic errors. Those errors are 
caused by an invariably acting cause; their magnitudes are either 
identical in all measurements or vary according to a known law. They 
can therefore be eliminated by regulating the measuring device or 
appropriately correcting the results of measurements13. 

After that these results will still be corrupted by unavoidable errors 
which are impossible to get rid of, by random errors. They are caused 
by numerous and hardly perceptible causes each of which only leads to 
small fluctuations of the results. Each of those causes generates its so-
called elementary error and the resulting error is obviously their sum. 
If the number of elementary errors is very large and the contribution of 
each of them is very small (which is the essence of the hypothesis of 
elementary errors), then, according to the CLT, the resulting error 
should more or less obey the normal law. The decisive argument in 
favour of that law is its confirmation by numerous experiments and 
observations. The theory of errors therefore assumes as the main 
axiom that the random error τ of a direct measurement obeys the 
normal law14.  

Then, blunders occur when the stipulated conditions of 
measurement are violated or the result of a measurement is wrongly 
recorded. The thus corrupted results ought to be rejected at once. 

Since the results of measurements are read on scales, random errors 
are always expressed by some [rational] numbers, but it is more 
convenient to consider them continuous. And for the same reason we 
assume that these errors take any value on the numerical axis. This 
assumption sometimes contradicts the essence of a problem, but does 
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not influence the conclusions since the probability of τ exceeding 
definite boundaries is very low.  

Taking into account the usual symmetry of random errors [see 
below], it is also assumed that the centre of their distribution is zero so 
that the density of their distribution is the normal law with parameters 

0 and σ2; σ = 2Eτ is called mean square error of measurement or 
standard. It characterizes the precision of measurement (or of the 
measuring device). 

The possible result of a measurement, ξ, and τ are connected by a 
simple equality 

 
ξ = a + τ. 
 

Since Eτ = 0, Eξ = a, which is the condition of unbiasedness 
practically connected with the absence of systematic errors. And so, ξ 
obeys the normal law with parameters a and σ2. 

6.2. Solution of the two main problems of the error theory 
Suppose that x1, x2, …, xn are the results of direct measurements of 

some constant magnitude a. We assume that the possible results of 
measurements ξ1, ξ2, …, ξn obey the normal law with an identical 
centre 

 
Eξk = a, k = 1, 2, …, n                                                (6.1) 
 

(unbiasedness) and identical variances 
 

E(ξk – a)2 = σ2, k = 1, 2, …, n                                      (6.2) 
 

(measurements of equal precision). 
It is advisable to assume the arithmetic mean x  as the approximate 

value of a (§ 4.4.1). Now, however, we have to estimate the precision 
of that approximation. Random variables ξk are independent and 
normally distributed with parameters a and σ2 so that (§§ 5.2 and 3.3.1) 

the mean ξ  is also normally distributed with parameters a and σ2/n. 

Therefore 
 

P(| ξ  – a| < ε) = Ф(t), t = ε/σ( ξ ) = ε√n/σ.                    (6.3)  

 
Here, Ф(t) is the integral (2.22). 

The probability P is usually assigned beforehand and is near 1 (for 
example, 0.999). Therefore, t is derived from equation Ф(t) = P by 
means of a table of the normal law. Thus, if P = 0.999, t = 3.291. And 
so we obtain 

 

| ξ  – a| < ε) = tσ/√n. 
 

Replacing ξ  by x we get the so-called classical estimate  

 
| x  – a| < tσ/√n, x – tσ/√n < a < x + tσ/√n.                 (6.4) 
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The probability of those inequalities is the assigned number P = Ф(t). 

This estimate has as essential defect: it assumes that σ2 is known. 
When replacing this variance by its approximate value (§ 4.4.1), 

 

σ2 ≈ 2
ns  = 

2

1

( )

1

n

k
k

x x

n
=

−

−

∑
                                                (6.5) 

 
the confidence probability of (6.4) decreases. However, it occurs that a 
proper estimate of the precision sought is possible when issuing not 

from ξ  – a, but from another random variable,  

 

ς = 
2

1

ξ
,

( 1) (ξ ξ)
n

k
k

a

n n
=

−

− −∑
 n ≥ 2. 

 
If all the ξk are independent and normally distributed with centre a, ς 

we get the so-called Student distribution with density 
 

S(t, n) = Bn

2
/2 ( /2)

(1 ) ,  .
1 π( 1) [( 1)/2]

n
n

t n
B

n n n
− Γ

+ =
− − Γ −

  

 
Number n is supposed fixed. 

The probability of |ς| < t is therefore  
 

P = ( , ) .
t

t
S t n dt

−∫                                                         (6.6) 

 
Having a table of that integral and assuming a given P we can 
calculate t = t(P, n) and, taking (6.6) into account, we have the 
estimate sought 

 
| |

( , ),  /  /
/

n n

n

x a
t t P n x ts n a x ts n

s n

−
< = − < < +      (6.7) 

[…] 
6.2.1. Calculation of the means. For applying (6.7) we ought to 

calculate x  and sn which can be essentially simplified by an 
appropriate linear transformation of the results of measurement 

 
xk = c + huk, uk = (xk – c)/h, k = 1, 2, …, n.                (6.8) 
 

The chosen c is some mean between the extreme values of xk, and h 
can always be selected in such a way that uk will be integers since the 
results of measurements are rational numbers (§ 6.1). The necessary 
formulas are 
 

x  = c + h ,  u                                                              (6.9)  
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2 2 2 2( )  ( ) ,  /( 1).k n nx x h u nu z s z n− = − = = −∑ ∑  (6.10) 

 
Example. Here are the results of the 20 first measurements of the 

elementary electronic charge made by Millikan. […] Choose c = 4.780 
and h = 0.001 [in appropriate units]. The sums of their deviations and 
of their squares are – 29 and 1871. By formulas (6.9) and (6.10)  
u = – 29/20 = – 1.45,  
 

x  = 4.780 – 0.00145 = 4.77855, n 2u =  20(29/20)2 = 42.0,  

sn = 0.001
1871 42

0.00981.
19

−
=   

 
The true charge can be assumed as e = 4.7786. Let the confidence 

probability be P = 0.99. Then for n = 20 we find t = 2.861 and we may 
maintain that the true value of the charge is contained between 

 

4.77855 2.861 0.00981/ 20 4.7722 andnx ts n− = − ⋅ =   

4.77855 2.861 0.00981/ 20 4.7848nx ts n+ = + ⋅ =  

 
If however P = 0.999, t = 3.883 and 4.7700 < e < 4.7870. 
6.2.2. Estimating the precision of the device (of measurements). 

Precision is measured by σ; its approximate value is the sample 
standard sn [see (6.5)]. For estimating the approximate equality σ ≈ sn 
we may apply the distribution of probabilities of the random variable 

 

χ = 21
(ξ ξ)

σ k −∑   

 
[Cramér 1946/1948, § 18.1] which depends on n but not on a or σ. If 
all the ξk, k = 1, 2, …, n are independent and have an identical normal 
distribution with parameters a and σ2 the density of χ will be 
 

R(t, n) = Ant
n–2exp(– t2/2), n ≥ 3, t ≥ 0, An = 1 3/22 [( 1)/2],n n−÷ Γ −   

P(t1 < χ < t2) =
2

1

( , ) .
t

t

R t n dt∫                                                     (6.11) 

We can now determine the probability of 
 
sn – ε < σ < sn + ε or sn(1 – q) < σ < sn(1 + q)                    (6.12) 
 

where q = ε/sn is the relative error. Indeed, inequalities 
 

    (1 – q)
2 2(ξ ξ ) (ξ ξ )

σ (1 )
1 1

k kq
n n

− −
< < +

− −

∑ ∑                 (6.13) 
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can be transformed into identical and therefore equally probable 
inequalities 
 

21 1 1
(ξ  ξ) ,  1.

1 σ 1k

n n
q

q q

− −
< − < <

+ −
∑   

 
They are of the type t1 < χ < t2 and their probability is therefore 

equal to the integral (6.11) with 
 

t1 = 2

1 1
,  .

1 1

n n
t

q q

− −
=

+ −
  

 
After assigning a definite P we determine q = q(P, n) from integral 

(6.11) taken with these t1 and t2 and equating it to P. Then the 
inequalities (6.13) will have the assigned probability P. Replacing ξk 
by experimental xk, we will obtain estimate (6.12) with that assigned 
probability. 

Note. If q > 1, the inequalities (6.13) will become  
  

2(ξ ξ )
0 σ (1 )

1
kq

n

−
< < +

−

∑  

 
which are identical with 
 

t1 < χ < ∞, t1 = 
1

1

n

q

−

+
 

 
and the probability P of those inequalities will be equal to the integral 
(6.11) taken over t1 and ∞. Then q = q(P, n) and estimate (6.13) 
becomes 
 

0 < σ < sn(1 + q). […] 
 
Example. In the previous example we derived sn = 0.00981. The 

precision of the Millikan measurements is therefore characterized by 
standard σ ≈ 0.00981. Let us estimate this approximate equality 
assuming P = 0.99. We apply the table of q = q(P, n) from 
Romanovsky (1947). For that value of P and n = 20, q = 0.58. We may 
therefore state that the standard error is contained within the interval 

 
sn(1 – q) = 0.00981 (1 – 0.58) = 0.0041 
sn(1 + q) = 0.00981 (1 + 0.58) = 0.00145 
 
If however P = 0.999, q = 0.88 then 0.0012 < σ < 0.0185. This 

interval can be shortened by an essentially larger number of 
measurements. For example, if P = 0.99 and 0.999, 350 and even 600 
measurements are needed to derive the standard error of σ with 
relative precision of 10%.  
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6.2.3. Simplified estimation. The three-sigma rule14. The estimation 
discussed above demanded the study of special distributions (the 
Student, the χ distribution etc). In practice, estimation is often 
simplified, for example, by applying the three-sigma rule so that the 
error of the approximate equality a ≈ x  does not exceed three mean 
square errors of x . So, if σ is known,  

 
|a – x | < 3σ( x ) = 3σ/√n 
 

with confidence probability P = Ф(3) = 0.997, see (6.4). The same rule 
is, however, applied when the unknown σ is replaced by sn:  

 
|a – x | < 3sn/√n.                                                                 (6.14) 

 
But then the confidence probability becomes considerably lower 

than 0.997 and decreases with n. Indeed, comparing estimates (6.14) 
and (6.4) we note that with n = 14 and 8 the former has P < 0.99 since 
t(0.99, 14) = 3.01 > 3 and the latter has P = 0.98.  

Since calculating mean square errors is always simpler than 
studying the appropriate distributions, the same rule is again applied 
for estimating other characteristics of distributions. As an example, we 
describe now the estimation of the standard error of measurements. It 
can be shown that the mean square error of the sample standard is 
approximately 

 

σ
2(ξ ξ )

1
k

n

−

−

∑  ≈
2( 1)

ns

n −
  

 
so that the three-sigma rule becomes 
 

|σ – sn| < 3sn/ 2( 1)n − .                                                    (6.15) 

 
A comparison of it with the estimate (6.12) shows that even for n = 

45 it has probability P < 0.99 since q (0.99, 45) =  

0.321 > 3/ 2(45 1).−  For n = 19 and 7 the estimate (6.15) has P = 

0.98 and lower than 0.95. 
When estimating σ the confidence probability can be heightened not 

only by increasing n, but by measuring several magnitudes by the 
same device. Let n1, n2, …, nm be the numbers of measurements of the 
first, the second, the n-th magnitude, and s1, s2, …, sm, the 
corresponding sample standards. Then, see for example Arley & Buch 
(1949), the three-sigma rule becomes 

 

|σ – S| < 3S 2( ),n m−  S =
2 2 2

1 1 2 2( 1) ( 1) ... ( 1)
,v mn s n s n s

n m

− + − + + −

−
  

 
n = n1 + n2 + … + nm. If n – m = 200 P reaches 0.995. 

6.3. Exercises 
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1) Estimate the true value of the elementary electronic charge e for 
the 58 measurements made by Millikan […] choosing P = 0.999. 
Answer: 

The mean result of the measurements15  
 
x  = 4.780 + 0.001·0.81 = 4.78081 ≈ e, 
 

sn/√n = 0.001
13367 38

0.00201,  | |  / ,
57 5

   
8

ne x ts n
−

= − <
⋅

 

 
t = t(0.999, 58) = 3.470, ε = tsn/√n = 0.00697, 4.7738 < e < 4.7878.  
 
2) Same type of problem: P = 0.99 and the results of 100 

measurements are 
 
xk: 3.18(0.02)3.28; frequency m: 4, 18, 33, 35, 9, 1 
 

Indication: When calculating x  and the sample variance 2
ns  take 

into account the frequencies. Denote u = (x – x0)/h, h = 0.02, x0 = 3.22.  
 

x  = 3.22 + 0.02·0.3 = 3.226 ≈ a, sn = 0.02 (114 9) / 99− =  0.0206 ≈ σ.  

 
Estimate of a: t(0.99, 100) =2.627, ε = tsn/√n = 0.0054,  

|a – 3.226| < 0.0054. 
 

Estimate of the standard σ of the random errors:  
 
0.0206(1 – q) < σ < 0.0206(1 + q), q(0.99, 100) = 0.198, 

0.0165 < σ < 0.0247. 
3) Estimate by the three-sigma rule the precision of measurements 

of differing magnitudes made by the same device, of 10 of their series 
containing 15 measurements each. […] 

 
Chapter 7. Linear Correlation 

7.1. On different types of dependences 
Functional connection between magnitudes is the simplest 

connection: a quite definite value of one corresponds to each value of 
the other. Examples: pressure and volume of a gas including 
connections between several arguments. 

However, not all connections are functional: rainfall and crop yield; 
levels of accumulated snow and of later high water. Here, numerous 
possible values of a magnitude correspond to each value of another 
magnitude. The scattering of the former is caused by a large number of 
additional factors which we leave aside. Actually, most often we 
restrict our attention to studying the change of the mean characteristics 
of a magnitude caused by the change of the other one and the 
dependence of the calculated means on that other one will be 
functional. 

Suppose that in an experiment each value of x led to several values 
of y. Its change with x can then be characterized by a broken line 
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passing through each mean value of y corresponding to the appropriate 
x. Note that the dependence of x on y leads to another broken line 
sometimes essentially differing from the former line. 

Definition. Two random variables, ξ and η, are correlatively 
dependent, if a definite distribution of probabilities of either of them 
corresponds to each value of the other. Such distributions are called 
conditional.  

Here, we only discuss various means for conditional distributions of 
probabilities, and, in particular, the centres of those distributions. 

7.2. Conditional expectations and their properties 
The centre of a conditional distribution of η (its conditional 

expectation) when ξ = x is defined as the sum of the products of the 
possible values of η by their conditional probabilities: 

 
Exη = ∑yP(η = y|ξ = x).                                                       (7.1) 
 

Here, P(η = y|ξ = x) is the conditional probability of the equality η = y 
if ξ = x, and the sum covers all the values y of magnitude η. For 
continuous distributions that sum is replaced by the integral 
 

Exη = φ ( ) .xy y dy
∞

−∞

∫                                                               (7.2) 

 
Here, φx(y) is the density of the conditional distribution of 

probabilities of η if ξ = x. The conditional expectation Exη is a function 
of x and is called regression function of η on ξ and denoted by f(x): 
f(x) = Exη. 

The equation y = f(x) is the equation of regression of η on ξ and the 
corresponding line, the line of that regression. Regression of ξ on η is 
similarly defined as  

 
Eyξ = ∑P(ξ = x|η = y) = g(y). 
 

If the connection between ξ and η is not strictly functional, functions 
f(x) and g(y) are not mutually inverse, and the lines of regression of η 
on ξ and ξ on η do not coincide. If ξ and η are independent, then, for 
each x, P(η = y|ξ = x) = P(η = y), therefore Exη = Eη and formula (7.4) 
transforms into a simpler formula (3.9). The same is true in a more 
general case in which f(x) is constant. Indeed, if f(x) = b, than, by 
formula (7.3) Eη = Eb = b, and, according to formula (7.5)  
 

Eξη = ∑xbP(ξ = x) = bEξ = EξEη.  
 
Formulas (7.3, 7.4 and 7.5) are below. The determination and study 

of regression functions is a main problem of correlation analysis. 
Important for linear correlation are formulas 

 
Eη = Ef(ξ), Eξη = Eξf(ξ).                                       (7.3), (7.4) 
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The latter can be considered as a generalization of the multiplication 
theorem for expectations on dependent random variables. Indeed, 
applying the general rule of multiplication of probabilities (1.13), we 
have  
 

Eξη = ∑xyP(ξ = x, η = y) = ∑∑xyP(ξ = x)P(η = y|ξ = x). 
 

The sums cover all possible values x and y of ξ and η respectively. 
We have 
 
Eξη = ∑xP(ξ = x)∑yP(η = y|ξ = x) = 
           ∑xP(ξ = x)Exη = ∑xf(x)P(ξ = x)                       (7.5) 
 

which coincides with Eξf(ξ), see §§ 3.11, 3.12. 
Formulas (7.3) and (7.4) are particular cases of a more general 

relation 
 
Eu(ξ)η = Eu(ξ)f(ξ)                                                      (7.6)  
 

where u(ξ) is any function having Eu(ξ)η.  
7.2.1. Proof of formula (7.6). We assume that the density p(x, y) of 

the two-dimensional distribution of (ξ, η) is known. The probability of 
 
x < ξ < x + dx and y < η < y + dy                      (7.7a), (7.7b) 
 

can be expressed as the probability of the product of those events. The 
general multiplication rule for probabilities leads to  
 

p(x, y)dxdy = ψ1(x)dxφx(y)dy, ψ1(x) = ( , ) .p x y dy
∞

−∞

∫  (7.8) 

 
Here, ψ1(x) is the density of the distribution of ξ and φx(y)dy is the 

differential of the conditional probability of (7.7b) if ξ = x. Formula 
(7.8) indicates that 

 
φx(y) = p(x, y)/ψ1(x). 
 

This can be substituted in formula (7.2) so that 
 

    f(x) = Exη = 
1

( , )

ψ ( )

p x y
y dy

x

∞

−∞

∫   

 
and we obtain formula (7.6): 
 

Eu(ξ)f(ξ) = 1 1

1

( , )
[ ( ) ( )]ψ ( ) ( )ψ ( )[ ]

ψ ( )

p x y
u x f x x dx u x x y dy dx

x

∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫   

                   [ ( ) ] ( , )u x y p x y dxdy =∫ ∫  Eu(ξ)η. 
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Formula (7.6) shows that the mean value of any function u(ξ)η + v(ξ) 
linear with respect to η does not change when η is replaced by the 
regression function of f on ξ. One more important property of the 
regression function follows: the mean square deviation of η from f(ξ) 
is less than its mean square deviation from any other function h(ξ): 

 
2 2E[η (ξ)] E[η (ξ)] .f h− ≤ −                                       (7.9) 

 
Proof. Denote h(ξ) – f(ξ) = u(ξ) and note the linearity of expectation, 

then 
 
E[η – h(ξ)]2 = E[η – f(ξ)] – u(ξ)]2 =  
 
E[η – f(ξ)]2 + E[u(ξ)]2 – 2E[η – f(ξ)]u(ξ) 
 

but the last term disappears because of (7.6) and  
 

E[η – f(ξ)]u(ξ) = Eηu(ξ) – Ef(ξ)u(ξ) = 0. 
 
Therefore  

 
E[η – h(ξ)]2 = E[η – f(ξ)]2 + E[h(ξ) – f(ξ)]2                  (7.10) 
 

hence inequality (7.9). 
Property (7.6) only connects functions linear with respect to η; mean 

values of non-linear functions can change when η is replaced by f(ξ). 
Thus, there will be an inequality for variances 

 
σ2(η) = E[η – Eη]2 ≥ σ2[f(ξ)].                                            (7.11) 
 
Indeed, see (7.10), 
 
h(ξ) = b = Eη = Ef(ξ),  
E(η – b)2 = E[η – f(ξ)]2 + E[f(ξ) – b]2 ≥ σ2[f(ξ)].  

 

7.3. Linear correlation 
Definition. Correlative dependence between random variables ξ and 

η is linear if both f(x) and g(y) are linear. In such cases both these 
functions are called regression (straight) lines.  

We derive now the equation of regression line of η on ξ 
 
f(x) = Ax + B. 
 

Denote Eξ = a, Eη = b, E(ξ – a)2 = σ1
2, E(η – b)2 = σ2

2. 
 

First of all by formula (7.3) we determine 
 
Eη = Ef(ξ) = E(Aξ + B), b = Aa + B, B = b – Aa. 
 

Then, making use of formula (7.4), we find that 
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Eξη = Eξf(ξ) = E(Aξ2 + Bξ) = AEξ2 + (b – Aa)a, 
 

A = 
2 2 2

1

Eξη Eξη

Eξ σ

ab ab

a

− −
=

−
 = ρ(η/ξ).  

 
This coefficient ρ(η/ξ) is called the regression coefficient of η on ξ. 
The regression line of η on ξ is therefore 
 

y = ρ(η/ξ)(x – a) + b                                                       (7.12a) 
 

and similarly  
 

x = ρ(ξ/η)(y – b) + a, ρ(ξ/η) = 
2
2

Eξη
.

σ

ab−
                      (7.13a) 

 
This ρ is the regression coefficient of ξ on η. 

More symmetrically the regression lines can be written by means of 
a non-dimensional coefficient symmetric with respect to ξ and η 

 

r = 
1 2

Eξη

σ σ

ab−
                                                                    (7.14) 

 
which is called correlation coefficient between ξ and η. And now we 
have 
 

ρ(η/ξ) 2

1

σ
,  

σ
r= ρ(ξ/η) 1

2

σ

σ
r=  

 
and the regression lines become  
 

2 1 1 2

,  .
σ σ σ σ

y b x a x a y b
r r

− − − −
= =                       (7.12b) (7.13b) 

 
Both these straight lines pass through point (a, b), the centre of the 

joint distribution of ξ and η. Their slopes are 
 

2 2

1 1

σ σ
tan α ,  tanβ .

σ σ
r

r
= =  

 
In § 7.4.1 we prove that |r| ≤ 1 so that |tanα| ≤ |tanβ|. This means that 

the regression line of η on ξ has a lesser slope than the other regression 
line. The nearer is |r| to 1, the smaller is the angle between those lines 
which coincide then and only then when |r| = 1. 

If r = 0, the equations of the regression lines are y = b, x = a and  
Exη = b = Eη, Eyξ = a = Eξ. The regression coefficients have the same 
signs as the correlation coefficient r and are connected with it by 
equation 
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ρ(η/ξ)ρ(ξ/η) = r2.                                                       (7.15) 
 
The signs of ρ(η/ξ) and ρ(ξ/η) coincide which means that, in 

particular, if η generally increases with ξ, ξ just the same ought to 
increase generally with η. However, the rapidity of their increase 
essentially depends on the correlation coefficient. 

7.3.1. Normal correlation. Correlation between ξ and η is called 
normal if the density of the two-dimensional distribution of 
probabilities of (ξ, η) is (A, C > 0, AC – B2 > 0) 

 

p(x, y) = 
2

2π
Ac B−

×  

2 21
exp{ [ ( ) 2 ( )( ) ( ) ]}.

2
A x a B x a y b C y b− − + − − + −   

 
Then, according to formula (2.35), the particular density of ξ will be 
 

ψ1(x) = ( , )p x y dy
∞

−∞

=∫  
2

2π
AC B−

×  

2
2 21 1

exp{ [( ) ( )] ( )( ) }
2 2

B B
C y b x a A x a dy

C C

∞

−∞

− − + − − − − =∫  

 
2 2

21
exp{ [ ]( ) }

22π

AC B B
A x a

CC

−
− − −  

 
since for any λ 
 

21
exp[ ( ) ] 1.

2π 2

C
C y dyλ

∞

−∞

− − =∫  

 
It is seen now that the particular distribution of ξ is normal with 

parameters a and  
 

2
1 2

σ .
C

AC B
=

−
  

 
Similarly, the particular distribution of η is normal with parameters b 
and 
 

2
2 2

σ .
A

AC B
=

−
 

 
The conditional distribution of η for a fixed ξ = x is also normally 

distributed with density 
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φx(y) = 2

1

( , ) 1
exp{ [( ) ( )] }

ψ ( ) 2π 2

p x y C B
C y b x a

x C
= − − + −   

 
so that its centre is 
 

Exη = b – (B/C)(x – a). 
 
Similarly the centre of the conditional distribution of ξ for a fixed  

η = y is 
 
Eyξ = a – (B/A)(y – b). 
 
It is seen now that the normal correlation is linear and the regression 

lines are 
 
y = – (B/C)(x – a) + b, x = – (B/A)(y – b) + a 
 

and the regression coefficients are 
 
ρ(η/ξ) = – B/C, ρ(ξ/η) = – B/A. 
 
Formula (7.14) leads therefore to 
 

    r = – B/ .AC                                                          (7.16) 
 

7.4. Correlation coefficient 
Let us consider in more detail the correlation coefficient between 

random variables ξ and η (§ 7.3): 
 

r(ξ, η) =
Eξη EξEη

.
σ(ξ)σ(η)

−
                                                         (7.14*) 

 
It characterizes the relative deviations of the difference Eξη – EξEη.  

Such deviations only concern dependent variables and we may 
therefore say that the correlation coefficient measures the dependence 
between ξ and η. 

Now we can generalize the addition theorem on dependent variables: 
 
σ2(ξ + η) = σ2(ξ) + σ2(η) + 2r(ξ, η)σ(ξ)σ(η).                       (7.17) 
 

It follows from a formula in § 3.3.1 that 
 
σ2(ξ + η) = E(ξ – a)2 + 2E(ξ – a)(η – b) + E(η – b)2 
 

since  
 

E(ξ – a)(η – b) = Eξη – aEη – bEξ + ab = Eξη – ab = rσ1σ2. 
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The correlation coefficient is dimensionless and can therefore be 
expressed as an expectation of the product of normed and centred 
deviations 

 

0 0

1 2

ξ η
ξ ,  η .

σ σ

a b− −
= =   

 
Indeed,  
 

E 0 0

1 2 1 2

ξ η E(ξ )(η )
ξ η E[ ]

σ σ σ σ

a b a b− − − −
= =  = r0.          (7.18)  

 
7.4.1. The properties of the correlation coefficient 

Theorem 1. Linear transformations of random variables ξ and η do 
not change the correlation coefficient between them: for any c1, c3 > 0 
and c2, c4 

 
r(c1ξ + c2, c3η + c4) = r(ξ, η). 
 
Proof. With c1 > 0 the transformation from ξ to ξ′ = c1ξ + c2 is  
 
Eξ′ = c1Eξ + c2 = c1a + c2, σ(ξ′) = c1σ(ξ) = c1σ1, 
 

1 2 1 2
0 0

1 1 1

ξ ( )ξ Eξ ξ
ξ ξ .

σ(ξ ) σ σ

c c c a c a

c

′ ′ + − +− −
′ = = = =

′
  

 
Theorem 2. The domain of the correlation coefficient r(ξ, η) is  
(– 1, 1) and it only takes these extreme values when ξ and η are 

functionally connected. 
Proof. From formula (7.18) and formulas 
 

E
2

2 2
0 02

1

E(ξ )
ξ 1,  Eη 1

σ

a−
= = =  

 
it follows that 
 

E(ξ0 
2 2 2

0 0 0 0 0 η ) Eξ  2Eξ η Eη 1 2 (ξ,η) 1,r± = ± + = ± +   

2
0 0

1
1 (ξ, η) E(ξ  η ) 0

2
r± = ± ≥ ,                                  (7.19) 

 
– 1 ≤ r(ξ, η) ≤ 1. 
 
Equality in (7.19) takes place when and only when 
 

2
0 0E(ξ  η ) 0;± =  that is when 0 0ξ  η 0± =  which means that  
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2

1 2 1

σξ η
0,  η (ξ ).

σ σ σ

a b
b a

− −
± = = −m   

 
Theorem 3. The correlation coefficient between independent 

variables disappears. This directly follows from (3.9) and (7.14*). 
Note that the inverse proposition is not valid but that when r(ξ, η) = 

0, random variables ξ and η are called uncorrelated. In one important 
case they are independent; it occurs when the correlation is normal.  

Indeed, as shown by formula (7.16), the coefficient r(ξ, η) = 0 then 
and only then when B = 0. But then 

 

p(x, y) = 2 21
exp{ [ ( ) ( ) ]}

2π 2

AC
A x a C y b− − + − =   

 

2 21 1
exp[ ( ) ] exp[ ( ) ],

2 22π 2π

A C
A x a C y b− − − −  QED. 

 
7.5. The best linear approximation to the regression function 
For linear correlation which we were discussing the parameters of 

the regression function are determined comparatively easy. In cases of 
more complicated correlative dependence the derivation of that 
function is considerably difficult, hence the problem of its best 
approximation. In § 7.2 we have established that, for any h(ξ), f(ξ) 
ensures the best mean square approximation to η:  

 
2 2E[η (ξ)] E[η (ξ)]f h− ≤ − . 

 
It is therefore natural to determine the linear function (Ax + B) best 

approximating the regression function f(x) as such for which  
 
E[η – (Aξ + B)]2 = min. 
 

It occurs that the parameters A and B can be determined just like the 
parameters of the linear regression function were (§ 7.3). More 
specifically: 

Theorem. The mean square deviation of random variable η from  
(Aξ + B) is minimal then and only then when  
 
A = ρ(η/ξ) = rσ2/σ1, B = b – Aa, Ax + B = r(σ2/σ1)(ξ – a) + b. 
 
Consequently, among all the straight lines and for any correlative 

dependence the regression line (7.12a) ensures the best approximation 
in the mean to the actual regression of η on ξ. 

Proof. Denote B – (b – Aa) = C, then, taking into account equalities 
E(ξ – a) = E(η – b) = 0, transform 

 
E[η – (Ax + B)]2 = E[(η – b) – A(ξ – a) – C]2 =  
 
E(η – b)2 + A2E(ξ – a)2 – 2AE(ξ – a)(η – b) + C2 =  
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σ2

2 + A2σ1
2 – 2Arσ1σ2 + C2.                                        (7.20) 

 
Here, σ2

2 is constant, C2 = 0 if B = b – Aa and 
 
A2σ1

2 – 2Arσ1σ2 = σ1
2(A – rσ2/σ1)

2 – r2σ2
2  

 
takes its minimal value – r2σ2

2 when A = rσ2/σ1, QED. 
We will additionally determine the mean square deviation of η from 

r(σ2/σ1)(ξ – a) + b which ensures the best linear approximation in the 
mean. From formula (7.20) taking C = 0 and A = rσ2/σ1, we have 

 
E{η – [r(σ2/σ1)(ξ – a) + b]}2 = σ2

2 – r2σ2
2 = σ2

2(1 – r2). (7.21) 
 

This formula, since it determines 21 r− , describes how the 
correlation coefficient characterizes dependence And so, r(ξ, η) 
characterizes the relative magnitude of the mean square deviation in 
the left side of (7.21) and therefore the measure of the linear 
connection between ξ and η. The nearer is r2 to 1, the less in the mean 
is the scatter of the values of η relative to the regression line of η on ξ. 
And all the above is certainly valid with respect to the regression of ξ 
on η. 

7.6. Analysing linear correlation by random sampling. 

The significance of the correlation coefficient 
For analysing linear correlation between ξ and η independent trials 

are made; the outcome of each is a pair of numbers (xi, yi). When 
considering n such pairs as a random sample from the population of all 
possible values of (ξ, η), we can find approximate values of all the 
parameters of the linear correlation between ξ and η by the method of 
moments (Chapter 4). First of all, we have the following approximate 
formulas 

 

a = Eξ x≈  = ;  Eη ;  
x y

b y
n n

= ≈ =
∑ ∑  

                                                                                           (7.22)   
2

2 2
1

( )
σ (ξ) ;

1

x x
s

n

−
≈ =

−

∑  
2

2 2
2

( )
σ (η) ;  

1

y y
s

n

−
≈ =

−

∑  

 

( )( )
E(ξ )(η ) .

1

x x y y
a b

n

− −
− − ≈

−

∑                                   (7.23) 

 
We can now derive an approximate formula for the correlation 

coefficient 
 

r(ξ, η) ≈ rn 
2 2

1 2

( )( ) ( )( )

( 1) ( ) ( )

x x y y x x y y

n s s x x y y

− − − −
= =

− − −

∑ ∑
∑ ∑

 (7.24) 

 
where rn is the sample correlation coefficient.  
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Replacing in (7.12b) and (7.13b) all the expectations by the 
corresponding mean values, we get the sample regression lines of η on 
ξ and ξ on η: 

 

2 1

1 2

( ),  ( ).n n

s s
y y r x x x x r y y

s s
− = − − = −       (7.25; 7.26) 

 
The coefficients rns2/s1 and rns1/s2 are called sample regression 

coefficients. It is important to note that the sample magnitudes (7.25) 
and (7.26) have the property similar to that discussed in § 7.5; the sum 
of the squares of the deviations of the observed values yi from the 
sample regression line (7.25) is less than from any other straight line: 

 

2 22

1 11

{ [ ( )]} [ ( )] .
n n

i n i i
i i

s
y y r x x y Ax B

s= =

− + − ≤ − +∑ ∑  

 
The proof is similar to that carried out in § 7.5. The same can be 

stated about the regression line (7.26). 
Formulas (7.22) – (7.26) show that the determination of the sample 

regression lines requires approximate calculations with a large number 
of the differences ( ) and ( ).i ix x y y− −  Just like in § 6.2.1 these 

calculations can be essentially simplified by a preliminary linear 
transformation of x and y: 

 
u = (x – x0)/h1, v = (y – y0)/h2, h1, h2 > 0. 
 
We will have […] 
Example. […]  
7.6.1. A note on the confidence probability of the correlation 

coefficient. This problem is beyond our scope. We only note that the 
three-sigma rule is not recommended here since even with a large n the 
distribution of probabilities of the sample correlation coefficient 
considerably differs from normality.  

We restrict our attention to a simpler problem: can it happen that the 
sampling correlation coefficient accidentally differs from zero whereas 
the random variables ξ and η are not really correlated? The solution of 
this problem assumes that the real correlation coefficient r(ξ, η) = 0. 
We provide a table of the boundaries of random deviations of the 

product |r| 1n −  from zero depending on the assigned probability P 
and n as well as on an additional condition that the studied correlation 
little differs from normality.  

If for the sample correlation coefficient rn the product mentioned 
above exceeds the boundary value given in the table, we may state 
with probability P that the real correlation coefficient r(ξ, η) differs 
from zero. […] 

Example. […] 
7.7. Exercises 

1) Calculate the correlation coefficient between λ1 and λ2 in 
Exercise 1 to Chapter 3. Answer: 
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r(λ1, λ2) = 1 2 1 2

1 2

Eλ λ Eλ Eλ
[...]

σ σ

−
=   

 
2) Determine the linear correlation by issuing from sample 

observations […] 
 

Notes 
1. Concerning true values see Sheynin (2007). 
2. Complete group of events: Events A1, A2, …, An comprise a complete group if 

they are pairwise incompatible and event (A1 + A2 + … + An) is certain. This notion 
is widely used when deriving many stochastic propositions (Vatutin 1999). 
Rumshitsky, however, seems to make too much of this notion. 

3. This is Chebyshev’s definition (1845/1951, p. 29) of the aim of the probability 
theory. 

4. This example is not quite proper: P(A and B) = 8.25/100. 
5. This example is due to Bernstein (1946, p. 47). Feller (1950/1964, § 6.3) 

offered another example. 
6. Centre of a random variable, of a distribution was introduced in 1970 on a 

much more sophisticated level (Kruglov 1999). Again (see Note 2), Rumshitsky 
seems to make too much of this notion. 

7. In other words, study a sample. 
8. Jakob Bernoulli also investigated the rapidity of the convergence of frequency 

to probability. Below, the author does not mention the Poisson law of large numbers. 
9. Sampling deserved more attention. 
10. Laplace had indeed developed De Moivre’s result in Chapter 3 of his Théorie 

analytique des probabilités (and Markov coined the term De Moivre – Laplace 
theorem), but the author’s reference to 1783 is wrong.  

11. This is wrong. Chebyshev had not proved the CLT rigorously (Gnedenko & 
Sheynin 1978/2001, p. 260). 

12. It is worthwhile to quote Lindeberg (1922, p. 211): 
Nunmehr finde ich, daß schon Liapunov […] allgemeine Resultate dargelegt hat, 

die nicht nur über diejenigen des Herrn v. Mises hinausgehen, sondern aus denen 
auch die meisten der von mir bewiesen Tatsachen abgeleitet werden können. 

13. This chapter is unworthy. Direct and indirect measurements denote the 
determination of one or several unknowns respectively. The author offered his own 
(unfortunate) definition of direct measurements and did not mention the other case 
(therefore, omitted the method of least squares). He superficially described 
systematic errors and (below) wrongly stated that random errors invariably obey the 
normal distribution. 

14. The three-sigma rule presumes normally distributed errors which the author 
only mentioned above (cf. Note 13). See also his pertinent remark in § 7.6.1. 

15. Here and below the author retained too many significant digits.  
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