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Abstract 

    The theory of errors is a discipline indispensable to experimental science 

at large, and true value of a measured constant is one of its main notions. I 

reject a modern statement which claims that the true value “syndrome” is 

left behind. I dwell on the history of that notion, – on its heuristic use, in-

formal connection with the arithmetic mean of the pertinent observations, 

and on its formula (Laplace, Fourier), forgotten perhaps up to the mid-20
th

 

century. Von Mises, although not really interested in the theory of errors, 

effectively connected true value with his frequentist definition of probability 

as the limit of the corresponding statistical frequency. Mathematical statis-

tics largely but not completely moved from the true value to the estimation 

of parameters of functions. Condorcet hesitatingly introduced an intermedi-

ate theory of means which studied the determination of both true values and 

abstract mean values but which became divided between statistics and the 

theory of errors. 

    Key words: Experimental science; Frequentist theory of probability; The-

ory of errors; Theory of means; True value of constant 

  

 

1. Introduction 
    From the most ancient times astronomers have been measuring the coor-

dinates of the fixed stars, i.e., of presumably constant magnitudes. Actually, 

however, this supposition, as will be seen in the sequence, is not really true. 

    The concept of true value of a measured constant had always been in-

separably linked with the measurements themselves; only mathematical sta-

tistics (almost) changed this situation. Thus, Al-Biruni (1967, p. 83): “Now 

all the testimonies that we have adduced point out collectively that the 

[obliquity of the ecliptic] is …” And here is Cotes (1722/1768, p. 22), also 

without using the term true value: “The place of some object defined by 

observation[s] …” 

    My second concept is theory of errors which I define as the statistical 

method (statistics) applied to the treatment of observations in experimental 

science. I only deal with its stochastic branch; its determinate branch might 

be related to experimental design. 

     

2. The Arithmetic Mean and the True Value 
    The first to connect directly these two notions was possibly Picard (1693, 

pp. 330, 335, 343) who called the arithmetic mean the true (véritable) value 

(of the angle measured in triangulation). The next, and much more outspo-

ken author was Lambert. First, he (1760, §286) stated: 
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    Da nun Fehler um so häufiger auftreten, je kleiner sie sind, folgt daraus, 

daß in einem beliebigen gegebenen Fall nach wiederholten Versuchen die 

häufiger auftretenden Größen dem Mittelwert oder auch dem wahren Wert 

näher liegen. 

 

    [Since errors happen the oftener, the smaller they are, it follows that in 

any given case of repeated experiments the more frequently occurring quan-

tities are situated nearer to the mean value, or, also, to the true value.] 

 

And in §290 he added that the error of the arithmetic mean was much 

smaller than that of a single observation and that consequently the mean was 

nearer to the true value. Then, Lambert (1765, §3) argued that, if, in modern 

terms, the density curve of the observational errors was even, 

 

    Das Mittel aus mehrern Versuchen dem wahren desto näher kommen 

müsse, je mehr der Versuch ist wiederholt worden. Denn unter allen Fällen, 

die man sich dabey gedenken kann, ist derjenige am möglichsten, wobey 

gleich große Abweichungen auf beyden Seiten gleich ofte vorkommen. 

 

    [The mean of a large number of experiments ought to move the nearer to 

the truth, the more is the experiment repeated. Because, among all the 

cases which might be imagined, the most possible is that in which equally 

large deviations to both sides occur equally often.] 

 

    He, as well as some later authors, see below, tacitly (but almost directly in 

his previous case) assumed that the density was unimodal and not bad (cf. 

for example the Cauchy distribution under which a single observation is not 

worse than the mean) and he certainly had not proved his statements. Thus, 

only Thomas Simpson, in 1756, proved the essence of Lambert’s §290, and, 

for that matter, only for two distributions. 

    That the mean tends to the appropriate theoretical parameter is now 

called, in statistics, the limit property of consistency which holds for linear 

estimators in general. In my context, however, this remark is hardly of con-

sequence. 

    My next author here is Laplace. He (1795/1912, p. 161) stated that with 

an unrestricted increase in the number of observations their mean converged 

to a certain number, so that 

 

Si l’on multiplie indéfiniment les observations ou les expériences, leur  

résultat moyen converge vers un terme fixe, de manière qu’en prenant de 

part et d’autre de ce terme un intervalle aussi petit que l’on voudra, la pro-

babilité que le résultat moyen tombera dans cet intervalle finira par ne  

différer de la certitude que d’une quantité moindre que toute grandeur assi-

gnable. 

Ce terme est la vérité même si les erreurs positives et négatives sont  

également faciles … 

 

[If we multiply observations or experiments indefinitely, their mean result 

will tend to a fixed term, so that, taking on both its sides an interval as small 

as you wish, the probability that the mean result finds itself there will 



finally differ from certitude by a quantity less than any assigned magni-

tude. 

    This term is the truth itself provided that positive and negative errors are 

equally likely …] 

 

    He repeated this statement word for word (1810a/1898, p. 303), and he 

also repeated it elsewhere, either a bit later, or a bit earlier (1810b/1979, p. 

110/272), writing se confond avec le vérité [merges with the truth] instead of 

est la vérité meme [is the truth itself].  

    And in his Essai philosophique (1814/1886, p. LVI) which originated 

from the Leçons of 1795, we find: 

 

    Plus les observations sont nombreuses et moins elles s’écartent entre el-

les, plus leurs résultats approchent de la vérité. 

 

    [The more numerous are the observations and the less they deviate one 

from another, the nearer their results approach the truth.] 

 

He added that the optimal mean results were determined by probability the-

ory. Now, it is generally known that he strongly advocated (and furthered) 

the method of least squares; hence, when discussing the case of one un-

known, as above, he certainly meant the arithmetic mean. In the fifth edition 

of the Essai (1825) Laplace also left a similar pronouncement concerning 

the general case (p. 44 of the English translation (1995) of that edition). 

    I hasten to add that Gauss had not left anything comparable. When pro-

viding his first justification of the method of least squares, he (1809/1887, 

§177) issued from the hypothesis that the arithmetic mean was the most 

probable value of the constant sought, or very close to it. 

    Understandably, Poisson (1811, p. 136; 1824, p. 297; 1829, pp. 12 and 

19) followed his predecessors in that he used the term vraie valeur and indi-

rectly stated that this value was the mean of infinitely many observations. 

 

3. The Definition 
    Fourier (1826/1890, pp. 533 – 534) provided the still lacking formal defi-

nition:  

 

    Supposons donc que l’on ait ajouté ensemble un grand nombre de valeurs 

observées, et que l’on ait divisé la somme par le nombre m, ce qui donne la 

quantité A pour la valeur moyenne; nous avons déjà remarqué que l’on 

trouverait presque exactement cette même valeur A, en employant un très 

grand nombre d’autres observations. En général, si l’on excepte des cas 

particuliers et abstraits que nous n’avons point à considérer, la valeur 

moyenne ainsi déduite d’un nombre immense d’observations ne change 

point; elle a une grandeur déterminée H, et l’on peut dire que le résultat 

moyen d’un nombre infini d’observations est une quantité fixe, où il n’entre 

plus rien de contingent, et qui a un rapport certain avec la nature des faits 

observés. C’est cette quantité fixe H que nous avons en vue comme le véri- 

table objet de la recherche.  

 

    [Suppose therefore that a large number of observations are added to-

gether, and their sum is divided by [their] number, m, which provides the 



quantity A for the mean value. We have already remarked that almost ex-

actly the same value A will be found when taking a very large number of 

other observations. In general, excepting particular and abstract cases 

which we will not consider at all, the mean value thus derived from an im-

mense number of observations does not change at all. It has a certain mag-

nitude H, and it is possible to say that the mean result of an infinite number 

of observations is a fixed quantity which never contains anything accidental 

anymore, and which is in a certain relation to the nature of the observed 

events. 

    It is this fixed magnitude H that we have in mind as the veritable object of 

research.] 

 

    I doubt that his formula was widely noticed and in any case I was unable 

to find even a single reference to it; perhaps it was thought to be hardly 

needed. Nevertheless, a number of later authors repeated the same definition 

independently one from another, and likely, from him, see below. First, 

however, I turn to Markov (1924, p. 323) who cautiously, as was his wont, 

began the chapter on the method of least squares of his treatise by remarking 

that 

 

    It is necessary in the first place to presume the existence of the numbers 

whose approximate values are provided by observations. 

 

A similar statement concerning an unknown probability is on p. 352; his 

first pronouncement was inserted in the edition of 1908 (perhaps even in the 

first edition of 1900), the second one appeared in the edition of 1913. Sev-

eral remarks are in order. 

    1) Before and after Markov many scholars either expressly mentioned, or 

indirectly referred to the true value without bothering to define it (Gauss, in 

all of his writings pertaining to the treatment of observations; Markov him-

self 1899/1951, p. 250; Poincaré 1912, p. 176; Kolmogorov 1946, title of 

§7). 

    2) Probability (Markov’s p. 352) is not an entity of the real world, at least 

not in the usual sense. This generalization of the concept under my study is 

an important point for a natural scientist, although not for Markov the 

mathematician. Incidentally, already Gauss (1816/1887, §§3 and 4), a 

mathematician and natural scientist, repeatedly considered the true value of 

a measure of precision of observations. See also Fisher’s relevant statement 

in my §4. 

    3) I also note Markov’s reluctance to step out of the field of mathematics: 

he had not mentioned true values at all which was hardly accidental. Recall 

that he never provided any applications of his chains to natural sciences. 

    Fourier’s definition heuristically resembles Mises’ celebrated formula for 

probability; strangely enough, no-one saw fit to mention this fact except 

Mises himself. Here is what he (1919/1964, pp. 40 and 46) actually stated, 

largely repeating Fourier:  

 

    Der “wahre” Wert der Beobachtung (d. i. derjenige, der sich als Durch- 

schnitt bei einer ins Unendliche fortgesetzten Beobachtungsreihe ergeben 

müsste) … Der “wahre” Mittelwert ist nicht anderes als die Grösse, die 

nach der Definition des Wahrscheinlichkeitsbegriffes als arithmetisches 



Mittel einer ins Unendliche fortgesetzten Ziehungsserie sich ergeben müsste. 

    [The “real” value of the observation (that is, such that ought to occur as 

the mean value when the series of observations continues to infinity). … 

    The “real” mean value is nothing but the magnitude that ought to occur 

by the definition of the concept of probability as the arithmetic mean when 

the series of drawings continues to infinity.] 

 

    In 1919, the corresponding page numbers were 80 and 87, and it was in 

that contribution that Mises first introduced his frequentist theory. In other 

words, the concept of probability [Wahrscheinlichkeitsbegriff] could have 

only been his frequentist definition of probability. But to explain the draw-

ings. Suppose that an urn contains white and black balls and that m white 

balls and n black ones are extracted and returned back one by one. Then, as 

Mises stated, the ratio m/n approached the unknown ratio of the balls con-

tained in the urn. This was his illustration of the connection of the true value 

and frequentist probability but he had not directly offered it as a formula. 

    My next author is also interesting because he (Eisenhart 1963/1969, pp. 

30 – 31) deals with metrology, an important scientific discipline which stat-

isticians hardly ever discuss when they (also on rare occasions) recall the 

theory of errors:  

 

    The “true value” of the magnitude of a quantity … is the limiting mean of 

a conceptual exemplar process … The mass of a mass standard is … speci-

fied … to be the mass of the metallic substance of the standard plus the mass 

of the average volume of air adsorbed upon its surface under standard con-

ditions. I hope that the traditional term “true value” will be discarded in 

measurement theory and practice, and replaced by some more 

appropriate term such as “target value” … 

 

    And so, first, Eisenhart largely repeated Fourier. Second, here, as had 

always implicitly been the case before, he clearly stated that the residual 

systematic error was inevitably included in the true value. Third and last, 

Eisenhart’s hope had not materialized, see below, but he was quite right 

when stating, in addition, that it was impossible to obtain any true value. 

    To conclude, I mention that Whittaker & Robinson (1924/1958, p. 215n) 

largely repeated the Fourier definition.  

    True mean is expectation although different values of a random variable 

reflect its intrinsic property of change whereas different values of observa-

tions of a measured constant are in the first place the result of our helpless-

ness. 

 

4. Mathematical Statistics and the Theory of Errors 
    Purportedly, mathematical statistics had done away with true values and 

introduced instead parameters of densities (or of distribution functions). 

Fisher (1922, pp. 309 – 310) was mainly responsible for this change; indeed, 

he introduced there the notions of consistency, efficiency and sufficiency of 

statistical estimators without any reference to the theory of errors or to true 

values. But then, on p. 311 we read that a 

 

    Purely verbal confusion has hindered the distinct formulation of statisti-

cal problems; for it is customary [for the Biometric school] to apply the 



same name, mean, standard deviation, correlation coefficient, etc., both to 

the true value which we should like to know, but can only estimate, and to 

the particular value at which we happen to arrive by our methods of estima- 

tion. 

 

    So the true value was still alive even in mathematical statistics. A few 

other examples. The Dictionary (Aleksandrov 1962) cites true correlation; 

mean; and value. Bolshev (1964, p. 566) dwells on the “true value of a pa-

rameter”. His was a commentary on Bernstein (1941/1964) who mentioned 

a “true probability” of an inequality (in §5, p. 390 in 1964). Then, Smirnov 

& Dunin-Barkowski (1959/1973, pp. 16 and 17) had chosen to say true 

value.  

    But what about our contemporaries? Here is an opinion which I oppose 

(Chatterjee 2003, p. 264): the methods of the theory of errors “were rarely 

applied outside these narrow fields” [of astronomy and geodesy] and “the 

true value syndrome” “was ultimately left behind”. First, I object to the nar-

row fields and note the author’s failure to recognize metrology. And how 

about measurements in geophysics (of magnetism, or of the acceleration of 

gravity), or in physics (of the velocity of light in vacuum, or of the mass of 

electron), etc.? 

    Then, syndrome is usually connected with some abnormal condition. Sec-

ond, since Chatterjee (pp. 248 – 249) still believes in the existence of the 

mysterious “well-known” Gauss-Markov theorem, I doubt that he is profi-

cient in the history of statistics (and especially of the treatment of observa-

tions). 

    I am also dissatisfied with Chatterjee’s statement (p. 273) that Quetelet 

was “mentally bound by … the true-value syndrome” and that, implicitly, 

for Quetelet variations were “of secondary importance”. Even excluding 

meteorology, his important field of research beyond social statistics, 

Quetelet (Sheynin 1986) studied the change of the probability of conviction 

for differing groups of defendants (my §4.4 there), held that the tables de 

criminalité pour les différents ages [tables of criminality for different ages] 

merited full attention (p. 304 n 45) and declared that the normal law was une 

les plus générale de la nature animée [one of the most general of the ani-

mate nature] (p. 313), – especially in anthropometry. More about Quetelet 

in § 5 where I also dwell on the study of mean values (conditions). 

    Third, I cite Hald (1998) who described the History of mathematical sta-

tistics from 1750 (when it did not yet exist) to 1930 on the present-day level. 

Thus, when discussing the work of Gauss he (p. 353) introduced without 

explanation the recent notation for a function with an unspecified argument: 

f (·). He mentions the true value many times, for example in Chapters 5 and 

6, and here is how he begins this latter chapter (p. 91): “ … we have dis-

cussed … the estimation of the true value, the location parameter, in the … 

model”. 

    I conclude that the term itself, and the notion of true value are still applied 

to a certain extent even in mathematical statistics. 

    I defined the theory of errors in § 1. According to its “official” mathe-

matical definition (Bolshev 1984/1989), it is a branch of mathematical sta-

tistics beyond whose confines is the processing of observations (Bolshev 

(1982/1991) which studies systematic errors. I do not agree. First, the theory 

of errors is just unable to divorce itself from such studies. Second, system-



atic errors are a feature of the structure of statistical data, and their absence 

or presence should therefore be verified by exploratory data analysis, an 

important chapter of theoretical, even if not mathematical statistics (Sheynin 

1999/2006). Third and last, Bolshev’s description of the processing of ob-

servations is somewhat indefinite and does not mention data analysis at all. 

     

5. The Intermediate Stage 

    It is usual to credit Galton with breaking away from true value (and the 

theory of errors in general). In 1908 he (Eisenhart 1978, p. 382) wrote:  

 

    The primary objects of the Gaussian Law of Error were exactly opposed, 

in one sense, to those to which I applied them. They were to get rid of, or to 

provide a just allowance for errors. But these errors or deviations were the 

very things I wanted to preserve and to know about. 

 

Deviations together with their respective probabilities, i. e., their densities. 

    But the intermediate stage between the theory of errors and mathematical 

statistics began much earlier with Condorcet (1805/1986, p. 604) who intro-

duced  

 

    Théorie des valeurs moyennes … un préliminaire de la mathématique so- 

ciale … dans toutes les sciences physico-mathématiques, il est également 

utile d’avoir des valeurs moyennes des observations ou du résultat 

d’expériences. 

 

    [The theory of mean values … a preliminary to social mathematics … in 

every physical and mathematical science is equally useful to have mean val-

ues of observations or of the results of experiments.] 

 

    On the same page he definitely separated this proposed theory from the 

“théorie du calcul des probabilités”. Nevertheless, he had not elaborated, 

had not offered a formula of the theory of means. On pp. 555 – 559 Condor-

cet reasoned on the connection between the arithmetic mean (only in the 

case of a finite number of observations) and the vraie valeur inconnue [true 

unknown value], noted, on p. 555, that On peut distinguer deux espèces de 

valeurs moyennes [It is possible to distinguish two kinds of mean values], 

but still had not explained himself clearly enough, cf. Quetelet’s statement 

below.  

    Anyway, the emerged theory of means (hardly separated from probabil-

ity!) was more general than the theory of errors in that it also dealt with 

mean states; for example, with the mean stature of draftees (Quetelet, his 

celebrated study). It was Lambert (Sheynin 1971, pp. 254 – 255), who, in 

1765, introduced the term theory of errors (Theorie der Fehler), but it had 

not taken root until the mid-19
th

 century; Gauss and Laplace, for example, 

had not applied it.  

    I repeat now my quotation (Sheynin 1986, p. 311) from Quetelet (1846, p. 

65): 

 

    En prenant une moyenne, on peut avoir en vue deux choses bien différen-

tes: on peut chercher à déterminer un nombre qui existe véritablement; ou 

bien à calculer un nombre qui donne l’idée la plus rapprochée possible de 



plusieurs quantités différentes, exprimant des choses homogènes, mais va-

riables de grandeur. 

 

    [When taking a mean, it is possible to bear in mind two quite different 

things. We can attempt to determine a number that really exists; or, we can 

indeed calculate a number that provides the nearest possible idea of many 

differing quantities expressing uniform objects varying however in magni- 

tude.] 

 

In the same article I have also cited or mentioned several other pertinent 

sources from 1830 to 1874. 

    The study of mean values or states rather than laws of distribution (Gal-

ton, see above) had been a necessary stage in the development of natural 

sciences. Humboldt (Sheynin 1984b, p. 68, n 36), in 1850, mentioned die 

einzig entscheidende Methode, die der Mittelzahlen [the only decisive 

method, that of the mean numbers], and Buys Ballot (Ibidem, p. 55), also in 

1850, stated that the study of the mean state of the atmosphere had begun 

with Humboldt and constituted the first period of the new history of meteor-

ology. 

    Finally, I refer to Hilbert (1901/1935, § 6) who was perhaps one of the 

last scholars to mention the Methode der mittleren Werte [method of mean 

values]. That the theory of means does not exist anymore is understandable: 

being an intermediate entity, it became divided between statistics (to which 

already Quetelet, see the quotation above, had attributed it) and the theory of 

errors. 

    Without turning to meteorology anymore, I am giving word to the as-

tronomer, who, in that branch of natural sciences, originated the change 

from means to frequencies (Kapteyn 1906, p. 397): 

 

    Just as the physicist … cannot hope to follow any one molecule in its mo-

tion, but is still enabled to draw important conclusions as soon as he has  

determined the mean of the velocities of all the molecules and the frequency 

of determined deviations of the individual velocities from this mean, so … 

our main hope will be in the determination of means and of frequencies. 

 

 

6. A Conclusion 
    It is generally known that the development of mathematics has always 

been connected with its moving ever away from Nature (for example, from 

natural numbers to real numbers in general to imaginaries) and that the more 

abstract it was becoming, the more benefit accrued to natural sciences. In 

particular, the general transition from the true value to estimating parameters 

of functions in mathematical statistics was also very useful.  

    I stress however that the science of measuring real objects and treating the 

collected data does not at all abandon the true value. That Mises (§3) also 

saw fit to define (not formally) the true value and to link it (indirectly) to his 

theory certainly lends it some additional support. Of course, in spite of his 

own opinion, his frequentist theory of probability belongs to natural sciences 

(Khinchin 1961/2004), but, after all, the theory of errors does not belong 

entirely to mathematics either. The statements of Chatterjee (§4) and possi-

bly other likeminded statisticians ought to be modified accordingly and the 



theory of errors must remain to be seen as a worthy scientific discipline. 

Together with its true value, alive and kicking, it continues to service ex-

perimental sciences at large.  

    To a certain extent, the ideas and methods of mathematical statistics 

ought to be applied there. Primarily I bear in mind the estimation of preci-

sion, which, after all, is not inseparably connected with true values. I ought 

to mention correlation theory and analysis of variance as well, but these sub-

jects are beyond my scope now. Nevertheless, it is opportune to note that 

Kapteyn (1912), who was dissatisfied with that theory as having been de-

veloped then, introduced his own astronomical version of correlation. With-

out knowing it, he thus quantified Gauss’ pertinent ideas and, although his 

contribution had never been cited (perhaps because of this very fact), geode-

sists have always kept to his (to Gauss’) concepts of dependence and corre-

lation, see Sheynin (1984a, pp. 187 – 189). This does not, however, mean 

that the “statistical” correlation has no place in the theory of errors. 

    Acknowledgement. It is pleasant duty to thank the reviewers who indi-

cated some shortcomings both in my own exposition and in my translations 

from French and German sources.  
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