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Foreword by Translator 

 
    1. Slutsky: life and work 
    2. The book on the theory of correlation 

    3. Foreword to Slutsky (1960) 
 

1. Slutsky: Life and Work 

   1.1. General information. Evgeny Evgenievich Slutsky (1880 – 1948) was an 
economist, statistician and mathematician, in that chronological order. His life and 
work are described in Kolmogorov (1948), Smirnov (1948), Chetverikov (1959), Allen 
(1950), Sheynin (1999), Seneta (2001), with pertinent archival and newspaper sources 
quoted in Sheynin (1990). Slutsky himself (1938 and 1942, published 1999) compiled 
his biography. In two other unpublished pieces Wittich (2004; 2007) provides valuable 
data on Slutsky’s life and a pertinent annotated bibliography. In another unpublished 
paper Rauscher & Wittich (2007) collected information about Slutsky the poet and 
connoisseur of literature, a side of his personality (as well as his being an artist) that 
remains unknown. Kolmogorov (1948/2002, p. 72) called Slutsky “a refined and witty 
conversationalist, a connoisseur of literature, a poet and an artist”. 
    Slutsky’s works include his student diploma (1910), the book of 1912 translated 
below, a paper (1914) which directly bears on a subject discussed in that book, and a 
most important economic contribution (1915), see also Chipman & Lenfant (2002) and 
Chipman (2004). His Selected Works (1960) contains his biography written by B. V. 
Gnedenko and an almost complete list of his works. In my § 3 below, I translate its 
Foreword. 
    In 1899, Slutsky enrolled in the mathematical department of Kiev university, was 
drafted into army with others for participating in the students’ protest movement; 
released after nationwide shock; expelled in 1902 for similar activities and banned from 
entering any other academic institution. In 1902 – 1905 studied mechanical engineering 
at Munich Polytechnic School; obviously gained further knowledge in mathematics and 
physics, but remained disinclined to engineering. In 1905 was able to resume learning 
in Russia, graduated with a gold medal from the Law faculty of Kiev University (end of 
1910). His book of 1912 ensured him a position at Kiev Commercial Institute. Became 
professor at a successor organisation of that institute but had to move to Moscow 
because of an official demand that teaching ought to be in the Ukrainian language.  
    Worked as consultant (a very high position) at the Conjuncture Institute and Central 
Statistical Directorate. Owing to the beginning of the Stalinist regime with horrible 
situation in statistics (Sheynin 1998), abandoned these occupations, turned to the 
applications of statistics in geophysics. Did not find suitable conditions for research, 
became engaged in mathematics. Worked at Moscow State University, received there 
the degree of Doctor of Physical and Mathematical Sciences honoris causa and 
(Slutsky 1942/2005, p. 145)  
 
    was entrusted with the chair of theory of probability and mathematical statistics. […] 
However, soon afterwards I convinced myself that that stage of life came to me too late, 

that I shall not experience the good fortune of having pupils. My transfer to the Steklov 

Mathematical Institute also created external conditions for my total concentration on 

research […] 
 
Until the end of his life Slutsky had been working at that Institute of the Academy of 
Sciences, became eminent as cofounder of the theory of stationary processes, died of 
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lung cancer. Was happily married, but had no children. From 1912 to Chuprov’s death 
in 1926 maintained most cordial relations with him.  
    A special remark is due to Allen (1950, pp. 213 – 214):  
 
    For a very long time before his death Slutsky remained almost inaccessible to 

economists and statisticians outside Russia. […] His assistance, or at least personal 

contacts with him would have been invaluable.  
 
    Slutsky compiled his book in a very short time; in a letter to Markov of 1912 he 
(Sheynin 1990/1996, p. 45) explained that he had “experienced a direct impetus from 
Leontovich’s book [1909 – 1911] […] as well as from information reaching me […]”. 
So had he meant 1909 or 1911? He was more specific elsewhere (Slutsky 1942/2005, p. 
142): “In 1911, I became interested in mathematical statistics, and, more precisely, in 
its then new direction headed by Karl Pearson”. 
    Slutsky possibly read some statistics at the Law faculty, but hardly much; he did not 
mention anything of the sort in his published works. So it seems that in about a year, all 
by himself, he mastered statistics and reached the level of a respected author!  
    1.2. A special publication: Slutsky’s correspondence with Bortkiewicz, 1923 – 1926 
(Wittich et al 2007). I describe some of Slutsky’s letters. 
    Letter No. 3, 25.9.1923. Slutsky made 3000 statistical trials to study whether equally 
probable combinations occurred independently from the size and form of bean seeds, 
cf. § 42 of his translated book. He never heard that automatic registering devices were 
applied in such experiments and even invented something of the sorts “out of 
boredom”. 
    Letter No. 7, 16.5.1926. Slutsky had to move to Moscow because of “some discord 
with the Ukrainian language”, cf. § 1.1 above, most warmly mentioned the deceased 
Chuprov. He works as a consultant at the Conjuncture Institute “together with 
Chetverikov” (Chuprov’s closest student and follower) and “had to become” consultant 
also at Gosplan (State Planning Committee), an extremely important and influential 
Soviet institution. I venture to suppose that the situation there also became difficult and 
real scientific work was even considered subversive. Anyway, nothing is known about 
Slutsky’s work there so that he apparently soon quit it.  
    Letter No. 10, 14.6.1926. Slutsky discussed his paper of 1915 and stated  
 
    I would have now ended it in an essentially different manner. For uniqueness (to an 

additive constant) of the definition of the function of utility it is not necessary to 

demand that on each hypersurface of indifference there exists a pair of such benefits 

that 
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    It is sufficient to be able to draw a line cutting a number of such hypersurfaces along 

which the marginal utility remains constant, and this is in principle always possible. 

This result can also be obtained by elementary considerations. 
 
    Then Slutsky refers to his not yet published paper (1927); see also Chipman (2004). 

 

2. The book on the theory of correlation 
    2.1. Opinions about it. The book was published, as stated on its title-page, in the 

Izvestia (Annales) of the Kiev Commercial Institute, and, as mentioned by several 
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authors, appeared independently later the same year. Sections 25, 28 and 43 (these 
numbers conform to those adopted in the translation) contained “additions to the 
Pearson theories”, see Slutsly’s letter to Markov of 1912 (Sheynin 1990/1996, pp. 45 – 
46). As mentioned out of place in a footnote to its Introduction, Slutsky reported on his 
work to the Kiev Society of Economists. Those “Pearson theories” are what the whole 
book is about, and it is hardly out of order to mention my future paper (2010) on that 
scientist. 
    2.1.1. Chuprov. He (Sheynin 1990/1996, p. 44) published a review of Slutsky’s 
book stating that its author “gained a good understanding of the vast English literature” 
and described it “intelligently”. He “most energetically” recommended the book to 
those having at least “some knowledge of higher mathematics”. At the time, Chuprov 
was not yet critically inclined towards the Biometric school; he changed his attitude 
later, no doubt having been turned in the mathematical direction by his correspondence 
with Markov (Ondar 1977). 
    Apparently in 1916, Chuprov (Sheynin 1990/1996, p. 45) compiled Slutsky’s 
scientific character which contained a phrase: in Slutsky’s person “Russian science 
possesses a serious force”, but he obviously did not imagine how correctly he assessed 
his new friend! 
    There also (p. 29) I published an archival letter written by N. S. Chetverikov to 
Chuprov at the end of 1926. He most favourably described the situation at the 
Conjuncture Institute (where he himself held a high position) and informed his 
correspondent, already terminally ill, that Kondratiev was inviting him to join their 
staff. He added, however, that the general situation in the Soviet Union was unclear. 
    2.1.2. Pearson. He rejected both manuscripts submitted by Slutsky (Sheynin 
1990/1996, pp. 46 – 47). In 1913, Slutsky wrote Chuprov about that fact and asked his 
advice stating that at least in one instance the reason for the rejection “astonished” him. 
Chuprov did fulfil Slutsky’s request and, accordingly, Slutsky successfully published 
one of his manuscripts (1914). I (Sheynin 2004, pp. 227 – 235, not contained in the 
original Russian paper) made public three of Slutsky’s letters to Pearson of 1912. 
    2.1.3. Markov. Continental mathematicians and statisticians, and especially Markov 
utterly disapproved of the Biometric school and I myself have described vivid pertinent 
episodes (Sheynin 1990/1996, pp. 120 – 122; 2007). In his letters to Chuprov Markov 
(Ondar 1977/1981, letters 45 and 47, pp. 53 and 58) remarked that Slutsky’s book (no 
doubt partly because of that general attitude) “interested” him, but did not “attract” him, 
and he did not “like it very much”. 
    More can be added. A few years later, Markov (1916/1951, p. 533, translation p. 
212) critically mentioned the correlation theory: it “simply” [?] aims to discover linear 
[?] dependences, and, when estimating the appropriate probable errors, “enters the 
region of fantasy […]”. This statement was based on an unfortunate application of that 
theory by a Russian author, but Linnik (Markov 1951, p. 670; translation, p. 215), who 
commented on Markov’s memoir, explained that the conclusions of the correlation 
theory depended on the knowledge of the appropriate general population. Slutsky, in 
1912, did several times mention the general population (also see below) but certainly 
not on the level of mid-19th century. However, Markov could have well noted Slutsky’s  
conclusion (§ 22) to the effect that the correlation method should not be applied when 
observations are scarce (which was the case discussed by Markov). 
    Markov’s attitude shows him as a mathematician unwilling to recognize the new 
approaches to statistics and even to the theory of probability (and denying any optimal 
properties of the method of least squares), see Sheynin (2006). Markov had time to 
prepare the last edition of his treatise that appeared posthumously (1924). There, he 
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somewhat softened his views towards the correlation theory and even included 
Slutsky’s book in a short list of references to one of its chapters. 
    Upon reading Slutsky’s book Markov asked Grave, a professor at Kiev university, 
about the new author. Dmitry Aleksandrovich Grave (1863 – 1939) was active in many 
branches of mathematics and he also published a treatise on insurance mathematics (in 
the same volume of the Kiev Commercial Institute Izvestia as Slutsky). In a letter 
toMarkov of 1912 Grave (Sheynin 1999/2004, p. 225) informed his correspondent that 
neither he himself, nor the lawyers, professors at that Institute, had understood 
Slutsky’s report (see § 2.1 above), that they desired to acquaint themselves with the 
Pearson theories and asked him to explicate it properly. Grave, however, finds it 
“repulsive” to read Pearson. 
    Grave also told Markov about his conversation with an unnamed university professor 
of political economy who had explained that Slutsky was “quite a talented and serious 
scientist” not chosen to study as postgraduate “because of his distinct sympathy with 
social-democratic theories”.  
    2.1.3. Slutsky explained himself in an apparently single extant letter to Markov of 
1912 (Sheynin 1990/1996, p. 45 – 46). Improvements of his manuscript “were hindered 
by various personal circumstances” and he “decided to restrict myself [himself] to a 
simple concise description” the more so since it will help those Russian statisticians 
who are unable to read the original literature. He then prophetically stated that “the 
shortcomings of Pearson’s exposition are temporary” and that his theories will be later 
based on a “rigorous basis” as it happened with mathematics of the 18th and 19th 
centuries. He added a most interesting phrase: “I consider it possible to develop all the 
Pearsonian theories by issuing from rigorous abstract assumptions”.  
    Slutsky also mentioned Nekrasov: when his book (1912) had appeared, he began to 
think that  
 
    My [his] work was superfluous; however, after acquainting myself [himself] more 

closely with Nekrasov’s exposition, I [Slutsky] became convinced that he [Nekrasov] 
did not even study the relevant literature sufficiently. 
 
    In § 31 (Note 31.1) Slutsky praised the same book; perhaps he did not yet read it 
“more closely”: after ca. 1900, Nekrasov’s contributions on the theory of probability 
and statistics became almost worthless (and utterly disgusted Markov), see Sheynin 
(2003). 
    In a letter to Chuprov of the same year Slutsky (Sheynin 1990/1996, p. 44) noted that 
Grave “actively participates” in the dispute (between Markov and him) and added that 
Markov “gave me [him] a good dressing-down”. […] It was easy for Markov “to 
discover a number of weak points”. 
    2.1.4. Kolmogorov (1948/2002) published Slutsky’s obituary which clearly shows 
his personal ties with the deceased. He (p. 68) stated that the book of 1912 “became a 
considerable independent contribution to [mathematical statistics and] remains 
important and interesting”. On the same page Kolmogorov listed “the main 
weakness[es] of the Biometric school: 
 

    Rigorous results on the proximity of empirical sample characteristics to the 

theoretical ones existed only for independent trials. 

    Notions of the logical structure of the theory of probability, which underlies all the 

methods of mathematical statistics, remained at the level of the 18
th

 century results. 
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The third and last weakness concerned the incompleteness of the published statistical 
tables. 
    Kolmogorov indirect advice of applying Slutsky’s book at least as a background was 
not, however, followed; even Slutsky’s examples of statistically studying various 
problems had hardly ever been cited. 
    2.1.5. Some general remarks about the book. Information provided above, at the 
end of § 1.1, explains why Slutsky was unable to add a few pages about Pearson, his 
followers (and Galton!), or to be at least somewhat more critical. He certainly 
understood that the work of that great scientist was far from rigorous (see § 2.1.3 
above), but on this point he only expressed himself about the method of moments 
(Additional remarks). Slutsky also felt that statistics ought to be based on the theory of 
probability; he said as much, although not quite generally, at the end of his § 32, and 
stated, in a letter to Markov (§ 2.1.3 above), that that approach was achievable. 
    On the other hand, the reader will not fail to note that Slutsky also became quite 
familiar with the practical side of statistics; his book abounds with pertinent remarks! 
And he also properly provided a lot of original examples of applying correlation theory. 
    Slutsky (the end of § 2.1.3 above) acknowledged that Markov had “discovered a 
number of weak points” in his book. For my part, I believe that he had succeeded by 
and large to provide a good general picture of his subject, but I ought to say the 
following. 
    1. He made a mistake in his reasoning on weighing observations, see my Note 28.1, 
in § 28 which contained his “additions to the Pearson theories”, see § 2.1 above. I 
mentioned another mistake in Note 16.1. 
    2. His explanations were sometimes inadequate or even lacking, see Notes 3.1, 4.3, 
16.2, 40.1 and 41.2. 
    3. An author ought to show readers not only the trees, but the wood as well, and I 
especially note that Slutsky had not stated expressly and simply that a zero correlation 
coefficient does not yet signify independence. His explanation (beginning of both §§ 19 
and 29) is not quite sufficient, and in § 31 he only discusses correlation and causality. 
    4. He offered a faulty example (Note 31.3). 
    5. He introduced confusing notation (Note 18.5). 
    Slutsky’s system of numbering the sections and formulas was not the best possible. 
Now, in the translation, sections are numbered consecutively (not separately for each 
part), and the numbering of the formulas allows to locate them quite easily; thus, 
formula (3.2) is the second numbered formula in § 3. The Notes (by Slutsky, signed E. 
S., and my own, signed O. S.) are numbered the same way.  
    I have omitted some pieces of the original text such as elementary explanations (even 
concerning the calculation of determinants), mathematical derivations and tables of data 
which after all can be looked up in the English literature described by Slutsky. Then, I 
have not included the numerous figures and, accordingly, had to modify their 
accompanying description. 
 

3. Foreword to Slutsky (1960) by B. V. Gnedenko & N. V. Smirnov 
    The contents of the scientific heritage of the outstanding Soviet mathematician 
Evgeny Evgenievich Slutsky (1880 – 1948) are very diverse. In addition to 
mathematics and mathematical-statistical investigations proper, a number of his works 
are devoted to problems in mathematical economics, some problems in genetics, 
demography, physical statistics, etc. It seems unquestionable, however, that Slutsky 
will enter the history of our national mathematics as one of the founders of the theory 
of stochastic processes, of that branch of the theory of probability which is the main 



 10 

current channel of research stimulated by ever widening demands made by 
contemporary physics and technology.  
    Being absolutely specific both in their final goal and approach, and distinctively 
combining these qualities with rigour of mathematical treatment, Slutsky’s fundamental 
contributions on the theory of random functions are an excellent introduction to this 
topical subject.  
    These Selected Works (1960) include all Slutsky’s main writings on the theory of 
random functions and his most important investigations on statistics of connected 
series. Commentaries adduced at the end of the book trace the numerous links between 
his work and modern research. A complete [an almost complete] list of his scientific 
publications is appended. We take the opportunity to express our thanks to Yulia N. 
Slutsky and N. S. Chetverikov for the materials that they gave us. 
    Acknowledgements. Magister Guido Rauscher sent me his joint unpublished material 
(Rauscher & Wittich 2006) and photostat copies of Slutsky (1938; 1942), of the 
Contents of Slutsky (1910) and of the entire book translated below. From Dr Claus 
Wittich I received his unpublished contributions (2004; 2007). 
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0. Introduction 
 
    During the two latest decades, theoretical statistics has greatly 
advanced. Perfection of old methods; discovery and development of new 
ones; appearance of excellent works on biology and social sciences 
illustrating methods and proving their unquestionable scientific 
significance; finally, creation of a yet small personnel of scientists 
systematically applying and developing the new methods further, – all 
this, taken together, allows us to say that a new era has originated in 
statistics. 
    This movement had started and has been developed in England, and it is 
only beginning to penetrate other nations. Initiated by the recently 
deceased celebrated Francis Galton, it grew out of the demands of 
contemporary biology. Galton, however, was not a mathematician, and the 
merit of theoretically developing new ideas and establishing a school must 
almost solely be credited to Karl Pearson whose name will remain in the 
history of our science alongside those of Laplace, Gauss and Poisson0.1. In 
all fairness, the new school ought to be therefore called after Galton and 
Pearson. 
    The general awakening of interest in theoretical statistics allows us to 
expect that not in a very remote future the ideas of the new school will 
spread over all nations and all fields of their possible application, and I am 
humbly aiming at fostering that natural and inevitable process. The 
application of the new methods is comparatively easy and not difficult to 
learn. For making use of formulas, it is sufficient to understand their 
meaning and be able to calculate what they indicate, a task simplified by 
applying special tables also compiled on Pearson’s initiative. 
    However, it is impossible to manage without breaking from routine. 
Unforeseen details can be encountered in each problem, and the 
boundaries of the applicability of a method, and the significance of the 
results obtained can perplex a student. Not only prescriptions for 
calculation are therefore needed, it is also necessary to comprehend the 
spirit of the theories and of their mathematical justification. Life itself thus 
raises a most important demand before those working at statistics: A 
statistician must be a mathematician because his science is a mathematical 
science0.2. 
    It is for this reason that I had paid so much attention to formulas and 
mathematical proofs; nevertheless, one more point also played a certain 
role. Dry prescriptions are only good enough for being applied in old and 
firmly established spheres. I believe that no success can be expected in 
planting new methods in new soil without justifying them. 
    The sphere of mathematical knowledge needed for understanding most 
of the provided derivations and proofs is comparatively small. Most 
elementary information on analytic geometry and differential calculus as 
can be acquired in a few days is sufficient for understanding the elements 
of the theory of correlation. Further generalization in that area as well as 
the first part of my work dealing with curves of distribution demand 
somewhat wider mathematical knowledge.  
    I have attempted to satisfy different groups of possible readers and the 
proofs are therefore simplified as much as a rigorous description allowed 
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it. Those mathematical derivations which I thought understandable to least 
prepared readers are provided in more detail than necessary for 
accomplished mathematicians. Finally, I attempted to elucidate the 
material in such a way that the reader, even after skipping a difficult place, 
will be able to pick up the lost thread and understand the meaning of the 
formulas and the manner of applying them. I do not however flatter myself 
by hoping to have solved that problem quite satisfactorily.  
    My main subject is the theory of correlation but I did not feel it possible 
to avoid the theory of the curves of distribution which I described far, 
however, from comprehensively and possibly even too concisely, in Part 
1. I advise readers poorly acquainted with mathematics and only mainly 
interested in the method of correlation, to go over to Part 2 immediately 
after acquainting themselves with the first four sections of Part 1. 
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Part 1 

 

Elements of the Doctrine of Curves of Distribution 

 

1. General notion of curves of distribution or frequency curves 
    When considering any totality of items possessing a common and measurable 
indication, we perceive that not all of them have indications of one and the same 
magnitude. There was a time when statisticians ignored these differences and only 
concentrated on the arithmetic mean of the indications. Nowadays, it is not anymore 
necessary to struggle against this dated and self-imposed restriction. It is almost 
generally understood that the mean is reporting too little about the essence of the whole 
statistical group and that the aim of statistics comes to describing as completely and 
simply as possible the whole composition of totalities under consideration. 
    When solving that problem, the first step is a complete and detailed description of the 
distribution of the indication among the totality. An elementary, but invariably 
necessary form of such a description is well known to every statistician. It is a table in 
which the value of the indication is separated into intervals and the size of each 
subgroup thus occurring is shown1.1. 
    The next step is the representation of the totality by a curve of distribution. From a 
formal mathematical point of view this is very simple. Mark off the values of the 
indication along the x-axis subdividing it into smallest possible intervals and represent 
the size of the subgroups by the areas of rectangles having the intervals as their bases. 
[The author explains in detail the transition to the continuous case and continues] 
    Thus, the area of the curve of distribution1.2 shows the number of items having the 
considered indication contained within certain bounds and the ordinate of the curve 
gives their number per the unit difference of the magnitude of the indication. The 
curves of distribution are therefore also called frequency curves

1.3
. 

2. The moments of distribution 
    The curve of distribution empirically constructed by issuing from the data only 
provides us with what was contained there, but shows it more clearly. This, however, is 
not sufficient for a deeper study; we need numerical characteristics of the various 
properties of the totality. One of them we already know, it is the mean value of the 
indication. To find it, we ought to multiply the magnitude of the indication by the 
number of the appropriate items [in each interval, find the sum of these products], and 
to divide the product by the total number of items.  
    However, when that total number is very large, this method becomes inapplicable; 
first, because we do not perhaps know the exact value of the indication possessed by 
each of them; and second, even if we know it, the work becomes excessive, so that we 
need a method of approximately calculating of the arithmetic mean. [Denoting the total 
number of items by N, their number in interval i by ni, the mean points of the intervals 
by xi and the arithmetic mean by ,x he gets  

    xNx n x=∑                                                                                                          (2.1) 

 
where the subscript i is dropped, and, in the continuous case, 
 

    ].Nx yxdx= ∫  

 
where y (x) is the [frequency] curve […] 
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    Statistical practice proved that, when the total number of items is not too small, 
formula (2.1) provides sufficiently precise results even for a small number (10 – 12) of 
groups. 
    We can also derive other numbers characterizing a studied totality by calculating in 
the same way the mean square, the cube, the fourth power etc of the indicator. Pearson 
calls the expressions thus found the moments (zero moment, mean zero power; first, 
second, … moment; arithmetic mean, mean square, cube, …), k = 1, 2, 3, 4: 
 

    ' 0 ' 0 ' '
0 0

1 1 1 1
µ 1, ν 1, µ ,  ν . k k

x k k x
yx dx n x yx dx n x

N N N N
= = = = = =∑ ∑∫ ∫  

 
    For the sake of convenience I will also denote the arithmetic mean by h, or hx, hy, … 
showing the appropriate variable. 
    Moments can be derived relative to any origin, but of most importance are those with 
origin at the mean (at the centre of the distribution). They may be called central 
moments and it is usual to denote them by the same letter but without the apostrophe. 
    Direct calculation of the central moments is inconvenient since it involves squaring, 
raising to the third and fourth power multidigit numbers ( x – x); only by chance will 
the arithmetic mean be an integer. It is therefore simpler to calculate the moments 
relative to any arbitrary origin, then to go over to the central moments. The transition is 
very simple. By definition of the p-th central moment 
 

    ν ( ) .p

p xN n x x= −∑  

 
    According to the formula of the Newton binomial 
 

    1 2 2 1( 1)
ν { [ ... ]}

1 2
p p p p p

p x

p p
N n x px x x x pxx x

− − −−
= − + − ±

⋅∑ m  

 
with the sign being plus or minus if p is even or odd respectively. 

    Summing the separate terms, and denoting for the sake of symmetry the mean by '
1ν  

we have 
 

    1 1ν ...p p p p

p x x x xN n x px n x px n x x n
− −= − + ± =∑ ∑ ∑ ∑m  

 

    ' ' ' ' ' 2 ' '
1 1 2 1 1 1

( 1)
[ν ν ν ν (ν ) ... (ν ) (ν ) ].

1 2
p p

p p p

p p
N p p− −

−
− + − ±

⋅
m  

 
    Combining the last two terms we finally get 
 

    ' ' ' ' ' 2 1 '
1 1 2 1 1

( 1)
ν ν ν ν ν (ν ) ... ( 1) ( 1)(ν ) .

1 2
p p

p p p p

p p
p p

−
− −

−
= − + − + − −

⋅
                        (2.2) 

 
    In particular, 
 

    
2 3

1 2 2 2 3 3 2 1 1

2 4
4 4 3 1 2 1 1

ν 0,  ν ν (ν ) ,  ν ν 3ν ν 2(ν ) ,  

ν ν 4ν ν 6ν (ν ) 3(ν ) .

′ ′ ′ ′ ′ ′= = − = − +

′ ′ ′ ′ ′ ′= − + −
                                         (2.3) 
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    When calculating, it is usual to choose as a conditional zero some magnitude of the 
indication corresponding to the midpoint of the interval nearest to the centre of the 
distribution, and to assume the length of the interval (call it k) as the unit. After 
calculation, the p-th moment should be multiplied by kp. 

 

3. The mean deviation and the coefficient of variation 
    Especially important in theoretical statistics and its applications is the square root of 
the second central moment, σ, called mean square error in the theory of observational 
errors, and otherwise standard deviation: 
 

    2 2
2

1
σ ν ( ) .

x
n x x

N
= = −∑                                                                                 (3.1) 

 
    This formula is not altogether precise because ν2 is an approximate magnitude which 
in most cases we can correct beforehand (§ 7). When the distribution follows the well-
known Gaussian law, about 2/3 of the items of a totality deviates from the arithmetic 
mean in either direction not more than by a standard deviation. Therefore, σ can serve 
as a measure of variability determining how wide are the boundaries between which 
most items of a totality are situated. 
    The so-called coefficient of variation is 
 

    
σ

.V
h

=                                                                                                                (3.2) 

 
For practical applications it is convenient to express it in percentage terms. 
    Example [variation in the mean monthly price of rye during 124 months in 1893 – 
1903; the results are] 
 
    1. Moscow: h1 = 59.40 ± 0.77 copecks, σ1 = 12.64 ± 0.54 cop. 
    2. Elets: h2 = 52.64 ± 0.65 cop., σ2 = 10.74 ± 0.46 cop.  
    3. Samara: h3 = 47.04 ± 0.84 cop., σ3 = 13.84 ± 0.59 cop. 
 
    The three centres of commerce differ here not only in the mean price, but also in the 
fluctuation of these […]. Turning now to relative fluctuations, which characterize the 
stability of prices and are expressed by the coefficients of variation, we find 
 
    V1 = 21.28% ± 0.95, V2 = 20.40% ± 0.91, V3 = 29.42% ± 1.363.1. 
 

4. Probable errors 
    Along with means, standard deviations and coefficients of variation there are their 
probable errors calculated by formulas4.1 

 

    
2

σ σ
E 0.67449 ,  E 0.67449 ,  

2

E 0.67449 1 2 [ ] .
1002

h N N

V

V V

N

σ= =

= +

                                             (4.1, 2, 3) 

 
    The first two formulas were known long ago; for the last one, see Lee & Pearson 
(1897, p. 345). Tables (Gibson 1906; Pearl & Blakeman) essentially simplify 
calculations4.2. 
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    The boundaries of my work do not allow me to derive them. The most necessary 
material is included in one of the last sections of this book; here, I only provide a few 
remarks. The set of causes consisting of very many elementary, equally probable 
positive and negative influences may be called the complex of random causes. The 
more is the phenomenon repeated, the more completely do the random causes 
compensate each other and mutually destroy their influence on it4.3. If the Gaussian law 
[already mentioned in § 3] (see below) is realized, even if approximately, about a half 
of the random deviations will be smaller than the probable error, and about one half,  
larger. Deviations many times exceeding it (practically speaking, 6, 5 and only 4 times 
larger) are extremely unlikely. 
    The probable error is therefore the test separating the set of random influences from 
the complex of the influences of the main causes which determines the essence of the 
phenomenon. There exists no other test here. Suppose that, having a very large number 
of observations, we calculated the mean magnitude of a phenomenon and then derived 
its mean making use of a restricted part of the observations. Then the probable error of 
the second mean should serve as a test of whether the whole and the part differ from 
each other. For example, having determined the mean stature of a million Russians and 
of 200 men from the city of Yaroslavl, we could have stated that the statures differ if 
the calculated difference is several times greater than the probable error of the second, 
much less precise determination. A difference somewhat less or greater than the 
probable error may be explained by the influence of random causes.  
    Suppose now that we have two equally numerous groups, for example mean monthly 
prices in Moscow in 1891 – 1900 and 1901 – 1910. Then we may attribute any 
difference between them not exceeding, or negligibly greater than its probable error, by 
the influence of random causes. That error is equal to  
 

    2 2
1 2E E ,+  

 
i.e., to the square root of the sum of squares of both probable errors. We could have 
only stated that the level of prices had actually changed if the mean for the second 
period would have exceeded the first mean at least more than by five or six times the 
probable error of their difference. 
    When applying the same test to decide whether the difference between the mean 
prices of rye or their standard deviations in Moscow and Elets (§ 3) was essential, we 
will err because the formula above is only valid for mutually independent phenomena 

whereas the prices at two centres comparatively near to each other cannot be such. We 
can only admit that conclusion hypothetically with some subjectively estimated 
certainty if the difference extremely exceeded the probable errors of each magnitude 
taken separately. Concerning the same example of § 3, we may thus only decide about 
the difference between the coefficients of variation for Samara on the one hand and 
Moscow and Elets on the other hand. A rigorous test can only be derived by means of 
the correlation theory. 

 

5. The Gaussian law and its generalization by Pearson 

    In some cases the number of items N in a group, the mean x  and the standard 
deviation σ are quite sufficient for an exhaustive description of a totality. If the items 
obey the Gaussian law of distribution, these three magnitudes allow to determine in a 
purely theoretical way the size of any subgroup for which it is only necessary to apply 
any table of the integral of [the appropriate] probabilities5.1.  
    The Gaussian law, however, is not sufficiently general. Indeed, however you derive 
it, the following assumptions are invariably admitted, explicitly or tacitly. 
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    a) Deviations from the mean in both directions are equally probable. 
    b) An addition of a new deviation, either positive or negative, is equally probable 
independently of the sum of the already accumulated deviations (Pearson 1905a, p. 
189). 
    Here is a possible elementary derivation resting on those assumptions (Ibidem, p. 
179 note)5.2. Let there be n elementary causes, each leading to a deviation equal to ξ; 
suppose also that, taken separately, such a cause occasioned r positive and (n – r) 
negative deviations. The total deviation will be 
 
    xr = rξ – (n – r)ξ = (2r – n)ξ,                                                                       (5.1a) 
 
and, similarly, 
 
    xr+1 = (r + 1)ξ – (n – r – 1)ξ = (2r + 2 – n)ξ.                                              (5.1b) 
 
    Their difference is 
 
    ∆xr = xr+1 – xr = 2ξ. 
 
    What will be the probability of xr and xr+1? The theory of probability tells us that the 
probability for equally likely events occurring r and (n – r) times is equal to the (r + 1)-

st term of the binomial [(1/2) + (1/2)]n, that is, equal to (1/ 2) .n r

n
C  In the limit, 

frequencies are proportional to probabilities, so that out of N cases deviations of xr and 
xr+1 will occur 
 

    1
1(1/ 2) , (1/ 2)n r n r

r n r n
y N C y N C

+
+= =  

 
times so that the second deviation will occur more often by  
 

     
! 2 1

(1/ 2) .
!( 1)! ( 1)( )

n

r

n n r
y N

r n r r n r

− −
∆ = ⋅

− − + −
 

 
    Then, the ordinate of the middle of the interval between yr and yr+1 will be their half-
sum 
 

    1/2

! 1/ 2( 1)
(1/ 2)

!( 1)! ( 1)( )
n

r

n n
y N

r n r r n r
+

+
∆ = ⋅

− − + −
 

 
and 
 

    1

1/2 1

( ) 2 1
.

1/ 2( ) 1/ 2( 1)
r r r

r r r

y y y n r

y y y n

+

+ +

∆ − − −
= =
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    The difference ∆yr corresponds to ∆xr = 2ξ and 
 

    
1/2

2 1
.

1/ 2( 1)2ξ
r

y n r

y x n+

∆ − −
=

∆ +
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This expression can be presented in another form. The abscissa corresponding to 
ordinate yr+1/2 is, see (5.1),  
 
    xr+1/2 = (1/2)(xr+1 + xr) = (2r – n + 1)ξ, n – 2r – 1 = – (x/ξ) 
 
and  
 

    
2

.                                                                                 (5.2)
( 1)ξ

y x

y x n

∆
= −

∆ +
 

 
    Consider now the limiting case. For any n, xr = 0 at r = n/2. Here, exactly one half of 
the elementary deviations are positive and the other half, negative. If r ≠ n/2, then, at n 
= ∞, see equations (5.1), – ∞ < x < + ∞. For the limit 

    lim(n + 1)ξ2 = ∞                                                                            (5.3) 
 
we would have got for finite values of x 
 
    ∆y/∆x = 0, y = Const = C 
 
and the curve of distribution would have become a straight line parallel to the x axis. 
Since the total number of items is equal to the area of that curve which is now C∞ and 
for this to be equal to N it is necessary that C = 0. 
    And so, if equality (5.3) takes place, there will be no items with the stated indication 
on any finite interval. And, if they actually exist, than, for n = ∞ and ξ = 0,  
 
    lim (n + 1)ξ2 = a finite number = a2, 
 
the differential equation of the curve of distribution will be 
 

    
2

1
,

dy x

y dx a
= −  

 

    
2

0 2
exp( ).

2

x
y y

a
= −  

 
    This is indeed the equation of the Gaussian curve, or, as Pearson named it, of the 
normal curve of distribution. 
    Abandoning the assumption b (above) that an elementary deviation is independent 
from the sum of the already accumulated deviations, that is, of xr, and, on the contrary, 
supposing, which is Pearson’s idea, that ξ = f(xr), we will get the most possible general 
dependence between the frequencies and the magnitude of the indication. 
    The limit (5.3) will not be equal to some constant a2 anymore, but become a function 
of x, and the differential equation as derived from equation (5.2) will now be 
 

    
1

,
( )

dy x

y dx F x
= −   

 
or, for the origin chosen at an arbitrary point, 
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1

.
( )

dy x a

y dx F x

−
= −                                                                                                 (5.4) 

 
    In abandoning assumption b, we have thus freed ourselves from the supposition that 
positive and negative deviations are equally probable and derived the most possible 
general form of dependence. 
    If F(x) may be expanded in a MacLaurin series, we will have 
 

    
2

0 1 2

1
.

...

dy x a

y dx b b x b x

−
=

+ + +
                                                                               (5.5) 

 
Any number of terms can be taken; in practice, we have to restrict the expansion by 
three terms. Indeed, for determining the equation of a curve fitting the statistical 
material, we ought, in accord with the Pearson method (see below), calculate the actual 
moments and equate them to their theoretical counterparts. In case of the equation (5.4) 
with three terms in the denominator of the right side, we have to know four moments of 
the actual distribution; otherwise, moments of higher orders are needed. However, 
Pearson (1905b, pp. 7 – 8) showed that the probable errors of the moments of those 
orders were very large and increased rapidly with the orders, so that the coefficients of 
a curve calculated by means of the moments of higher orders must also be unreliable.  
    In spite of that restriction, the experience of Pearson and his school showed that the 
Pearsonian curves [defined by equation (5.4)] almost always provided excellent results 
and described the special features of the data in cases in which the normal (the 
Gaussian) curve refused to serve statisticians. 

 

6. Justification of the method of moments 
    How can the statistician apply a theoretical curve for showing his material? It should 
be shaped into its final form by applying the statistical data for calculating its 
coefficients6.1. Chronologically, the first solution was achieved by the method of least 
squares. Its idea consists in the following. Suppose that observations provided a number 
of points and that we wish to determine the coefficients of the equation in such a 
manner that the curve thus obtained as close as possible adjoins our points. […] 
    Its shortcoming is the need for very much work even for parabolic curves. In many 
other cases the method is either not applicable at all, or demands quite excessive toil. 
And in many instances the estimation of the probable errors of the calculated 
coefficients is also either impossible or very difficult. 
    Pearson proposed a modification of the method of least squares. Suppose that we 
have a continuous empirical curve rather than isolated points; such points should be 
joined by a parabolic curve as smoothly as possible and the coefficients sought 
determined by applying the condition of least squares to all the points of the empirical 
curve. Analytically this is expressed by replacing finite sums by integrals, and, as it can 
be shown, by equating the moments as specified in § 5. 
    Pearson (1902c, pp. 267 – 271) theoretically justified this modification in the 
following way; readers unfamiliar with higher mathematics may skip his considerations 
without any negative consequences. Suppose that a series of measurements or 
observations of a variable y are made corresponding to a series of values of another 
variable, x, – l < x < l. It is required to discover a good method of deriving a theoretical 
or empirical curve  
 
    y = φ(x; c1; c2; …; cn)                                                                                              (6.1) 
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fitting the data where c1, c2, …, cn are arbitrary constants. 
    Let us assume that φ(x) can be expanded in a MacLaurin series which moreover 
converges more or less rapidly: 
 
    y = φ(0) + xφ′(0) + (x2/2)φ″(0) + … = α0 + α1x + α2(x

2/2) + … 
 
Here, α0, α1, α2, … are functions of the n parameters c1, c2, …, cn. It is therefore 
theoretically possible to determine all these parameters given the first n coefficients α0, 
α1, α2, …, αn–1 and then to apply the calculated magnitudes for deriving all the rest 
coefficients αn, αn+1,… [only those necessary to be considered]. It follows that 
theoretically we can represent our curve as  
 
    y = α0 + α1x + α2(x

2/2) + α3(x
2/6) + … + αn–1[x

n–1/(n – 1)!] +  
          φ(n)(α0; α1; …; αn–1)(x

n
/n!) + … 

 
    Let Y be the ordinate of the empirical curve, then (y – Y) will be the distance between 
the two curves at point x, and, in accord with the principles [with the principle] of least 
squares, we will set 
 

    2( ) min .y Y dx− =∫                                                                                            (6.2) 

 
    [Here is the essence of Slutsky’s description. Let A and A' be the areas of the curves 
fitting the data and the empirical curve, and µ and µ', the respective moments. Then 
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and, approximately, 
 
    A = A', µ = µ'.                                                                                        (6.4.1, 2) 
 
    Slutsky comments on the method of moments in his Additional remarks. Here, he 
continues:] 
    And so, we obtain the following rule. For fitting a good theoretical curve (6.1) to an 

empirical curve it is necessary to equate its area and moments expressed by its 

parameters c1, c2, …, cn to the area and moments of the empirical curve. 

    The solution above provides a better approximation than can be possibly thought on 
the face of it because the corresponding higher moments will also be approximately 
equal and the nearer the larger is n. [The proof follows.] 
    We conclude from all the above that the equality of the moments is a good condition 
for fitting curves to data, and practice has shown that it is indeed not worse than the 
principle of least squares. In case of parabolic curves, the two methods coincide 
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because the MacLaurin series are then finite. And, as mentioned above, the method of 
moments may be applied even when the first method is either not applicable at all, or 
demands quite excessive toil. In addition, the second method, whenever applicable, 
allows to estimate the probable errors of the calculated coefficients. For employing the 
method of moments a statistician must 
    1. Find the moments of any empirical system of observations. 
    2. Express the moments of the theoretical curve as a function of the parameters c1, c2, 
…, cn in such a manner that equating the areas and the moments […] will not be 
excessively difficult. 
    I turn to the solution of the first problem.  

 

7. Determining the empirical moments 
Pearson calls the moments determined in accord with § 2 raw and denotes them by ν1, 
ν2, … if central, or by ν′1, ν′2, … otherwise. The inaccuracy involved consists in that we 
calculate them as though all items in an interval are situated in its middle. This method 
only leads to the true moments µ1, µ2, … for infinitely small intervals. Actually, the 
intervals are seldom small enough for the error to be negligible. We will distinguish 
three cases. 
    A. The empirical curve smoothly falls down on both sides to the x axis. The number 
of items in the extreme groups diminishes so gradually that, in mathematical language, 
the curve on both tails has contact of an infinitely large order with the x axis. Pearson 
calls such curves quasi-normal (because, in particular, the normal curve also has this 
property). The true moments are then easily calculated from the raw moments by 
applying the Sheppard corrections. Let us derive them (Pearson 1903b). A non-
mathematician may skip the derivation and only turn attention to the result. [I am only 
providing it:] 
 
    µ0 = ν0 = 1, µ1 = ν1 = 0, µ2 = ν2 – 1/12,  
    µ3 = ν3, µ4 = ν4 – (1/2)ν2 + 7/240.                                                                       (7.1) 
 
[…] 
    The calculations are made for a unit interval, and the p-th moment is then multiplied 
by kp where k is the actual length of the interval. 
    B. If the data indicates that the former case does not take place, and especially if the 
curve makes a finite angle when cutting the x axis, the Sheppard corrections must not 
be applied and another method is recommended (Pearson 1902c, pp. 282ff). For a non-
mathematician this method will perhaps be difficult. In general, it only ought to be 
applied when the investigation demands high precision. In other cases, if the Sheppard 
corrections are not applicable, it is possible to employ the correction described below 
under C. 
    Let y = φ(x) be, as previously, the curve showing the distribution. Mark off the 
intervals [x0; x1], [x1; x2] etc on the x axis. Here, x with a subscript denotes not the 
distances [from the origin] to the middle of intervals, but to their ends. Let also nr be 
the number of the items in the interval [xr–1; xr]. The quantities n1, n2, … np are given by 
the data: 
 

    
1 2
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1 2, , ..., .
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p

xx x

p

x x x

n ydx n ydx n ydx

−

= = =∫ ∫ ∫  

 
    Denote also  
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    N = n1 + n2 + … + np. 
 
For the n-th moment relative to the y axis we have 
 

    
0

µ .                                                                                                    (7.2)
px

n

n

x

N x ydx′ = ∫  

 
   Introduce a new variable 
 

                                                                                                                 (7.3)
px

x

Z ydx= ∫  

 
which is obviously a part of the area of our curve, i. e., the number of items having the 
value of the indication between some x and xp.  
    Then 
 

0 1

0 1 2 3,  ... ,  ..., 0.                        
p p p

p

x x x

p p

x x x

Z ydx N Z ydx n n n Z ydx= = = = + + + = =∫ ∫ ∫ (7.4) 

 
Differentiating the integral (7.3) [with respect to its lower limit] we get dZ/dx = – y. 
Formula (7.2), when substituting the derivative instead of – y, becomes 
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    Integrating by parts leads to 
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    We may measure the value of the indication by the difference between a given 
magnitude and some constant assumed as the origin which can coincide with the origin 
of the distribution. Then x0 = 0 and 
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1µ = .                   
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n
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n
Zx dx

N

−′ ∫                                                                                  (7.5) 

 
    This is the main formula for deriving the true moments. The order of calculation is 
obvious. For 
 
    x = x0 (= 0), x1, x2, …, xp 
 
calculate Z0, Z1, Z2, … , see formulas (7.4). Introduce new magnitudes Yi, ordinates of a 
new supplementary curve:  
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    1 1
0 0 0 0,  , 1, 2,...,  ( 0). n n

k k k pY Z x Y Z x k p Y
− −= = = = =  

 
Determine now the area S of the new curve. It is equal to the integral in formula (7.5) 
and therefore 
 

    µ .
n

n
S

N
′ =  

 
    S can be calculated by means of any suitable formula of approximate integration. 
[…] Pearson (1902c, p. 275) recommends the following very precise formula 
(Sheppard 1900): […] 
    C. The third case considers experimental numbers situated so disorderly that 
formulas representing curves could be thought superfluous. Indeed, all these bends of 
parabolic curves […] have no real meaning, they are occasioned not by the nature of 
the phenomenon, but by random irregularities in the experimental material. Here, it is 
more proper to consider the empirical curve just as it is derived, i. e., as a broken line, 
and the problem is reduced to calculating the moments of the area consisting of 
trapezoids. [Slutsky does not formally define this new concept but replaces N, the total 
number of items in a totality, by the area under the curve or broken line (retaining the 
previous notation).] Method B is applicable here also, but Pearson provided the final 
formulas allowing to go over at once from raw to true central moments. 
    In addition, since this method is much easier to apply, we may do so in all cases in 
which the Sheppard corrections cannot be used and the somewhat higher precision  
ensured by the method B seems unnecessary. [The author describes the derivation of 
Pearson’s formulas (1896a, pp. 348 – 350) and gets] 
 

    

( 1) ( 1)( 2)( 3)
µ ν ν ν2 412 360

( 1)( 2)( 3)( 4)( 5)
ν ...,620160

n n n n n n
n n n n

n n n n n n

n

− − − −
′ ′ ′ ′= + +− −

− − − − −
′+ +−

                    (7.6) 

 
    1 1 2 2 3 3 1 4 4 2µ ν ,  µ ν 1/ 6,  µ ν (1/ 2)ν ,  µ ν ν 1/15,′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = + = + = + +                          (7.7)   

 
    µ1 = 0, µ2 = ν2 + 1/6, µ3 = ν3, µ4 = ν4 + ν2 + 1/15.                                               (7.8) 
 
    The trapezoid method should be applied in this form. The interval is supposed to be 
unity and the raw moments ν′1, ν′2, … are calculated after which in accord with 
formulas (2.1) the raw central moments are determined, and, finally, either the 
Sheppard corrections are applied (in case A) or the transition to the true moments is 
accomplished by formulas (7.8). If returning to the initial units is desired, the n-th 
moment is multiplied by kn. 

 

8. Deriving parabolic curves fitting experimental data 
    Once the moments of the empirical curve are calculated, the problem is reduced to 
determining the coefficients of the theoretical curve having those moments. What kind 
of curve is chosen depends, as stated above, on general considerations for which no rule 
is possible. The best results for frequency curves are provided by the Pearsonian curves, 
but for many other aims [?] parabolic curves are often successfully applied. My goal 
here is to explain how to determine their coefficients by the method of moments 
(Pearson 1902c, pp. 12 – 16) so that we will have a complete example of its application. 
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    Consider an empirical broken line on the base of the curve, i. e., on interval [– l; l] 
with ordinates y1 and y2 at its ends and area N under the line and denote the empirical 
moments relative to the ordinate passing through the origin by µ′1, µ′2, … We ought to 
determine the moments of the area and equate them to the empirical moments which 
will ensure the calculation of the coefficients of the curve 
 
    y = (N/2l) [e0 + e1(x/l) + e2(x/l)2 + … + en–1(x/l)n–1]. 
 
    Multiplying both sides by (x/l)2r and integrating, we get 
 

    2 0 12 2
2 2

µ1 1 ( 1)
  [ ... ].

2 1 2 3 2 2

l n
r nr

r r

l

e ee
yx dx N N

l l r r r n

−

−

′ − −
= = + + +

+ + +∫  

 
The terms including x in odd powers vanish. And, if both sides were multiplied by 
(x/l)2r+1,  
 

    

2 1 2 1
2 1 2 1

3 11

µ1
 

1 ( 1)
 [ ... ].

2 3 2 5 2 2 1

l

r r

r r

l

n

n

yx dx N
l l

e ee
N

r r r n

+ +
+ +

−

−

′
= =

+ −
+ + +

+ + + +

∫
 

 
    Denote λs = (µ′s/ls), so that λ0 = 1, then 
 
    e0 +         (1/3)e2 + (1/5)e4 + … = λ0 = 1,  
    (1/3)e0 + (1/5)e2 + (1/7)e4 + … = λ2, 
    (1/5)e0 + (1/7)e2 + (1/9)e4 + … = λ4, …, 
 
    (1/3)e1 + (1/5)e3 + (1/7)e5 + … =   λ1,  
    (1/5)e1 + (1/7)e3 + (1/9)e5 + … =   λ3, 
    (1/7)e1 + (1/9)e3 + (1/11)e5 + … = λ5, … 
 
    [Slutsky then derives working formulas for the theoretical curve being of the zero 
order (a straight line) and of the first, the second, …, the sixth order. For example, here 
are the coefficients of the parabola of the sixth order] 
 

    

0 2 4 6 2 2 4 6

4 2 4 6 6 2 4 6

1 1 3 5 3 1 3 5

35 315
(35 315λ 693λ 429λ ),  ( 35 567λ 1485λ 1001λ ),

256 256
3465 3003

(7 135λ +385 λ 273λ ),  ( 5 105λ 315λ 231λ ),
256 256

105 315
(35λ 126λ 99λ ),              ( 21λ 90λ 77λ ),

64 32

e e

e e

e e

e

= − + − = − + − +

= − − = − + − +

= − + = − + −

5 1 3 5

693
(15λ 70λ 63λ ). 

64
= − +

 

 
    Pearson had thus solved this problem once and for all. In any practical applications, 
we may employ his formulas. 

 

9. The normal frequency curve (the Gaussian curve). 
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 Deviations from the normal type 
Let us now better acquaint ourselves with the properties of the normal curve. When 
deriving its equation in § 4, I selected the centre of the distribution as the origin of the 
system of coordinates and measured the indication by its deviation from its arithmetic 
mean. When assigning any point as the origin, we will have now 
 

    
2

0 2

1 ( )
exp[ ].

2

x h
y y

a

−
= −  

 
    We will now find the dependence between the coefficients of this equation and the 
essential magnitudes of the distribution, of the number of items in the totality N, the 
arithmetic mean x  and the standard deviation σ. We see first of all that y becomes ever 
smaller as (x – h) increases; its maximal value corresponds to x = h. Then, (x – h)2 is 
always positive , and the value of y does not change when x is more, or less than h by 
the same magnitude. This means that the curve is symmetric relative to its maximal 
ordinate; equal deviations from indication h occur equally often so that that parameter 
is the arithmetic mean: 
 
    .x h=  
 
    When considering the frequency curve in general, the centre of the distribution does 
not always coincide with the point of the x axis corresponding to the maximal ordinate. 
In accord with Pearson’s proposal (1896a, p. 345 note) we will call this point the mode; 
by the same term he calls its abscissa. I think that according to the spirit of the Russian 
language it is more natural to call that abscissa the modal magnitude, and therefore be 
able to consider modal increase, modal wages etc.  
    We will call the interval between the centre and the mode radius of asymmetry (d), 
positive if the centre is to the right from the mode, and negative otherwise. The ratio of 
that radius to the standard deviation σ is called skewness and I denote it by α: 
 

    α = .
σ

d
 

 
    In addition, the median is the value of the indication which divides the entire totality 
in two equal parts. I will call the corresponding point of the x axis the middle of the 
distribution. It is situated between the centre and the mode and Pearson (1896, pp. 375 
– 376), also Pearson & Lee (1897, pp. 441 – 442) showed that in most cases there exists 
an approximate equality: the interval from the middle to the centre is one half of it to 
the mode. This property of the mode enables to determine it with a precision usually 
sufficient for practical applications. 
    For the normal curve all the three points (the mode, the arithmetic mean and the 
median) coincide. This is one reason why the statistician cannot be satisfied only by 
that curve but ought to master the Pearsonian asymmetric curves. 
    Let us go further. Again assigning the centre of the distribution as the origin, we will 
have the equation of the normal curve as 
 

    
2

0 2
exp( ).

2

x
y y

a
= −  

 
We will now derive the standard deviation. By its definition, the second moment is 
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2

2
2 0 2
µ exp( ) .

2

x
N y x dx

a

∞

−∞

= −∫  

 
    Integrating by parts according to the formula [… if providing that formula at all, 
Slutsky should have done it in § 7] we find […] 
 

    3
2 0µ 2π .N a y=  

 
The area of the curve can be easily determined because 
 

    02π .N ay=                                                                                            (9.1) 

 
    Dividing the former equation (9.1) by the latter we get 
 
    µ2 = σ2 = a2, σ = a 
 
and from (9.1) it follows that 
 

    0
σ 2π

N
y =  

 
so that finally, with the origin in the centre of the distribution or situated arbitrarily, 
 

    
2 2

2 2

( )
exp( ),  exp[ ].

2σ 2σσ 2π σ 2π

N x N x h
y y

−
= − = −                                        (9.2a, b) 

 
Thus, issuing from N, the arithmetic mean h and the standard deviation σ, we can 
derive the equation of the normal curve corresponding to the data.  
    By applying the same method of integration to the equation (9.2a), we will determine 
that 
 
    µ3 = µ5 = µ7 = … = 0. 
 
For the Gaussian curve, all the odd moments vanish which indeed follows from its 
symmetric form. As to the even moments, there exist dependences between them. 
Restricting our considerations to the fourth moment, we will have 
 

    2
4 2µ 3µ .=  

 
    Pearson introduced notation 
 

    
2
3 4

1 23 2
2 2

µ µ
β ,  β  

µ µ
= =                                                                                      (9.3a, b) 

 
needed for his theory of asymmetric curves. The magnitudes β1 and β2 are derived from 
the moments calculated by issuing from the data. Evidently, no empirical data can be 
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thought normal, if, allowing for probable errors, the following conditions are not 
satisfied 
 

    2
3 4 2µ 0,  µ 3µ .= =  

 
    They can be written in another form. When studying the generalized equation of the 
distribution curve (5.4) 
 

    
2

0 1 2

1 dy x a

y dx b b x b x

−
=

+ +
                                                                                    (9.4) 

 
Pearson (1905b) derived the radius of asymmetry and skewness 
 

    1 2 1 2

2 1 2 1

(1/ 2) β (β 3) (1/ 2) β (β 3)
σ,  α .

5β 6β 9 5β 6β 9
d

+ +
= =

− − − −
                                        (9.5a, b) 

 
    As he showed, for curves not essentially differing from the Gaussian these 
expressions can be simplified: 
 

    1 1

1 1
  σ β ,  α = β .

2 2
d =                                                                           (9.6a, b) 

 
Adducing the coefficient of dispersion 
 
    η = β2 – 3                                                                                                         (9.7) 
 
we will obtain the really needed formulas for determining how much our empirical 
curve differs from the Gaussian curve. 
    If the curve is asymmetric, we will calculate its peculiar features, the radius of 
asymmetry and the skewness by formulas (9.6a, b), or, in cases of more pronounced 
asymmetry, by formulas (9.5a, b). We will certainly consider these magnitudes 
meaningful only if they more or less considerably exceed their probable errors. 
    Denoting the probable errors by E with a proper subscript, we have for curves 
insignificantly differing from the normal type (Pearson & Filon 1898, pp. 276 – 277; 
Pearson 1902a, pp. 278 – 279)9.1 
 

    α η

3 3 24
E 0.67449σ ,  E 0.67449 ,  E 0.67449 . 

2 2
d

N N N
= = =  

 
    It can also happen that a curve is sufficiently symmetric (both α and d are less than 
their double probable error) but it still cannot be called normal because β2, see equality 
(9.3b), differs from 3. 
    The real significance of the coefficient η is this. If the extreme groups are 
represented more strongly than in the normal curve, the fourth moment will be 
increased in such a way that the dispersion becomes supernormal and η > 0. Otherwise, 
we will encounter subnormal dispersion with η < 0. […] 

 

10. Calculating the coefficients of the Pearsonian curves 
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    After satisfying ourselves, for example, by the methods described in § 9, that the 
normal curve does not fit the given data, and wishing to derive a theoretical model of 
the studied phenomena, we will be compelled to determine the equation of an 
asymmetric curve. In the extreme case it is possible only to derive the radius of 
asymmetry, the skewness and the coefficient of dispersion (§ 9). 
    For the calculation in case of a parabola see § 8 […] which Pearson had however 
once and for all accomplished, and statisticians can apply his prescriptions. I will not 
dwell on the derivation of the formulas of the Pearsonian curves or equations for 
determining their coefficients; any mathematician will be able to do the necessary work 
by issuing from the equation (9.4) and following Pearson. […] It only seems of some 
use to compare all the relevant formulas. First of all, we ought to determine as 
thoroughly as possible the moments of the empirical distribution. They serve to 
calculate the constants (9.3a, b), 
 

    
2

2 1 1 2

1 2 2 1 2 1

6(β β 1) β (β 3)
 and .

3β 2β 6 4(4β 3β )(2β 3β 6)
s k

− − +
= =

− + − − −
 

 
    This k (Pearson 1896a, p. 368; 1901, p. 444) serves as a criterion of the type of the 
studied curve10.1. 
    The Pearsonian curve of Type I 

 

    1 2

0

1 2

(1 ) (1 ) .m mx x
y y

l l
= + −  

 
The origin is in the mode, y0 is the maximal (sometimes minimal [the case of an 
antimode]) ordinate. Radius of asymmetry 
 
    mod ,r x x d= − =  

 
l1 – l2 is the base and α is the skewness. The relevant formulas are 
 

    3

2

µ 2
,  α = ,

2µ 2 σ

s d
d

s

+
=

−
                                                                           (10.1) 

    2
1

σ
β ( 2) 16( 1),

2
l s s= + + +                                                                    (10.2) 

    1 2

1 1
 ( ),  ( ),

2 2
l l ds l l ds= − = +                                                                 (10.3) 

    1 2
1 2( 2),  ( 2),

l l
m s m s

l l
= − = −                                                                (10.4) 

    
1 2

1 2

1 2 1 2
0

1 2 1 2

( 2)
,

( ) ( 1) ( 1)

m m

m m

m m m mN
y

l m m m m
+

Γ + +
=

+ Γ + Γ +
                                             (10.5) 

 
where N is the number of items equal to the area of the curve. An approximate value of 
y0 is 
 

    1 2 1 2
0

1 2 1 21 2

( 1) 1 1 1 1
exp{ [ ]}.

122π

m m m mN
y

l m m m mm m

+ + +
= − −

+
                (10.6) 
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    Formula (10.1) can be derived from Pearson (1896a, p. 370). Formulas (10.2, 5, and 
6) are due to Pearson (1896a, p. 369) and formulas (10.3 and 4) to Davenport (1899 or 
1904?, p. 32) and Pearson (1896a, pp. 369 – 370). 
    Tables for calculating the function Г are in Leontovich. Pearson (Editorial 1908) 
provided an approximate but very precise formula 
 

    
( 1) 1 25 .623

lg 0.3990899 lg 0.080929sin .
2x x

x
x

x e x
−

Γ + °
= + +  

 
Its errors are 1/25,000, 1/50,000 1/900, 000 for x + 1 = 2, 3 and 7, and for x + 1 = 11 the 
formula provides 7 correct digits. It is therefore applicable for every value of x not 
included in other compiled tables.  
    Very precise is also the formula (Forsyth 1883), also Pearson (Editorial 1908, p. 118) 
 

    
2

1/21/ 6
( 1) 2π[ ] .nn n
n

e

++ +
Γ + =  

 
Its error is less than 1/240n

3. 
    The Pearsonian curve of Type II 

    This is a particular case of Type I with l1 = l2 and m1 = m2. The equation of the curve 
is 
 

    
2

0 2
(1 )mx

y y
l

= −  

 
where l is now half the base. The curve is symmetric and therefore d = α = 0. Then 
 

    

2
1

2

0 0

3(β 1) 1
 because β 0,  σ 1,  ( 2),

3 β 2

( 1.5) 1 1
,  exp[ ].
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N m N s
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−
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−
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    For the two last formulas see respectively Pearson (1896a, p. 372) and Davenport 
(1899 or 1904?, p. 33).  
    The Pearsonian curve of Type III 

 

    γ
0 (1 ) ,  γ .p xx

y y e p l
l

−= + =  

 
    Theoretically, such curves demand that k = ∞, but even for its moderate positive 
values they provide good results [?]. The base of the curve is only limited in one 
direction, the origin of the system of coordinates is at the mode, and l is the interval 
from the left boundary to the mode. Only the first three moments are sufficient for 
calculating. Then, the radius of asymmetry and the skewness are 
 
    d = µ3/2µ2, α = d/σ, 
 
    l = (µ2/d) – d, γ = 1/d, p = l/d,                                                           (10.7, 8, 9) 
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p

p

N p
y

l e p

+

=
Γ +

                                                                                 (10.10) 

 
For the last formula see Pearson (1896a, pp. 373 – 374). 
    If the left boundary is given, then we know its distance from the centre, 
 
    L = l + d and of course l = L – d 
 
so that formula (10.7) provides 
 

    2 2µ µ
    .d

l d L
= =

+
 

 
Formulas (10.8, 9, 10) are needed for calculating γ, p and y0. This method [?] can 
sometimes be applied for checking. Although less precise, it simplifies calculations 
because µ3 is not necessary. However, without knowing the moments, we cannot be 
sure that that type will fit the studied curve. 
    The Pearsonian curve of Type IV 
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(cosθ) ,  π arctg .

180
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y y e
a

− °
= =

°
 

 
The curve is asymmetric, extends to infinity in both directions, and a is a positive 
constant. The origin is at point x = 0, θ  = 0, y = y0 and does not coincide either with the 
mode or the centre. 
    We denote the distance from the mode and the centre to the origin by l and  
 
    L = µ′1 = l + d 

 
respectively and introduce r = – s instead of s: 
 

    2 1

2 1

6(β β 1)
.

2β 3β 6
r s

− −
= − =

− −
 

 
For curves of this type r is always positive and larger than 3 (Pearson 1896a, p. 379). 
Then  
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2 2µ 2 4
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ν ,  ,  ,  ,  (10.14, 15, 16, 17)
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                  (10.18)
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    All these formulas can be derived by simple transformations from Pearson (1896a, 
pp. 377 – 380). Formula (10.11) is on p. 378; formula (10.12) can be derived from the 
formula for skewness contained there  
 

    1

1 2
skewness β

2 2

r

r

−
=

+
 

 

when multiplying it by σ and putting 2 3
3 2µ / µ  instead of β1. The sign of d is determined 

by the sign of µ3 which is directly seen in formula (10.12). We will arrive at formula 
(10.13) from Pearson’s formulas on p. 378: 
 

    
2

2
2

1

µ ( 1)
,  .

1 β ( 2) /16( 1)

r r
a r z

z r r

−
= =
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    On the same page Pearson gives formula 
 

    2ν z r= −  
 
from which, applying the value of z and making use of formula (10.13) we get formula 
(10.14). Minus is justified by Pearson’s remark that the signs of ν and µ3 are opposite, 
which, however, is seen from his expression on p. 377: 
 

    
3 2 2

3 3

4 ν( ν )
µ .

( 1)( 2)

a r

r r r

+
= −

− −
 

 
    Issuing from Pearson’s formula (same page) 
 

    1

ν
µ = ,

a

r
′ −  

 
deriving – aν/r from formula (10.14) and making use of formulas (10.11) and (10.12), I 
obtain formula (10.15). Formula (10.16) follows from the definition of the radius of 
asymmetry and, finally, formulas (10.17) and (10.18) are on pp. 378 and 380. 
    The aim of all these transformations is to simplify those formulas as much as 
possible so that in addition the signs of the magnitudes involved will be determined by 
the formulas themselves, and to arrange them in the order most suitable for 
calculations.  
    The Pearsonian curve of Type V 

 
    y =y0x

–p
e

–γ/x. 
 
    The base is only limited in one direction, the origin of the system of coordinates is in 
the beginning of the base and the maximal ordinate is y0. For curves of this type the 
supplementary magnitude s is always negative. Introducing as in the previous case the 
same r = – s, we will easily find (10.12) from the general formula (9.5a) and α = d/σ, 
then 
 
    p = r + 2, L = (1/2)dp, l = L – d, γ = lp, 
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    Pearson (1901, p. 447) provides equation 
 
    (p – 4)2 – (16/β1)(p – 4) – (16/β1) = 0 
 
whose positive root determines p. He derived the general formula for d (9.5a) later, and 
p can be calculated by issuing from it as well without solving that quadratic equation. 
His formula (VIII) (Ibidem) allows to determine  
 

    3

2

µ 4γ

µ ( 2)( 4)p p
=

− −
 

 
which we apply in formula (10.12) and equate the d to its other expression in his 
formula (XVI) (Ibidem, p. 448). The other formulas above can be easily derived from 
his formulas (Ibidem). 
    The Pearsonian curve of Type VI 
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    The base is only limited in one direction and the curve begins at distance a to the 
right from the origin. Here r > 0 and, as before, s = – r. Then  
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           (10.22, 23, 24, 25) 

    Pearson’s r is my s. For q1 and q2 he (p. 450) provides an equation (in my notation) 
 

    
2

2

2
1

ε= 0, ε
4 (1/ 4)β ( 2) / (1 )

r
Z rZ

r r
+ + =

+ − −
 

 
whose roots are (1 – q1) and (1 + q2). Knowing d [?], we can solve this equation by 
making use of the properties of the roots of the quadratic equation.  
    Replacing (1 – q1) (1 + q2) by ε in Pearson’s formula (XXIV) we derive formula 
(10.20) for a. Then Pearson (p. 450) provides  
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    Putting r instead of (q1 – q2 – 2) we find that 
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d

q q r r
a

+ = +  

 
whence (10.21) and (10.22). Formula (10.23) corresponds to the first of Pearson’s 
formulas (XXII) on p. 449 and (10.25) is identical to (XXV). 
    These changes in formulas ought to simplify essentially the application of this type 
of curves since the solution of the quadratic equation with multidigit coefficients 
becomes not necessary anymore. 
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Notes 

    0.1. Where are Chebyshev, Markov, Liapunov? O. S. 
    0.2. In a few years Slutsky (1916) published a review of a Russian book written by a resolutely non-
mathematical statistician, and there we find a somewhat contradictory (although not very definite) 
statement (p. 110/2009, p. 94) about the “theoretical considerations on which statistical methodology is 
built”:  
 
    Isolating that which relates to the properties of, first, judgements and concepts, i. e., to logic [rather to 
philosophy] and then of the properties of quantitative images upon which it [logic] is operating, i. e., of 

mathematics, we nevertheless obtain some remainder for which no acknowledged sanctuary is in 

existence, which remains uncoordinated and homeless until we perceive its special theoretical essence 

and provide it with the missing unity in the system of judgements fully deserving the name of theoretical 

statistics. O. S. 
  
    1.1. These subgroups are regrettably often too large so that a proper idea about the distribution is 
difficult to obtain. Even if the grouping is rather accurate, the lowest subgroups and especially the 
highest subgroups are too wide, for example, the grouping of peasants according to the area under crops: 
0 – 5, 5 – 10, 10 – 15, 15 – 25, 25 – 50 and more than 50 dessiatin [1 dessiatina = 2.7 acres O. S.]. It is 
hardly possible to treat rationally such a grouping and it should be insisted that the underlying indication 
be subdivided into equal intervals. Especially important is a detailed subdivision at the tails. E. S. 
    1.2. In such cases the author obviously has in mind the area under the curve. Cf. Laplace (1812/1886, 
p. 342): “ […] l’ordonnée qui divise l’aire de la courbe en parties égales”.O. S. 
    1.3. Slutsky often supplied the English term as well. O. S. 
    3.1. Slutsky had not explained either his calculation, or the essence of such presentation. True, it was 
commonly used, but at least the beginners would not understand the meaning of the additional terms 
preceded by the double sign. O. S.  
    4.1. The probable error had been in general usage, but to state, in the same section, that it provided the 
only test for some important conclusions was wrong. O. S. 
    4.2. Here, and many times below Slutsky refers to Leontovich, in particular as a source of statistical 
tables; below, in such cases, I am omitting these references. 
    4.3. This statement is at least ambiguous. Random errors actually accumulate with the number of such 
repetitions (proportionally to their square root). Boscovich (1758/1922, § 481) wrongly thought that “In 
circumstances that are fortuitous, […] the greater the number taken, the more the sum of the irregular 
inequalities [of velocities of a “particle”] decreases”. However, perhaps he thought about the mean value. 
Even Helmert (1905, p. 604; 1993, p. 200) had to warn his readers that the sum of such errors did not 
tend to vanish. And because of unavoidable presence of systematic errors even the arithmetic mean does 
not approach certainty. Bayes, in an unpublished manuscript (Dale 2003, p. 385), effectively mentioned 
this circumstance apparently having in mind the celebrated Simpson memoir of 1756. Then, trials or 
measurements are not completely independent. Citing this fact, Chuprov (report of 1918, publ. 
1926/2004, p. 80) stated: “Most statisticians are apt to rely blindly on the proposition that the random 
fluctuation of statistical numbers [though he hardly thought about the mean] must decrease when the 
number of trials increase […]”. O. S.  
    5.1. Leontovich reprinted Sheppard’s excellent tables (1903) where the values of the integral are a 
function of x/σ. The argument x in Markov (1900) and Chuprov (1909), for example, is divided by the 

modulus which is easily calculated as σ 2 . In some cases (Encke’s tables) it is necessary to know the 
ratio of x to the probable error equal to 0.67449 σ. The meaning of the probability integral and the 
method of extracting its values from the tables are explained in the quoted writings. E. S. 
    5.2. Here is a passage from the extant part of an unsigned and undated letter certainly written by 
Slutsky to Markov, likely in 1912 (Sheynin 1999, p. 132/2004, p. 226) describing the result of that 
derivation: 
 
    are not independent in magnitude from the sum of the already accumulated deviations or that the 

probabilities of equal deviations [of each sign] are not constant, we shall indeed arrive at the formula 

[(5.4) without the minus] […]. Much material [already shows that the Pearsonian curves are useful but] it 
seems desirable also […] to provide a theoretical derivation which will put [them] in the same line as the 

Gauss curve on the basis of the theory of probability (hypergeometric series). 
 
    In this § 5, Slutsky describes Pearson’s derivation of the normal law and the case in which his 
assumptions are not obeyed and the Pearsonian curves appear instead. The demonstration is certainly 
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unsatisfactory because the conditions of the central limit theorem are not fulfilled, nor are the 
assumptions necessary, and, indeed, the Pearsonian curves include the normal law as well. O. S.  
    6.1. What kind of equation ought to be chosen depends on many circumstances, and it is impossible to 
suggest here a general theoretical rule. In some cases a good result is provided by a parabola of an n-th 
degree, in other instances it is better to use a trigonometric or exponential curve. We ought to call that 
curve the best which adjoins the empirical line the closest and demands calculation of a lesser number of 
coefficients.  
    It should not be thought that an increase in that number is always essentially beneficial and that the 
choice a parabola of the sixth, eighth or tenth degree without fail secures a good fit; more important is the 
choice of the type of the curve. Pearson (1902c, pp. 16 – 19) indicates, for example, that in a case he 
considered a parabola of the sixth degree with seven parameters suited the empirical data worse than his 
curve of distribution with three parameters. On a rational degree of the conformity provided by a 
theoretical curve see Pearson (1900); also see the last chapter of this book. E. S. 
    9.1. It is convenient to arrange the calculations in the following way (Pearl 1906). Extract 0.67449/√N 

from the tables Gibson (1906), multiply that number by 3 / 2  to provide Eα, then calculate the other 
two errors making use of that Eα. E. S. 
    10.1. Slutsky provided a summary briefly describing the discussed six types of Pearsonian curves. For 
a modern summary covering all the 12 types see for example Dodge (2003, pp. 414 – 416). O. S. 
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Part 2. Theory of Correlation 

 

Chapter 1. Correlation between Two Magnitudes 

 

11. The notion of correlative dependence 
    The main type of dependence in the so-called exact sciences is the single-valued 

functional dependence. To each value of one magnitude corresponds one definite value 
of the second magnitude […]. 
    We have to study relations of an absolutely different type. Suppose we wish to find 
the dependence between the statures of father, x, and son, y. Like previously, each pair 
of values of these magnitudes corresponding to the pairs of individuals can be 
represented by a point, but the points thus obtained will not lie on one and the same 
line, but rather provide a picture of a cloud. For the sake of clarity we subdivide the 
field by vertical and horizontal lines forming squares with side δx.  
    Enumerate the values of x and y corresponding to the middle of the intervals between 
adjacent lines and call them versions. The set of cases in which xi – δx/2 < x < xi + δx/2 
is called an array corresponding to xi. There is no question here about any single-
valued functional dependence or a multivalued functional dependence of the usual type 
when several and sometimes even infinitely many values of the second variable 
correspond to a definite value of the first variable as in the case of the sine function. 
[…]  
    All points are here isolated and only a more or less indefinitely outlined group of 
values of the second variable corresponds to each value of the first one. However, after 
calculating the arithmetic means of the values of y for each x-array we will see that they 
are located along some line. In our case [excluded from translation], it will be a broken 
line closely situated to a straight line. Repeating this procedure for the y-arrays, we will 
find another broken line closely situated to another straight line. These straight lines are 
called regressions of y on x and of x on y. 
    And so, we are unable to determine in each isolated case one magnitude given the 
other one, but we can indicate the mean value of one of them corresponding to a 
definite value of the other one. In addition, when considering some isolated array, we 
note that the points there are densest near the line of regression, that is, near their mean 
value. The farther from it are the points, the sparser they become, and beginning from 
some distance there are none or almost none. So, the frequency of each value of one of 
the magnitudes is a function of the other magnitude, or, expressed in a somewhat 
different manner, the frequency of the pair (xi; yj) is a function of those magnitudes. 
    This function can be represented in a manner similar to that applied in Part 1 for 
showing the distribution of one magnitude. If the number of items in a subgroup 
corresponding to the i-th interval of x and, at the same time, to the j-th interval of y is 
nij, then nij is also the number of points in the corresponding square. 
    Imagine now a parallelepiped on each square whose volume is proportional to the 
size of the corresponding subgroup. Then its height will represent the number of items 
(cases) per unit area. The upper faces of the parallelepipeds when their number and the 
size of the totality increase unboundedly will merge and form a surface called surface 
of distribution11.1 or of frequency. Its general equation will be Z = f(x; y). We are now 
able to define correlation dependence generalizing it at once to any number of 
variables.  
    Several magnitudes are in correlation if to each totality of the values of all [of each] 
of them except one there corresponds a whole complex of the values of that last one and 
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the arithmetic mean of each variable changes depending on the values of the other ones 

and the frequency of each set of values of the variables is a function of those values. 
    If the arithmetic mean of some variable remains constant in all the arrays arranged 
for the other variables, then we say that correlation does not exist (or is equal to zero). 
If the increase in one magnitude leads to the increase of the arithmetic mean of another 
one, the correlation is positive, and negative in the opposite case11.2. The closer the 
separate values of a magnitude adjoin the regression line, the smaller therefore is the 
difference between the arithmetic mean of a magnitude in each array and the separate 
values of that magnitude in that array, the more complete is the correlation. 
    Imagine that the points on the correlation diagram are grouping ever closer to a 
certain direction, then the lines of regression will have to approach each other ever 
closer, and when all the points become situated along a single line both regression lines 
coincide with it. We will have a picture of perfect correlation, or transition of the 
correlation connection to a usual functional connection. 
    A complete investigation of a correlation dependence ought to include: First, the 
derivation of the regression lines; second, the estimation of the degree of the correlation 
connection; and third, the derivation of the equation of the surface distribution which 
allows to calculate the probability of each value of any magnitude given the values of 
the other one. Up to now, the last-mentioned problem is only solved for the case of the 
so-called normal surface distribution corresponding to the normal Gaussian curve (Part 
1). 

 

12. The correlation table 
    Representing each separate case by its own point is quite suitable for ascertaining the 
essence of the examined relations, but not convenient in the practical sense. We should 
not forget that statistically studied phenomena are occasioned by the influence of 
innumerable causes and that one of the most important aims of research consists in 
discerning the main tendencies in the explored relations by freeing them as much as 
possible from the admixture of random elements.  
    Not a single characteristic of a mass phenomenon can be therefore thought sufficient 
without its probable error being indicated, and the results of any two methods differing 
less than by their probable error should be admitted on a par. Preferable is that which 
demands less calculations, and all those simplified methods applied by modern 
statistics are conditioned by this reasoning. 
    The main among them (Part 1) consists in that we combine separate cases and 
consider each thus derived group as consisting of identical items with value [of 
indication] corresponding to the middle of the appropriate interval. This is indeed done 
when constructing a correlation table. […] 
    If some point is situated on the line separating two intervals, it has to be halved and 
each half a case added to one of these intervals. Likewise, for points situated on the 
borderline of four intervals the cases are quartered. If the grouping is planned prior to 
measurement or calculation of magnitudes relating to separate cases, it is almost always 
possible to measure/calculate doubtful cases to such a degree of precision that will 
avoid the complication of splitting up the points (Yule 1899, p. 257). 
    Several correlation tables are adduced in the supplement to this book [excluded from 
translation] and the reader will see at once that such a table is nothing but a usual table 
well known to each statistician. To extract all possible from the raw and grouped data 
contained there is indeed the aim of the correlation method. 

 

13. The regression lines 
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    The first step of investigating correlation dependence is the derivation of the 
arithmetic means of the separate arrays. When representing these means by points and 
connecting these by straight lines, we obtain an empirical line of regression which at 
once provides valuable indications about the studied dependence.  
    Nevertheless, however valuable this is, a statistician cannot be satisfied by the 
picture being presented: it only suggests a number of questions the answer to which is 
only possible to get by mathematically treating the material further. In an example 
considered by Pearson & Lee (1903, pp. 362ff and Table XXII on p. 415) the 
measurements covered 1078 pairs of fathers and sons. […] Fathers with stature, in 
inches, [58.5; 59.5], had sons with mean stature 64.4; sons’ mean stature 65.6 
corresponded to stature 60 of the fathers etc. In general, increase in the stature of the 
fathers is connected with an essential increase in the sons’ mean stature which is indeed 
the expression of the known fact of hereditary descent of quantitative traits.  
    On the face of it [?], the law of that descent is not simple. Following all the zigzags 
of the regression line we are compelled to conclude that for the group of the shortest 
fathers [59; 61] a mean increase of 1 inch in the sons’ stature corresponded to the same 
increase in the fathers’ stature. We also have, so to say, an anomalous interval [61; 62] 
of the fathers’ stature whose increase is followed by a decrease in the sons’ mean 
stature. [Discussion of the other intervals follows]. 
    When analysing the regression line we could have obtained many more such laws 
which I do not adduce not because they have a proper place in a treatise on the theory 
of heredity rather than here: neither has that theory any use of them since they do not 
exist at all. Having measured another thousand of such pairs of individuals, we would 
have most certainly found no trace of our imaginary laws. The general direction of the 
regression line would not have changed, but its separate zigzags would have possibly 
become arranged in quite another way. Indeed, correlation connection is only expressed 
by mean values and a large number of measures is needed for revealing it because 
otherwise random causes can wholly conceal the common trend. 
   In the Pearson & Lee example the extreme zigzags of the regression line are easily 
explained by the small number of the appropriate cases […]. It is not necessary to be an 
eminent theoretician to feel at once that such details in the behaviour of that line are 
hardly reliable. The considerations above only concerned a particular case but they 
evidently have general meaning. When studying any dependence it is always necessary 
to abstract oneself from features peculiar to the particular material, to eliminate random 
deviations obscuring the action of general tendencies. In statistics, the only means for 
achieving this is to derive a numerical expression for each characteristic and to compare 
it with its probable error. Only this method secures trustworthy results. 
    In particular, the regression lines ought to be transformed, their zigzags smoothed 
and the main hidden tendency of each line revealed. This aim is attained by determining 
some smooth line which can be called the theoretical regression line and which adjoins 
the points of the empirical line as much as possible. If the deviations of the empirical 
line from the theoretical do not exceed in their totality [?] their probable random values, 
the theoretical line can be considered as quite adequately representing the real relations. 
Otherwise, it is also possible to make use of the theoretical line although not forgetting 
that it is only a more or less crude approximation. 
    A [theoretical] regression line adequate to the limits of probable errors [if these 
errors are allowed for] can serve as a criterion for establishing the type of regression. In 
this sense, we distinguish between linear regression whose geometric image is a straight 
line, and curvilinear regression, usually represented by some parabolic curve. Its theory 
is not yet sufficiently developed, and we will mostly deal with the former type of 
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regression. At least to a certain approximation it happily occurs in most cases with 
which statistical practice has to deal. 

 

14. Examples 
    [Slutsky introduces the regression coefficient, the slope of the regression line, and in 
cases of regression of y on x and of x on y respectively denotes them by ρy(x) and ρx(y) so 
that the equations of these lines passing through the origin are 
 
    y = ρy(x)x, y = ρx(y)x.                                                                                       (14.1, 2) 
 
    In the second case, however, the inclination is measured relative to 0y, call it β, and it 
will be equal to (90° – β) relative to 0x, and tan β will be written as cot (90° – β). 
Slutsky denotes the inclination of the first regression line by α.  
    He considers two examples pertaining to 1901: expenditure on public education and 
on the maintenance of the administration itself concerning “all the 359 districts” [of 
Russia]; and the price [of rye] in commercial centres NNo. 2 and 3 [§ 3]. In the first 
example the dependence is weak, in the second it is much stronger with the regression 
coefficients being ρy(x) = 0.14 and 1.13 respectively. He continues:] 
    Of course, even a weak dependence is interesting, but we should first of all ascertain 
that it really exists. It is indeed possible that the inclinations of the regression lines were 
occasioned by random causes and that, had we compiled correlation tables for a number 
of years, the lines would then be inclined sometimes to one side, sometimes to another, 
and in the mean, assuming a long period of time, they would coincide with the 
coordinate axes thus indicating an absence of any dependence.  
    We are returning here to admitting the need to have the probable errors of the 
numerical characteristics of the studied phenomenon. Even an investigation extended 
over a number of years, as mentioned above, cannot replace them. Suppose we obtain a 
positive regression coefficient for one year, and a negative coefficient for another year, 
each of them ten times (say) exceeding its probable error. We will then be compelled to 
conclude with a very high probability even practically coinciding with certainty that the 
dependence between the [studied] phenomena did exist in each year, but that for some 
reason its type had changed14.1. […]  

 

15. The correlation coefficient 
    We have seen that the correlation dependence between phenomena can be both more 
or less close. Beginning with complete independence and passing through a number of 
gradations it finally becomes a strict functional dependence between two magnitudes. 
As mentioned above, the degree of correlation dependence reflects on the inclination of 
the lines of regression. If correlation is absent, they ought to coincide with the 
coordinate axes, and in case the dependence becomes functional, they must merge into 
a single line, into a single straight line if the dependence is linear. 
    The examples above [excluded from translation] aimed at illustrating these 
propositions and at making them obvious to some extent. And now the reader will 
probably agree that the value of a separate regression coefficient cannot yet serve as a 
measure of the closeness of the correlation dependence (of the correlation). First, there 
are two regression coefficients; one of them can be rather large, the other near zero and 
the correlation will be yet far from a strict functional dependence. Second, regression 
coefficients are concrete numbers and therefore change with the choice of the units of 
measurement and scale. For example, when studying the correlation between the price 
of bread and mortality, these coefficients will take different values depending on 
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whether the latter is measured in percents or thousandths, and whether the former is 
expressed in copecks per pound, per pood [16.4 kg] […]. 
    The measure of correlation however must be an abstract number. Consider the square 
root of the product of regression coefficients. It will be such a number, independent 
from the choice of the units of measurement. […] [Slutsky explains that, in notation of 
§ 14, 
 

    ( ) ( )ρ ρ tan α cot(90° β)
y x x y

= −  

 
is indeed an abstract number. Then, in the absence of correlation the regression lines 
coincide with the respective coordinate axes and both multipliers in the right side 
vanish. If correlation is a linear functional dependence, those lines coincide with each 
other and the product in the right side becomes equal to unity.] 
    The indicated properties make the geometric mean of the regression coefficients a 
convenient measure of the degree of correlation dependence. This magnitude is 
important in the correlation theory; it is designated by letter r with appropriate 
subscripts and called correlation coefficient: 
 

    ( ) ( ) ρ ρ .
y x x y

r = ±                                                                                                  (15.1) 

 
    The regression coefficients always have identical signs [so that their product is 
always positive]. We can agree that r is positive when they both are positive, and 
negative otherwise. In the sequel, we will derive another formula for the same 
correlation coefficient which can, and usually is assumed as its main expression with its 
sign determined without involving any further reasoning. In general, we may consider 
all the statements made until now as preliminary, aimed at ascertaining the main 
notions of correlation theory. In our next section, we turn to their rigorous proofs and a 
derivation of a number of propositions and formulas.  

 

16. Formulas for the regression coefficients and the correlation coefficient 
    A straight regression line ought to indicate some mean direction of the empirical line 
and in general it can be obtained by different methods. For example, it can conform to 
the minimal sum of the distances of the empirical points from it, all of them considered 
positive. It is also possible to determine a straight line for which the sum of the squares, 
or of the fourth powers of those distances, or the sum of their third powers taken 
independently from their signs, will be minimal.  
    To some extent, we are free to choose; each of these methods is good enough if it 
provides a comparatively simple result and if everyone will agree to apply it. These 
remarks are necessary for stressing the conventionality inherent in the method of least 

squares widely applied in science16.1. In any case it is important to indicate that, when 
turning to that method, we do not assume anything about the essence of the distribution 
of the separate values of our magnitudes so that all the formulas of the correlation 
theory persist under any “law” of distribution. 
    We already know some notation pertaining to correlation tables. The general number 
of cases is N; the size of the i-th array of the x’s [the frequency of the x’s] (of the 
vertical column of the table) is nxi, and in a similar way we introduce nyj. The subgroup 
belonging at the same time to the x-array and y-array will be nxiyj, or, shorter, nxy or nij. 
The arithmetic means for all the totality will be x  and ,y  or hx and hy, and σx and σy, 

the standard deviations. Constants of distributions can also be found for the totalities 
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comprising separate arrays: the arithmetic means yxi, or shorter yx, and standard 
deviations σnxi or σnx and xyj or xy and σnyi or σny.  
    Let us now derive the equation of the regression line for y on x (Yule 1897b). 
Suppose it is 
 
    Y = a + bX                                                                                                     (16.1) 
 
where b = ρy(x) is its slope, call the line P1P2, and the origin is at the centre of the 
distribution […]. Denote the vertical distance between the points [with identical 
abscissas] situated on the regression line and P1P2 by d. If a point on the former is the 
centre of distribution of an x-array, then 
 
    d = yx – Y  

 
and the straight line P1P2 should be determined by the sum of the squares of such 
magnitudes being minimal. [Slutsky derives the condition sought: 
 

    2[ ( ) ]  min                                                           y a bx− + =∑                        (16.2) 

 
where the sum covers the partial sums taken over the i-th arrays of x.] 
    This result throws new light on the condition to which we have subordinated the 
regression line (16.1). If all the points of the totality are situated on it, we will be able to 
calculate y for a given x from equation 
 
    y = a + bx. 
 
However, a number of cases with differing values of y correspond to one value of x; in 
other words, each time we will arrive at a more or less wrong result with error 
 
    y – (a + bx). 
 
    The condition of least squares […] is tantamount, as we see now, to another 
condition (16.2): Determine such a linear dependence between x and y that, when 

applying it for calculating y from a given x, the sum of squares of errors thus 

encountered is minimal. 
    We derive the second empirical regression line, not coinciding with the first one, in 
the same way […] 
    We will now determine the final form of the equation of the straight regression line 
for y, that is, derive its coefficients a and b from condition (16.2). [Slutsky derives 
 

    [ ( )] 0,  0.]x y a bx a− + = =∑                                                                       (16.3) 

 
    This result is very important; it indicates that with x = 0 y also vanishes in the mean. 
That is, when the first magnitude takes its mean value, the second one (in the mean of a 
number of cases) also coincides with its mean. Since the same takes place for the case 
of many variables (§ 37), we conclude that for linear regression the concept of typical 
as a combination of arithmetic means is quite admissible. The Average man of a given 
age (introduced by Quetelet) having mean stature, mean size of various organs, mean 
abilities, etc does not represent anything unreal16.2. 
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    A number of statistical investigations in anthropology [anthropometry]16.3, and 
especially those made by the Pearson school, indicated that linear formulas can be 
applied with insignificant error to most various indications. However, the dependence 
of stature on age is absolutely non-linear, see for example Powys (1901, p. 47). It is 
quite possible that in cases of non-linear regression a mean value of one indication will 
be associated, in the mean, not with the mean of another indication, and vice versa. In 
this case an individual possessing all indications of mean size can be extremely 
unlikely, therefore not typical (Pearson 1905b, p. 29). 
    From equation (16.3) with a = 0 we have 
 

    
2

.
xy

b
x

= ∑
∑

                                                                                                         (16.4) 

 
Replacing (x – x ) by x in formula (3.1), that is, assuming that x is the deviation from 
the mean, and, instead of multiplying x2 by nx, simply repeating it a necessary number 
of times, we will obtain the denominator in (16.4): 
 

    2 2σxx N=∑  

 
and 
 

    ( ) ( )2 2
ρ ,  ρ ,  .

σ σ σ σy x x y xy

x y x y

xy xy xy
r

N N N
= = =∑ ∑ ∑                                               (16.5, 6, 7) 

 
The last-written expression is the main formula of the correlation method.  
    Replacing now the sum in formulas (16.5) and (16.6) by its expression following 
from (16.7), we obtain the generally applied and simple formulas 
 

    ( ) ( )

σ σ
ρ ,  ρ  

σ σ
y x

y x xy x y xy

x y

r r= =                                                                              (16.8) 

 
for the regression coefficients. The equations of the straight regression lines will be 
 

    
σ σ

,  .
σ σ

y x
xy xy

x y

Y r x X r y= =                                                                                    (16.9) 

 
17. Other formulas for the correlation coefficient 

    Before analyzing the obtained expressions, we will dwell somewhat on the 
mathematical aspect of the matter and derive a number of formulas occurring in the 
sequel. 

    A. In a certain respect the sum xy∑  is an expression inconvenient for calculating. 

First of all, having a large number of cases, it is extremely burdensome to calculate 
every product xy for each pair of values separately. Nevertheless, this method of 
calculating ought to be recommended when the total number of cases in the table is not 
very large, 20, 30 or 50, say. For facilitating calculations the table should otherwise be 
subdivided into squares as was described above, and all the values of x and y in each 



 45 

such subgroup (cell) should assumed to be invariably equal to the appropriate x and y 
versions [see beginning of § 11], and then […]. We will have 
 

    .
σ σ

xy

x y

n xy
r

N
= ∑  

 
    B. The order of calculation can differ. [Slutsky derives the following formulas: 
 

    .]xy x x y yn xy n y x n x y= =∑ ∑ ∑                                                                           (17.1) 

 
    They indicate the comparatively most convenient order of addition; their theoretical 
application will be encountered in the sequel. 
    C. Let us recall that, when deriving the formulas of the correlation coefficient, we 
measured our magnitudes by their deviations from their means. For returning to the 
usual method of measurement, we ought to replace x and y by (x – x ) and (y – y ) 

respectively. Then the formula for the correlation coefficient will be 
 

    
( )( )

.
σ σ

xy

xy

x y

n x x y y
r

N

− −
= ∑                                                                                  (17.2) 

 
    Denoting deviations in the numerator by δx and δy, we obtain another often applied 
form […] which is also written as  
 

    σ σ δ δy.x y xyN r x=∑  

 
    The regression equations (16.9) will assume their most generally applied form 
 

    
σ σ

( ),  ( ).
σ σ

y x
xy xy

x y

Y y r x x X x r y y− = − − = −  

 
    D. The expression (17.2) is yet inconvenient for calculating since it includes products 
of numbers (x – x ) and (y – y ), multidigit because the arithmetic means x and y  only 

by chance and rarely are integers. For determining a convenient formula we will 
multiply (x – x ) by (y – y ) and calculate the sums thus obtained. We will have 

 

    ( )( ) [...] .xy xyn x x y y n xy Nxy− − = = −∑ ∑                                                        (17.3) 

 
    Inserting this in formula (17.2) we get 
 

    
(1/ )

.
σ σ

xy

x y

N n xy xy
r

−
= ∑

                                                                                    (17.4) 

 
This is indeed the most convenient formula for calculating the correlation coefficient, 
especially if one of the expressions (17.1) is inserted in the numerator. 

 

18. The mean square error of the regression equation
18.1

 



 46 

    If two magnitudes are connected by a strict linear functional dependence, the 
equation [its equation]  
 
    y = a + bx 

 
enables to determine one of them given the other one. Suffice it to glance at any 
correlation table to become convinced that for a correlation dependence this is, 
however, impossible. We will then see that the sons’ stature is far from being 
determined by the stature of the fathers, that […]. It is not difficult to note also that the 
boundaries inside which one of the magnitudes fluctuates when the other one takes a 

definite value are narrower than in the general case in which that other magnitude takes 

every possible value.  
    This narrowing can be so great that, pursuing some goals, we may completely 
neglect in the former case the difference between the values of the first magnitude. The 
regression formula will then serve to determine the value of one magnitude given the 
value of the other one. The only difference here as compared with a strict functional 
dependence consists in that, independently from the precision of the measurement 
itself, the result of calculation is more or less approximate. 
   These considerations can be extended to include not only correlation close to 
functional dependence, but all the cases in general. The regression formula provides the 
mean value of one magnitude given the value of the other one. In a separate case, the 
value of a magnitude will deviate from that mean, but, knowing the mean value and the 
law of distribution of these deviations, we will be able to apply the regression formula 
in particular cases. We would then reason in the following way. If the fathers’ stature is 
x, the sons’ stature will be y ± a certain mean square error. If the distribution obeys the 
Gaussian law, or some known to us law, our forecast can be made more definite; we 
would then be able to indicate that, for example, in a half, in three quarters, in 90% of 
all cases the sons’ stature will differ from y not more than by a certain magnitude. 
    The error which we make when applying the regression formula to a separate case 
will obviously be equal to 
 
    y – (a + bx) 
 
and the mean square error of all such determinations will be 
 

    
2[ ( ) ]

.
y

y a bx

N

− +
= ∑∑   

 
    In § 16, the regression equation was derived in such a way that the numerator of the 
square root was minimal. Therefore, when applying that equation for determining y in 
separate particular cases, we will make errors whose sum of squares is minimal. The 
regression equation is thus the best of all possible formulas of a linear dependence. 
    It is not difficult to calculate the value itself of the mean square error. Suppose that x 
and y are deviations from their mean values, then the regression equation will take the 
simple form 
 

    
σ

σ
y

x

y rx=  

 
so that 
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    2 2 2 2( )  σ (1 ),   σ 1 .
y y

y y

r r= − = −∑ ∑                                                            (18.1, 2) 

 
    Expression (18.1) allows to formulate a number of important conclusions about the 
correlation coefficient; one of them is on p. 7018.2, but the proof provided there cannot 
be considered rigorous. The sum (18.1) is a sum of squares, always positive, as well as 

2σ .y  Therefore,  

 
    1 – r2 ≥ 0, r2 ≤ 1, – 1 ≤ r ≤ 1. 
 
    Thus, the absolute value of the correlation coefficient cannot exceed unity. Then, if r 

= 1, 1 – r2 = 0 and ( 2)  
y

=∑ 0 which is only possible if each of the appropriate terms is 

zero. Therefore, for each value of y we have 
 

    2
σ σ

[ ] 0,  .
σ σ

y y

x x

y rx y rx− = =  

 
    The correlation coefficient only equals unity with either sign if the regression 

equation is satisfied by each pair of the correlated magnitudes; that is, when the 

correlation becomes strictly functional, and, in addition, linear. 
    We have provided the appropriate geometric interpretation (end of § 11): as 
correlation approaches strict functional dependence, the points of the correlation 
diagram group ever closer around a single direction and are finally situated (in case of a 
linear regression) along a straight line. The mean square error of determining y given x 
will then vanish.  
    Formula (18.2) indicates that, for an insignificant value of the correlation coefficient 
the mean square error (∑) will barely differ from the standard deviation (σ). This means 
that the distribution of y in each array will little differ from its distribution over the 
whole totality and that, therefore, the forecast which we are able to make about y given 
x must be very imperfect18.3. In any case, its precision will barely differ from that of a 
judgement which we may formulate by issuing from the arithmetic mean and mean 
square deviation, and thus to indicate under the normal distribution (say) with a certain 
probability the boundaries between which we may expect to encounter the values of the 
studied magnitude. Examples: Table VII and Fig. 17 [excluded from translation].  
    Another picture emerges if the correlation coefficient is near unity. Suppose for 
example that x = y = 200, σx = σy = 50, rxy = 0.999 and that the distribution is Gaussian. 
Then each magnitude will vary between rather wide boundaries: about 2/3 cases will be 
situated in the interval [150; 250], but if one of the magnitudes is fixed, the distribution 
of the other one will be very compressed. Indeed, formula (18.2) provides 2.25: the 
variation of this magnitude will be reduced to 4.5% of its initial spread. Calculating the 
mean value of y given, for example, x = 210, we find from the regression equation that 
 
    yx = 200 + 0.999(210 – 200) = 209.99 
 
with all the separate values of y situated in such a way that in 2/3 cases they will be in 
comparatively narrow boundaries [209.99 – 2.25; 209.99 + 2.25]. 
    Formula (18.2) furnishes the mean square error of determining y for all the cases 
included in the totality, but that error will generally differ from one array to another. 
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This circumstance depends on whether the standard deviations are identical in all the 
arrays or not. In the first case the totality is homoscedastic and otherwise 

heteroscedastic (Pearson 1905b, p. 22). The distribution can be of either type in spite of 
the nature of regression, although usually the former is accompanied by linear 
regression, and the latter, by curvilinear regression18.4. 
    If the regression is linear and the standard deviations σnx are the same in all arrays, 
the mean square error for all of them will also be the same. Denoting by ∑i the addition 
of magnitudes belonging to array i, and by i∑y the mean square error in that array18.5, 
we will indeed have 
 

    2 2 2 2
( )

1 1
( ) [ ρ ] [...] ( ) σ

i y i y x i x nxi

xi xi

y x y y
n n

= − = = − =∑ ∑ ∑  

 
since [cf. (14.1)], because the regression is linear, 
 
    yx – ρy(x)x = 0.  
 
    The mean square error for all the totality will be equal to the same magnitude 

because the sum 
i

∑ is extended over magnitudes belonging to the i-th array and  

 

    2 2 2 2
1 1 2 2( ) ( )  ( ) ...  ( ) .

x x xp p

y y y y

N n n n= ⋅ + ⋅ + + ⋅∑ ∑ ∑ ∑  

 
But, as proved, all the mean square errors of separate arrays are identical and equal to 
σnx. Therefore 
 

    σ
nx

y

=∑  

 
and on the strength of (18.2), homoscedastic distribution and linear regression the 
standard deviation of each array is equal to  
 

    2σ σ 1 .nx y r= −  

 
    If, in addition, the distribution does not much deviate from the normal law, we can 
also determine the probable error and then, for deriving an individual value of one 
magnitude given the correlatively connected other one, arrive at formula 
 

    2
( )ρ ( ) 0.67449σ 1 .y x yy y x x r= + − ± −  

 
I provide an example of applying these formulas below. 

 

19. The straight lines of regression 
    The regression equation can be presented as 
 

    
σ σy x

Y x
r=  
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where Y and x are deviations from mean values. When measuring these by their 
standard deviations, 
 

    η, ξ,
σ σy x

Y x
= =  

 
the formula for the regression of y on x and of x on y becomes extremely simple:  
 
    η = rξ, ξ = rη.                                                                                             (19.1, 2) 
 
    Geometrically, in each case r is the slope of the regression line with inclination 
measured from its own axis. When choosing the standard deviations as units of 
measure, these inclinations will be identical […]. This is a corollary of the remarkable 
expressions (19.1) and (19.2). Consider a numerical example. Let the correlation 
coefficient be 0.5, then the deviation of x from its mean by σx will lead to the deviation 
in the mean of y by σy/2 and vice versa. And if x deviates by σx/4, the mean deviation of 
y will be σy/8 etc.  
    If the correlation coefficient is zero, the regression lines coincide with their 
respective axes. The mean value of the deviation of a magnitude will be zero whatever 
be the deviation of the other magnitude. If that coefficient is 1, then, see formulas (19.1; 
19.2), η = ξ, the deviations of both magnitudes measured in units of their standard 
deviations will be equal, the regression lines will coincide and have inclination 45° (as 
measured from either axis). 
    Returning now to the usual units of measurement of each magnitude, we will only 
encounter such a symmetric relation between the deviations and a symmetric 
arrangement of the regression lines if the standard deviations of both lines are equal to 
each other. This is what approximately occurs in the realm of heredity since the 
standard deviations of the magnitudes of an indication of parents and offspring only 
differ insignificantly. 
    Neglecting that nevertheless observed difference, we will obtain a very simple 
relation; for example, if the correlation coefficient is 0.5 (which is its typical mean 
value in heredity), the sons’ mean deviation of the indication will be twice less than that 
of their fathers. Thus, a group of fathers whose stature is 20 cm higher than its mean 
value, will have sons only higher by 10 cm than the mean [of the entire population, as 
Slutsky added in his next similar example excluded from translation]. 
    In general, selecting a group of fathers, we will observe their sons, whose stature 
deviates from the mean level in the same direction, but remains nearer to it as though 

regressing to that level. In the English literature, this phenomenon was initially called 
regression, a term that later acquired a more general meaning. 
    With unequal mean deviations, the regression coefficients also differ. Thus (Pearson 
& Lee 1903, pp. 370 and 378), the correlation coefficients of the stature of mother and 
daughter was 0.507, σx = 2.39 (mother), σy = 2.61 (daughter) inches so that daughters 
were more variable19.1. And, on the face of it, we have here a strange relation: daughters 
resemble mothers stronger than vice versa (Pearson 1896b, p. 276). 
Indeed, the regression coefficient for the daughters and mothers was, respectively, 
 
    (2.61/2.39)·0.507 = 0.55; (2.39/2.61)·0.507 = 0.46. 
 
    Therefore, a group of mothers with stature higher by 10 cm than the mean of all 
mothers has daughters whose stature is 5.5 cm higher than the mean of all daughters, 
but the figures for the inverse case are 10 and only 4.6 cm. In short, daughters, in the 
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mean, are closer to the mothers and farther from the general mean level than could be 
stated about the mothers of a certain group of daughters. 

 

20. Calculating a correlation coefficient, an example 
    For facilitating the use of formulas, we illustrate the method of computing the 
correlation coefficient20.1. All the figures in our example are imagined in such a manner 
that the arithmetical operations are as simple as possible, and the number of groups is 
less than usual. [In this section, I am only translating the essence of Slutsky’s detailed 
example in my own wording and leaving out minute explanations.] 
    For calculating the raw moments all magnitudes “as a first approximation” are 
thought to belong to their versions (§ 11), and we suppose that all versions of the same 
column or row are identical. If the total number of cases is large, the errors thus made 
will partly compensate one another. No correction is needed to the first moments and to 
the moments of the product ∑xy whereas the second moments should be corrected 
either in accord with the Sheppard system, formulas (7.1), if the figures gradually 
diminish to zero (this is difficult to understand, see § 7), or by applying the method of 
trapezoids, formula (7.6). 
    The second raw central moments are calculated by formula (2.2). In this case, they 
are corrected by the Sheppard corrections. Thus the true central moments µ2(x) and µ2(y) 
are obtained. Extracting the square root we will have σx and σy. For calculating the 
correlation coefficient we determine the sum ∑nxyxy, twice, in order to check the 
calculations, by formulas (17.1). Note that yxi is the mean value of y in the i-th vertical 
column, and therefore equal to 
 

    ,  so that .xiy

xi xi xiy

i ixi

n y
n y n y

n
=∑ ∑  

 
Then the correlation coefficient and the coefficients of regression are calculated by 
formulas (17.4) and (16.8) respectively. 
    Formulas for the probable errors of the obtained magnitudes are in the next section. 
And, when wishing to have the final results in the usual system, the transition from the 
assumed units is more conveniently done before calculating the probable errors. To 
achieve this, we need to multiply  and σ ,  xx y  and σy by the assumed units, kx and  

ky respectively, and we have to multiply ρ(y)x and ρ(x)y by ky/kx and kx/ky respectively. 
    It is possible to manage without calculating the regression coefficients in the 
assumed units at all, but derive them by issuing from the standard deviations after 
expressing these in the usual system. This, however, is not always possible because, 
when wishing to draw the graph of regression in the assumed scale, we ought to have 
the regression coefficients in the same scale as well.] 

 

21. The general population and the random sample 
    Suppose we have a very large totality of cases each of which is characterised by a 
pair of magnitudes, x and y and that it is impossible to enumerate the whole totality 
called general. Our aim is to find out its main features by studying its random sample. 

The general totality is characterised by mean values 1h  and 2h , 1σ and 2 ,  σ regression 

coefficients 1(2)ρ  and 2(1)ρ ,  correlation coefficients 12r  etc. 

    Since the composition of the sample is random, we certainly cannot expect that in 
each separate case constants of its distribution (h1, h2, σ1, σ2, ρ1(2), ρ2(1), r12 etc) coincide 
with the respective magnitudes of the general population. Only when choosing  ever 
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more numbers of samples more and more values will be provided for each constant and 
their means will approach the values which they have in the general population. For 
infinitely many random samples all the values of each constant, for r, say, will 
comprise a totality with mean r  and deviations in each case equal to δr = r – r . As a 
first approximation we may assume that the distribution of the magnitudes δr, δρ, δσ, 
δh will obey the Gaussian law (Pearson & Filon 1898): lesser deviations will occur 
oftener than large ones, and their probabilities could be found from usual tables of the 
probability integral if only we know the standard deviation of the given magnitude (for 
example, of δr)21.1. 
    If many random samples be indeed chosen out of one and the same general 
population, we could have empirically obtained the standard deviations for each of the 
errors δh, δσ, δρ, and δr by means of calculations indicated in Part 1. This approach is 
however too difficult, and the theory of errors attempts to derive these magnitudes a 
priori, by various theoretical considerations. Such derivations are partly of a general 
nature, another part, being based on the assumption that the general population itself 
obeys the Gaussian law, is only approximately correct21.2. 
    However, that premise but little depreciates the value of the results because the 
standard deviations and the probable errors of the studied magnitudes are usually very 
small, and a special precision of their determination does not play a large role in 
estimating the results. Once we know the theoretically derived standard deviation of 
some error, we are also able to calculate its probable error, for example 
 

    ρ ρE 0.67449 , E 0.67449 .r r= =∑ ∑  

 
    One more circumstance demands attention. The theory indicates that in most cases 
the errors of separate constants are not independent but correlated. When selecting from 
our random samples those in which, for example, h1 is larger than its mean, the mean of 

all the h2′s for the same samples will not coincide with the mean 2h  for all the samples; 

it will be greater or smaller depending on the sign of the correlation coefficient Rh1h2.  
    When actually having a large number of random samples we will be able to calculate 
that coefficient in the usual way: 
 

    1 2 1 2 1 2δ δ .h h h hM R h h=∑ ∑ ∑  

 
Here, M is the number of samples, the sums in the left side are the standard deviations 
of h1 and h2 which vary from sample to sample because of random causes. The same 
formula is employed when theoretically deriving the correlation coefficient of errors, 
see example below.  

 

22. Probable errors and coefficients of correlation  

between constants for the normal distribution 
    The derivation of probable errors is too complicated and we have to abandon it and 
only to provide the most important pertinent results22.1. For the sake of 
comprehensiveness I repeat some formulas from Part 1. 
    Probable errors 

2

σ

σ σ 1
E 0.67449 ,  E 0.67449 ,  E 0.67449 ,  

2
r

r
h

N N N

−
= = = (22.1, 2, 3) 
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    Correlation coefficients 
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2
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h h r r

h h h h h r h r
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R R R R R R
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= = = = = =

                                   (22.4, 5, 6, 7) 

 

    Some remarks are here necessary. First of all, it is obvious that the probable error of 
each magnitude diminishes as the size of the population increases. In addition, the 
probable error of the coefficients of regression and correlation diminishes with the 
increase of r.  Therefore, the stronger the correlation, the less can be the number of 
cases sufficient for determining with certainty the presence of a correlation connection 
and its magnitude. If r = 0.9 and N = 25, the probable error Er = 0.026 and does not 
amount to 3% of the magnitude itself. For the correlation coefficient of 0.1, the same 
ratio will only be obtained with N ≈ 100,000. And if, for determining a magnitude with 
certainty it is necessary that it exceeds by at least five times its probable error, it will 
not be difficult to find out that then, for r = 0.1, N will still be not less than 1000. 
    As noted above, the formulas provided are approximate. Student (1908) stated that 
formula (22.3) for the probable error of the correlation coefficient may be already 
applied when N = 30. For lesser groups it should not be relied upon, and we have to 
apply another method of calculation. It is complicated and I do not describe it, readers 
can look up Student. As a rule of thumb, it can be assumed that to have some certainty 
about the very existence of correlative connection for 20 < N < 30 the correlation 
coefficient should not be less than 0.5. 
    Student concluded that in the absence of correlation in the general population and N 
= 21 the correlation coefficient can by chance only twice in a hundred random samples 
take a value exceeding |0.5|22.2. After all, we ought to recognize that, regrettably, until 
the theory be further developed (or at least until tables based on Student’s formulas be 
compiled) statisticians should not apply the correlation method to groups consisting less 
than of 20 cases. 
    We turn now to the formulas for the coefficients of correlation between the constants 
of distribution. To provide an idea of their importance, we will touch on their relation to 
the theories of heredity and selection. Assume that the distribution of the indications of 
individuals of a certain biological species obey the normal law (for many, if not for all 
indications and species this is not far from the truth), then formulas (22.4) – (22.7) will 
at once ensure a number of important conclusions. Let subscripts 1 and 2 denote the 
size of organs and r12 be the correlation coefficient between them. We can easily 
determine that correlation by measuring a few hundred individuals. How will selection 
act (for example, natural selection, when an individual with the organ of a size 
conforming to new and different conditions of life has more chances of surviving) if 
directed towards changing the mean size of one of the organs?  
    Formulas (22.7) show that the absolute variability of a given indication in the species 
does not change (because Rh1σ1 = 0) and neither does the variability of other indications  
(Rh1σ2 = 0) or the correlation coefficients between the given and the other indications. 
However, the mean size of other organs will have to change and, knowing r12, r13, …, 
which can always be determined, we can say beforehand by how much.  
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    It will be different if the selection is directed to the magnitude of the standard 
deviation; for example, when under changed conditions the previous most favourable 
mean size of some organ persists, but deviations from it become more harmful. The 
mean size of the organ will not change (Rσ1h1 = 0), the same applies to other organs 

(Rσ1h2 = 0), but their standard deviations will have to change (Rσ1σ2 = 2
12r ) as well as the 

correlation coefficient between them (Rσ1r12 = r12/√2).  
    And because r2 is a comparatively small magnitude and rapidly decreases with r, it is 
obvious that, first, the influence of the selection of the standard deviation of one organ 
on that of another one is less than in the case of the selection of mean sizes. Second, 
that this influence can only become somewhat noticeable for organs with a 
comparatively high correlation connection. Yet it ought to be remarked that, however 
weak is that influence in some cases, the correlation coefficient (Rσiσj = r2) is always 
positive so that an increase in the variability of one organ is always connected with an 
increase, and a decrease, with a decrease in the variability of all the other organs. 
    For example, if random circumstances (or artificial selection) isolate a group whose 
members in a certain way resemble each other more strongly, they will more resemble 
each other in every other way (Pearson & Filon 1898, p. 241 note). 
    Although we did not dwell on more complicated theoretical considerations, we have 
far from exhausted all even most direct possible conclusions from the formulas above. 
But even that seems to be enough for the reader to feel to what kind of important 
problems in this field does the correlation theory lead us. 

 

23. The probable error of the difference 
    Knowledge of the correlation coefficients between the constants of distribution 
enables us to derive further formulas concerning probable errors. First of all, we 
illustrate the general principle here by an important case of the probable error of the 

difference.  
    Let z0 = x0 – y0 be the difference between two constants of a general population. 
Their values in some random sample are z, x, y differing from their true values by δz, 
δx, and δy. Obviously, 
 
    δz = δx – δy, ∑(δz)2 = ∑(δx)2 – 2∑δxδy + ∑(δy)2 
 
where M random samples are considered. These sums are known and can be expressed 
by the standard deviations and correlation coefficients 
 

    2 2 2 2 2σ σ 2 σ σ σ ,  σ σ σ 2σ σ .
z x x y xy y z x y x y xy

M M M r M r= − + = + −                         (23.1a, b) 

 
    For independent x and y, that is, for rxy = 0,  
 

    2 2σ σ σ .
z x y

= +                                                                                                     (23.2) 

 
When multiplying both parts of equalities (23.1) and (23.2) by 0.67449, we change 
each standard deviation into the respective probable error. The formulas are therefore 
also valid for these errors. Note that for rxy greater/less than zero, the probable error as 
provided by formula (23.1) will be less/greater than that given by formula (23.2). 
Therefore, statisticians who apply formula (23.2) in case of dependent magnitudes run 
the risk of failing to recognize a sufficient difference, or, even worse, of admitting as 
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significant an inessential difference in cases of positive and negative correlation 
respectively. 
    In particular, the probable error of the difference between arithmetic means and 
standard deviations, see formulas (22.4) and (22.5), will be 
 

    

1 2 1 2 1 2

1 2 1 2 1 2

2 2
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2 2 2
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E E E 2E E , 
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             . 

h h h h h h r
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−

−

= + −

= + −
                                                  (23.3, 4) 

 
    For finding out whether the difference between two correlation coefficients is 
significant, we should calculate a particular form of expression (23.1) 
 

     2 2E E E 2E E  .
a b a b a b a br r r r r r r rR− = + −  

 
E  and E  are calculated by formula (22.3) and ,

a b a br r r rR  the correlation coefficient 

between correlation coefficients, by formulas (Pearson & Filon 1898, pp. 259, 262)  
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     (23.6) 

 
    The first of these, as the subscripts show, is applied when examining the difference 
between the correlation of a magnitude with two others and the second one, the 
difference between the correlation coefficients of two different pairs of magnitudes. 
Expression (23.6) becomes essentially simpler if some correlation coefficients vanish. 
The former formula (23.5) can be applied without great difficulties since the entering 
expressions should be calculated for other purposes [as well], when studying 
correlation between three magnitudes, see below. 
    Example. In § 3, data concerning the price of rye in three commercial centres were 
quoted. We can now estimate the differences between the arithmetic means and the 
standard deviations. We will not calculate the probable errors of the former: it is 
obvious that they are essential. [Slutsky calculated r12, r13 and r23 and the probable 
errors of the latter differences by formula (23.4). His conclusion: a [real] difference 
between centres 1 and 3 may be assumed probable, and believed certain between 
centres 2 and 3, cf. § 14.]23.1 

 

24. Probable errors in case of a normal distribution 
    If the distribution does not obey the Gaussian law, the formula for probable errors in 
§ 22 can only be considered as approximate with error depending on the closeness of 
the distribution to the normal law. In particular, the expression for the probable error of 
the arithmetic mean (22.1) persists for any distribution. The general expressions for the 
probable error of the standard deviation are 
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2

4 2
σ

2

σ 1 η/2µ µ
E 0.67449 0.67449

4 µ 2N N

+−
= =                                                    (24.1, 2) 

 
where η is the coefficient of dispersion (9.7). For a small η  
 

    1 η/2 1 η/4+ ≈ +  

 
and it is easy to conclude that, with η > 0.2 or < – 0.2 (that is, with β2 > 3.2 or < 2.8) 
and an error of Eσ not exceeding 5% the usual formula (22.2) should be replaced by 
(24.2). However, if the probable error is small as compared with the standard deviation, 
less precision will in most instances be also sufficient. Therefore, even in those 
comparatively rare cases in which β2 = 4 or 2, the error ensuing when the formula 
(22.2) is applied will only amount to 19 and 29% respectively of the true probable error 
(Pearl 1908, p. 117).  
    The correlation between the arithmetic mean and standard deviation will not be equal 
to zero since in the general case24.1  
 

    3
σ σ

µ
.

2 σh hR
N

=∑ ∑                                                                                         (24.3) 

 
The sign of that expression depends on the sign of the third moment. If that is positive, 
the increase in σ is connected with an increase in h which in turn is connected with the 
increase in σ, and in the opposite case the dependence is inverse. As an example of 
applying that formula let us determine the probable error of the coefficient of variation 
 

    
σ

100V
h

=  

 
[cf. formula (3.2)]. Taking logarithms and […] we find that 
 

    
δ δσ δ

.
σ

V h
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    Adding up the squares of this expression for all the random samples and dividing by 
their number we get 
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and therefore 
 

    2 2 2
σ σ σ2 2 2

1 1 1 2
( ) ( ) ( ) .

σ σV h h hR
V h h

= + −∑ ∑ ∑ ∑ ∑   

 
For the normal distribution, see formulas (22.1, 22.2, 22.7),  
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and we arrive at formula (4.3) for EV. 
    For a non-normal distribution Rσh ≠ 0 and we ought to calculate the entire expression 
above. Issuing from formulas (22.1), (24.2) and (24.3) and performing simple 
transformations, we easily get 
 

    2 3
2

µη
E 0.67449 1 2[ ] [ 2 ].

100 2 σ2
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hN
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If the distribution is not very distinct from the normal law, the last term under the 
square root is in all cases usually small so that the simpler formula (4.3) can be widely 
applied. 
    We still have to derive the rather complicated expression for the probable error of the 
correlation coefficient for non-normal distributions. Denote 
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whose particular cases  
 

    2 2
20 02 11σ ,  σ ,  σ σ   x y x y xyp p p r= = =  

 
we have met above.  
    The most general expression for the probable error of the correlation coefficient valid 
for any distribution (Sheppard 1898) in a somewhat simplified form (Pearson 1907, p. 
25)24.2 is 
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2 4 4

r

p p p pp pr

p p p p p p p p pN
= + + + − −                (24.5) 

 
The calculation here is difficult, and that formula is not usually applied. The experience 
gained when employing it happily ascertained that even in cases in which the 
distribution far deviated from the normal law it provides results sufficiently close to 
those obtained by the usual formula (22.3). This latter can therefore be assumed 
sufficiently reliable for application in all useful cases24.3. 
    Example. [Slutsky considers a simple imaginary example with distribution 
“absolutely dissimilar” to the normal law. He calculates 
 
    σx, σy, rxy, r

2, 1 – r2, Er′ (formula (22.3)) and Er (formula (24.5)), 
 
notes that Er′/Er = 1.34 and concludes that this is “not much” considering that the 
distribution involved was much farther from the normal law than in most cases 
encountered in practice.] 

25. The difference method of determining the correlation coefficient 
    Formula (23.1) leads to 
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    2 2 2σ σ σ 2σ σ .x y x y x y xyr− = + −  

 
In a somewhat changed form this expression will be convenient and in many cases can 
essentially shorten the determination of the correlation coefficient.  
    Let x and y be the values of the magnitudes entered in the correlation table and 
measured, each from some assumed zero which generally does not coincide with the 
corresponding centre of distribution. Then 
 

    2 2 2 2 2
2( ) 2( )( ) 2 ,  ν ,  ν . x yx y x y xy x N y N′ ′− = + − = =∑ ∑ ∑ ∑ ∑ ∑           (25.1) 

 
where ν′ as always stands for raw non-central moments. Then,  
 

    ( )( ) σ σx y xyxy x x y y Nxy N r Nxy= − − + = +∑ ∑  

 
follows from formula (17.3). Inserting these magnitudes in formula (25.1) we get 
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′ ′+ − − −
=

∑
∑                                        (25.2) 

 
    From the magnitudes entering here, , ,x y  σx and σy should be determined, even if we 

do not wish to calculate the correlation coefficient, since they are the main constants of 
a statistical group; 2( ) 2( )ν  and ν  x y

′ ′ are obtained as supplementary magnitudes along with 

σx and σy. To determine the correlation coefficient it is only needed to calculate the last 
term in the numerator which in most cases will be easier than finding the sum of 
products. 
    It is easiest to show the course of this work by a numerical example [the imaginary 
example in § 20 excluded from the translation. Slutsky finally stated:] Since the 
expression (25.2) was derived from a number of identities, the magnitude determined 
by applying it should also be always identical with that calculated by the method of 
products, and the formula for the probable error therefore persists25.1. 

 

26. Curvilinear regression 
    The straight regression line can only be applied as quite a suitable theoretical model 
of a phenomenon until the deviations of the empirical regression line are so 
insignificant as to be thought possibly random. Although great many phenomena can 
quite satisfactorily be represented by linear formulas, cases of curvilinear regression are 
not seldom. Then, if the researcher does not wish to restrict his considerations by the 
empirical regression line, i. e., by simply establishing the actual state of his data, but 
attempts to reveal the main, the non-random features of the studied dependence, he will 
have to treat his material further.  
    The first method, the oldest and crudest, consists in drawing by hand a smooth curve 
as closely as possible adjoining the isolated empirical points. A smooth curve means 
that its curvature ought to change as gradually as possible with least possible points of 
inflexion. Elementary as it is, this method is being applied even now, see for example 
Pearson (1902b), and in many cases it can provide sufficiently fair results, especially 
with a small number of cases in the totality, so that more perfect methods of deriving 
the curve do not ensure precise results either26.1. 
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   In addition, a higher precision is often not demanded, and, consequently, applying 
such methods accompanied by much calculations would have only been a waste of 
time. The second method consists in fitting theoretical curves to separate parts of the 
empirical line of regression. The benefit here is that the suitable curves are simpler, and 
is especially felt when the regression is complicated and parabolic curves of the second 
and third degree provide a poor fit. 
    It is hardly advisable to apply parabolas higher than the third, or, in extreme cases, 
the fourth degree because the calculation of their coefficients is accompanied with 
determining moments of the higher orders with large probable errors and in addition 
demands much time which just the same can possibly be pointless. Better, after sensibly 
discussing the case, to separate the correlation table into parts and apply simple curves 
for each of these, see for example Powys (1901, p. 49), also Powys (1905).  
    Example. [Slutsky considers the cost of public education for a local administration in 
Russia compared with its receipts from industry and commerce. He concluded that for a 
group of localities with receipts from industry amounting to 15 – 55% of their budget 
an increase of 10% in that part is connected by an increase in the expenditure for 
education of 3.5%, cf. one of his examples in § 14.] 

27. Calculating the coefficients of the regression curve 
    The simplest method consists in following the rules of § 17 and, more precisely, the 
C version for calculating the moments, and then in determining the coefficients of the 
parabolic curve, see formulas of § 18. 
    As compared with § 17, our case is somewhat peculiar. [In § 17 Slutsky considered a 
broken empirical line with zero extreme ordinates. As previously, he assumed that the 
adjacent empirical points are separated one from another by distances ∆x = 1. The 
extreme empirical points, A (– l; y0) and B (l; ym), are situated at distances |∆x| = l from 
the origin; Segments AR and BS are drawn with points R and S being on Ox and A and 
R, B and S separated by ∆x = 1. Slutsky considers the new area “under” the extended 
empirical broken line in the same way as previously, then allows for the moments of 
the two fictitious triangles (Pearson 1902c, pp. 7 – 9). He states:] Our formulas will 
become simpler of we introduce some new notation. 
    Previously [in § 2] we called expressions of the type  
 

    
1 p

p xn x
N

ν ′ = ∑  

 
raw moments with nx being the size of the subgroup and x, the distance of the middle of 
the appropriate interval from the origin. Now, as in § 18, we have to do not with size, 
but with areas and determine their moments, so that instead of nx we must insert the 
ordinate y multiplied by the length of the interval (assumed to be unity), and the raw 
moment of the area (S) will be 
 

    
1

.p

p yx
S

ν ′ = ∑  

 
    We may call this the relative moment as compared with the absolute moment equal to 
the same sum not divided by S. Denoting the absolute raw and real moments by Ψ′p and 
ω′p  we have27.1 
 

    ψ ν ,  ω µ .p

p p p pS yx S′ ′ ′ ′= = =∑  
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    Returning to our problem, we denote the absolute moments by ψ and ω, and by Ψ 
and Ω the absolute moments of the old and new (larger) area. The raw moments are 
obviously the same for both areas: 
 

    0 0 1 1ψ , ψ ,  ..., ψ .p

x x p p xy y x y x′ ′ ′ ′ ′ ′Ψ = = Ψ = = Ψ = =∑ ∑ ∑  

 
Then we determine the true moments of the new area by formula (7.6) which, as it is 
easy to perceive, is also valid for that goal27.2: 
 

    1 1 2 2 3 3 1 4 4 2

5 5 3 3 6 6 4 2

ψ ,  ψ 1/ 6,  ψ (1/ 2)ψ ,  ψ ψ 1/15,  

ψ (5 / 3)ψ (1/ 3)ψ ,  ψ (5 / 2)ψ +ψ +1/28 etc.  

′ ′ ′ ′ ′ ′ ′ ′ ′ ′Ω = Ω = + Ω = + Ω = + +

′ ′ ′ ′ ′ ′ ′ ′Ω = + + Ω = +
 

 
    For determining the true absolute moments of the previous area we now ought to 
subtract the moments of the areas of two additional triangles. According to Pearson’s 
calculations (1902c, p. 8), we have, for odd and even moments respectively, 
 
    0ω ( ),n n n mL y y′ ′= Ω − −                                                 (27.1) 
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    The previous area is  
 

    0(1/ 2)( )mS y y y= − +∑  

 
[notation as at the beginning of § 27] and the relative true moments will be derived by 
dividing the absolute moments (27.1) by S: 
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    Then, as previously in § 18, we calculate the auxiliary magnitudes 
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µ
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and easily determine the coefficients of a parabolic curve of regression, see § 18. For 
facilitating this work I adduce a table of Ln for n = 1, 2, …, 5 and l = 3, 4, …, 20 [with 
three significant digits after the decimal point; excluded from translation] (Pearson 
1902c p. 9). 

 

28. Calculating the coefficients of the regression curve (continued) 
    The method described in § 27 is comparatively simple and can therefore be applied 
in many cases which is what for example Powys (1905, p. 236) did. However, as far as 
our problem is concerned, it has a serious shortcoming in that all the ordinates equally 
influence the result whereas some of them are more, the other ones less reliable. For 
this reason the described method is not applied when the equation of a regression 
straight line is derived. Instead, the formulas based on the principles [on the principle] 
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of least squares is made use of (Pearson 1905b). Pearson developed that other method 
(more precisely, the method of moments) also for being applied to curvilinear 
correlation. It is, however, complicated, and therefore cannot be here described. 
    Nevertheless, we can approach the matter simpler. Indeed, abandoning the method of 
moments and applying the traditional method of least squares, we will obtain quite a 
rational and comparatively simple solution at that. The only problem consists in 
assigning proper weights to the separate ordinates of the empirical regression line. Let, 
as previously, nxi be the size of the i-th array of x’s; yxi, the arithmetic mean of y’s (of 
ordinates of the regression line) in that array; the standard deviation, again for that 
array, σnxi, then the probable error of yxi will be 
 

    
0.67449σ

.nxi

xin
 

 
    The precision with which we know the separate ordinates is the higher, the less is 
that probable error, and the greater the denominator of that fraction. We will therefore 
assume that the weights of those ordinates (pi) are proportional to the square root of nxi 
and inversely proportional to the standard deviations of the arrays. Consequently, we 
suppose the weights of the squares of the differences proportional to the squares of the 
previous magnitudes28.1: 
 

    
2

.
σ

xi
i

nxi

n
p =  

 
    If the standard deviations in different arrays are equal, or almost so, the weights will 
be simply proportional to the sizes [the frequencies] (as Pearson assumed them to be): 
 
    pi = nxi. 
 
Then the generalized principle of least squares 
 

    2 2
0 1 2( ... )  minm

i xi i i m ip y a a x a x a x− − − − − =∑  

 
ought to be fulfilled. [Slutsky derives the appropriate normal equations in (m + 1) 
unknown coefficients of the parabola sought28.2 
 
    Y = a0 + a1x + a2x

2 + …+ amx
m.] 

 
    In any case, this method should provide results not worse than those obtained by the 
Pearson method, and even better results for heteroscedastic distributions. 

 

29. Correlation ratio 
    Curvilinear correlation demands its own special measure of correlation dependence. 
As shown in § 18, the correlation coefficient can only be equal to 1 when correlation is 
perfect and regression, strictly linear. When only the first condition is satisfied, the 
coefficient will still be less than unity. Then, the vanishing of the correlation coefficient 
can only testify to the absence of correlation under linearity. Indeed, since [cf. (15.1)] 
 

    ρ ρ ,x yr =  
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r = 0 if one of the factors is zero, i. e., when one of the regression lines is horizontal. 
This, however, is also possible with correlation (and even perfect correlation identical 
with strict functional dependence) being present. Let for example the dependence 
between two magnitudes be represented by a parabola or any other symmetrical curve 
with a vertical axis and two branches, one of them ascending, the other one descending. 
A straight line closest to the points of such a curve will be horizontal, and the 
correlation coefficient vanishes.  
    The following considerations enable to establish a measure of correlation also for 
curvilinear regression (Pearson 1905b, pp. 9 – 11). If there is no correlation dependence 
between two indications, groups corresponding to one of them should show that the 
distribution for the second one is identical to that of the general totality. Neglecting 
random deviations, i. e., assuming that the totality is very large so that all the probable 
errors are sufficiently small and can be neglected, we arrive at 
    Proposition I. In the absence of correlation the arithmetic mean of indications in 

each array is equal to that for all the totality  

 
    xy y=  

 

and the standard deviation calculated separately for each array is equal to that for all 

the totality 

 
    σnx = σy. 
 
    Consider the case in which the correlation becomes perfect, that is, transforms into 
strict functional dependence. Then one definite value of the second variable y 
corresponds to a definite value of the variable x. The deviations of y from its single 
value are equal to zero (we assume that the intervals are infinitely narrow) and 
therefore the standard deviation of y in each array of x’s also vanishes. And so we have 
    Proposition II. In cases of perfect correlation, i. e. when the correlation dependence 

converts into strict functional dependence, all the standard deviations of separate 

arrays vanish 
 
    σnx = 0. 
 
    Let σnx be a particular standard deviation, and σy the general standard deviation [it 
appears somewhat below], then 
 

    
2σ

σ x nx

a

n

N
= ∑                                                                                                 (29.1) 

 
can be called the mean square particular standard deviation. It is equal to the product 
[…]. 

    Consider now the ratio 2 2σ / σ .a y  In the absence of correlation it becomes equal to 

unity since each σnx = σy and consequently 
 

    2 2 2 21
σ σ σ σ .x

a x nx nx y

n
n

N N
= = =∑∑                                                                       (29.2) 
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    When correlation is perfect, each σyx = 0, so that σa = 0 and that ratio also vanishes. It 
is, however, more convenient to assume a measure of correlation increasing with the 
degree of the latter and Pearson proposed as a measure not the ratio itself, but 
 

    
2

2

2

σ
η 1

σ
a

y

= −  

 
and called it the correlation ratio. We may now assume the following proposition 
proven: 
    Proposition III. In the absence of correlation the correlation ratio vanishes and it 

equals unity when correlation is perfect
29.1. 

    The correlation ratio can be represented in another and very convenient form. 
However, before transforming it, we ought to prove a supplementary proposition. Call 
the difference (yx – y ) between the arithmetic means of a separate array and of the 

whole totality the deviation of the regression line from the central axis of the 

distribution
29.2

. Multiply its square by the size of the appropriate array, add up such 
products and divide the new product by the size of all the totality. Then the magnitude 
 

    
2( )
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N

−
=                                                                                             (29.3) 

 
can be called the mean square deviation of the regression line from the central axis. We 
will now prove 
    Proposition IV: 
 

    2 2 2σ σ σ .y a m= +  

 
    We know that 
 

    2 2 21 1
σ ( ) ( )y xn y y y y

N N
= − = −∑ ∑  

 
(instead of multiplying the difference by nx it is possible to repeat it nx times). 
Obviously,  
 

    2 2 2 2
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1
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p

y y y y y y
N

= − + − + + −∑ ∑ ∑                                        (29.4) 

 
    Each of these sums, for example the i-th, can be represented as 
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                                           (29.5) 

 
where yx is the arithmetic mean of the considered array and (y – yx)

2 is the square of the 
deviation of a separate magnitude from the mean of that array, so that 
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    2 2( ) σ .x x nx

i

y y n− =∑  

 
    For a given array (yx – y ) is constant; it is represented in the sum a number of times 

equal to the number of individuals in that array. Consequently, 
 

    2 2( ) ( )x x x

i

y y n y y− = −∑  

 
and the last sum in (29.5) vanishes since the difference (yx – y ) does not depend on i. 

Therefore, (29.5) becomes 
 

    2 2 2( ) = σ ( ) .x nx x

i

y y n n y y− + −∑  

 
    Inserting this in (29.4), that is, determining the sum of such expressions for all the 
arrays, we get, because of definitions (29.1) and (29.3),  
 

    2 2 2 2 21 1
σ [ σ ( ) ] [ σ σ ]y x nx x x a mn n y y N N

N N
= + − = +∑ ∑  

 
so that Proposition IV is proved and 
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2
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σ σ σ
1 η ,  η .

σ σ σ
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y y y
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    This expression is more convenient for calculating the correlation ratio and it also 
ensures the possibility to prove a theorem converse of Proposition III: 
    Proposition V. If η = 0, there is no correlation; if η = 1, the correlation is perfect.  
    Indeed, [see formulas (29.1) and (29.6)], 
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The numerator of this fraction is a sum of positive numbers, so η can only vanish when 
each term of that sum is zero, i. e., when there is no correlation. Then, according to 

definition (29.6), when η = 1, 2σa  ought to vanish, but then, see formula (29.1), this is 

only possible when all σnx = 0, that is, when correlation is perfect. 

    Proposition IV means that 2σ y  is a sum of two essentially positive numbers, therefore 

σm = σy only if σa = 0 which is the case of perfect correlation, otherwise 2 2σ σm y<  and η 

is always less than unity and never exceeds it. 
    As to the probable error of the correlation ratio, Pearson (1905b, pp. 11 – 19) had 
also derived it. Its complete expression is too complicated, but the approximate formula 
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is sufficiently precise. 
    Example. [Slutsky considers the dependence between mean monthly prices of rye 
and cast iron in Germany during 1879 – 1900 providing its source in a special section 
(Tables). He concludes that the “correlative dependence” between them “many times 
exceeds its probable error and is not therefore random” and that the dependence of the 
price of cast iron on that of rye is more than twice higher [stronger] than the inverse 
dependence, but reasonably does not attempt to explain this fact.] 

 

30. Dependence between the correlation ratio η and the correlation coefficient r 
    We saw that the straight regression line is a straight line which most closely 
adjoining the empirical regression line. Its equation [see formula (17.2)] 
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or, as was proved, 
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    Multiplying both parts by 2σ yN r  we have 
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    Applying formula (29.6) we get 
 

    2 2 2σ η ( )y x xN n y y= −∑  

 
and, subtracting (30.2),  
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    Here, see formula (30.1), Y is the ordinate of the straight regression line. When 
replacing in (30.3) (yx – y )  by an identical expression ( yx – Y) + (Y – y ) we arrive at 
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    Inserting Y from formula (30.1) into the last sum, we have 
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    2 2 2 2σ (η ) ( ) .y x xN r n y Y− = −∑                                                                        (30.4) 

 

    This expression is extremely important. It shows that 2σ y (η2 – r2) is the mean square 

deviation of the regression line from the straight line most closely adjoining it, and it 
also allows us to formulate some conclusions about the magnitude of the correlation 
ratio. Since its right side only consists of positive magnitudes, the inequality η2 > r2 
must always hold, and since we ought to consider the correlation ratio positive, it 
follows that η > |r|, i. e., that the correlation ratio is always greater than the absolute 

value of the correlation coefficient. These magnitudes can only be equal, see formula 
(30.4), when each yx = Y, which means, when the regression is strictly linear.  

    All the previous considerations were based on the assumption that our totality is so 
large, that probable errors can be neglected. Because of random deviations inherent in 
our invariably limited sources, we will never encounter an absolutely linear regression. 
After gaining some experience, we can certainly feel whether a regression is 
sufficiently linear, but when in doubt it is important to know the probable error of 
linearity (η2 – r2) denoting it  
 
    ς = η2 – r2.                                                                                                         (30.5) 
 
    Blakeman (1905, pp. 337 and 339) derived the precise value of that probable error 
but it is admissible to apply his approximate formula 
 

    
ς

Eς 0.67449 2 .
N

= ⋅                                                                                          (30.6) 

 
When higher precision is needed, we may apply, along with (30.5), the difference 
 
    θ = η – |r|. 
 
    For better approximation Blakeman provided the formulas  
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    Usually we may apply formula (30.6) or its corollary, formula (30.7), without the 
square root in its denominator. If it does not exceed 2 or 2.5, regression can be 
considered linear; and in doubtful cases, we can turn to formulas (30.7) and (30.8) and 
be satisfied if the results provided are close to each other. Or, if the discrepancy is 
considerable, we have to apply the precise formulas for the probable errors ς and θ, see 
Blakeman (above). They are complicated, and I do not reprint them. 

 

31. Correlation and causal dependence 
    The issue, with which we intend to conclude this Chapter, certainly deserves much 
more attention than we are able to spare, and we are compelled to restrict our 
considerations to a few remarks. 
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    Obviously, neither correlation, nor strictly functional dependence are identical with 
causal connections between phenomena. This at least follows from the fact that both 
can take place in such spheres where discussing cause and effect would have been 
meaningless; we bear in mind the realm of ideal geometric and similar constructions. 
    The logical nature of these concepts essentially differs, which we may note even 
without touching on the theory of knowledge. First of all, any functional dependence, 
whether strict or not31.1 (correlational) is mutual in the sense that we arbitrarily decide 
which variable should be considered independent, and which one dependent. However, 
concerning cause and effect, we are tied to the actual state of things and must submit to 
results of [the appropriate] study. Then, even when assessing one and the same 
material, the essence of judgement about the presence of a functional connection and of 
a cause is different.  
    Consider for example the dependence between the mass (m), volume (v), temperature 
[in centigrades] (t) and pressure (p) of a gas31.2 
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where c is some constant. This equation ties four magnitudes together, and each can be 
determined given the other ones which is its main meaning. If two magnitudes remain 
constant, and a third varies, the fourth will also vary in a known way. All four 
magnitudes are functionally tied up, and it is pointless to ask which is the cause, and 
which is the effect. 
    The same question, however, becomes quite legitimate when concerned not with 
dependence of magnitudes in general, but with concrete physical processes of change. 
Thus, suppose that v and m are constant; then, given p, we can find t and vice versa. 
From a purely mathematical viewpoint each of these magnitudes can be considered as 
an independent variable, but they play essentially differing physical parts. Under the 
same assumption we can only change the pressure by changing the state of temperature 
which will be the cause, and the former will always only be the effect. Compressing the 
gas is a more complicated phenomenon since then both its resiliency and temperature 
will generally have to change.  
    Considering for the sake of simplicity the change of the former under constant 
temperature and only from the point of view of a purely functional mutual relations of 
magnitudes, we will determine that it is a very simple function of the volume. The same 
change of resiliency from the angle of causality will be the result of a complicated 
combination of the input of work on decreasing the volume and the outflow of energy 
for preserving the previous level of temperature. 
    Correlation is still more complicated. Neither of the two correlatively connected 
phenomena can be generally considered as a complete cause of the other one, otherwise 
we would have a strict functional dependence. Correlation only testifies that one of the 
two phenomena is either a partly cause or a partly effect of the other one, or that they 
both are brought about by partly common causes.  
    Thus, the correlation between the prices of rye in Moscow and Samara [in centres 1 
and 3, see §§ 3, 14 and 23] is established by multiple observation of facts which are 
based [which depend] on complicated processes. [Slutsky mentions two causes.] The 
correlation coefficient extinguishes all this lively play of economic forces and only 
transfers the result of all the clashing mutual influences to the language of exact 
numbers. It is for this reason that a statistician as such, being quite competent in 
establishing correlation between any magnitudes belonging to whichever realm, is not 
qualified to judge causal connections. To do this, depending on the branch of 
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knowledge concerned, he should also be a biologist, or physician, a meteorologist, an 
economist, etc. 
    If two phenomena of the outer world are functionally connected, it does not yet mean 
that they are [also] causally linked directly or indirectly. The former can be purely 
accidental, or, more precisely, purely ideographic31.3. For example, there is no causal 
connection, either direct or not, between the movements of the Earth and Sirius along 
their orbits. However, after deriving from observations a regularity in the motion of 
Sirius, an astronomer brings it in a functional dependence with the Earth’s motion 
because time is determined by the Earth’s position (by the apparent position of the 
Sun), and the location of Sirius is determined as a function of that solar time. 
    Just the same, the presence of correlation does not at all by itself indicate the 
presence of a causal connection, either direct or indirect. When a correlation coefficient 
many times exceeds its probable error, it only serves as a criterion helping to isolate the 
main features of a phenomenon by eliminating the influence of an indefinite set of 
causes which are apt to compensate each other in a large number of trials. A small 
value of the probable error does not ensure us against either systematic errors or a 
possible random coincidence in time of two independent series of causes31.4.  
    For example, had we wished to study the dependence between the motions of the 
wings of any two birds, and somehow noted them, perhaps by a cinematographic 
camera, we could have obtained results of two kinds depending on the interval of 
observation. Registering the inclinations of the wings each second during a more or less 
long period, we would have found correlation equal to zero; however, registering them 
a thousand times during one second, the ensuing correlation would have been rather 
essential, positive, had our observations accidentally begun at the moment when both 
birds lifted or lowered their wings, and negative had these movements been in the 
opposite directions. 
    A similarity of sorts occurs when studying the correlation of various social 
phenomena moving in time. We often observe here, first, a slow long-term change of 
magnitudes (of prices, births, mortality, etc), and, in addition, yearly, monthly and even 
daily fluctuations around this slowly changing level. It can happen that the rise or fall 
of the level of each of these magnitudes was occasioned by two series of independent 
causes, that is, that, without allowing for this circumstance, the calculated correlation 
coefficient will only mislead us by indicating a causal connection. [Slutsky returns here 
to his study of the prices of cast iron and rye (§ 29)]. Both experienced periodic 
fluctuations of a great amplitude. An approximate coincidence of the periodicities is, 
however, already sufficient for correlation to be present, but the coincidence could have 
been accidental. Previously, the oscillations perhaps did not coincide, and after a certain 
period of time they can diverge, but, having [only these] two periods of observation, we 
cannot say anything about this31.5. 
    And so, our problem consists in separating and independently studying two points: 
the mutual dependence of slow changes of the level of magnitudes; and the mutual 
dependence of their fluctuations around that level. The first problem is not yet properly 
solved, and we leave it apart31.6. Some methods, however, are already developed for 
treating the second one. 

 

32. Methods of instantaneous average and successive differences 
    The first one is due to Hooker (1901a). He noted that a positive dependence between 
the curves of the rate of marriages and foreign trade (import and export) was certainly 
striking, but that it likely only exists between the deviations of these magnitudes from 
some slowly changing level[s]. Although separate zigzags of the curves essentially 
correspond, i. e., the marriage rate increases with the increase in export and vice versa, 
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these magnitudes generally move in opposite directions. During the latest 40 years, 
export had increased, and the rate of marriages decreased. Therefore, the correlation 
coefficient proved insignificant, only equal to 0.18 with probable error 0.9. 
    Both phenomena indicate some periodicity with period being approximately 9 years, 
and Hooker proposed to measure the “instantaneous level”, the arithmetic mean for a 
number of years with the given [the chosen] year being in the middle. He had thus 
calculated the mean export taking into account the given year and the other years of the 
period. He determined in the same way the curves of the movement of the levels of all 
the other phenomena: of import, turnover of clearing houses, rate of marriage, etc. The 
following treatment reduces to calculating the correlation coefficient not between 
absolute magnitudes, but between deviations from the curves of levels. 
    There also Hooker (1901b, p. 604; and, in more detail, in 1905) applied another 
interesting method. He determined, as described above, the correlation coefficient 
between the rate of marriage and exports for the same year, then for half a year, a year, 
for a year and a half previously, half a year later, etc. Having treated the other 
phenomena in the same way, he determined the “curves of the correlation coefficients” 
for the rate of marriage and, in turn, exports, its complete turnover [?], turnover of 
clearing houses. The maximal value of that coefficient (the peak [the mode] of the 
appropriate curve) indicates the interval of time after which the studied phenomenon 
manifests its greatest influence on the marriage rate. The appended figures [excluded 
from translation] show that the influence of changes in the export and import on that 
rate become most noticeable after about five months, whereas those in the turnover of 
the clearing houses, after a year and 21/2 months.  
    These results in any case represent something new which is quite impossible to 
discover by simply comparing and considering the curves32.1. To Hooker is also due the 
method of successive deviations, as it is called in this section. Now, the correlation 
coefficient is determined not between the magnitudes themselves, but between the 
differences of their successive values. Let 
 
    x0, x1, x2, …, xn and y0, y1, y2, …, yn  
 
be two series of observations uniformly spaced in time (for example, yearly prices in 
two markets). Denote the differences 
 
    dx1 = x1 – x0, dx2 = x2 – x1, …, dxn = xn – xn–1,  
    dy1 = y1 – y0, dy2 = y2 – y1, …, dyn = yn – yn–1, 
 
and very simple expressions will follow for the arithmetic means  
 

    0 01 1
, ,n n

x xi y yi

x x y y
d d d d

n n n n

− −
= = = =∑ ∑  

 
which are often close to zero. 
    Standard deviations and the correlation coefficient 

x yd dr are then calculated in the 

usual way. This method indicates that a large difference can exist between the 
correlation coefficients of the magnitudes themselves and between their successive 
differences. Thus, the price of maize at the farms in Iowa and the total yield of maize in 
the US only show a correlation coefficient of – 0.28 ± 0.14 which, considering the 
probable error, ought to be judged close to zero. However, the dependence between 
successive changes of these magnitudes from one year to another is characterized by a 
very large correlation coefficient of – 0.84. Hooker (1905, p. 703) believes that the 
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changes in the total yield is one of the most important factors determining the price paid 
in Iowa.  
    In any case, the application of the correlation method to phenomena changing in time 
is yet on the level of first attempts, often made purely empirically by groping around. 
This problem awaits to be systematically developed, and a vast field of study is opening 
here. First of all, it is important to ascertain how, under which conditions, is it possible 
to move here from simply establishing a correlation connection to judging about one or 
another type of causality. Then, also in connection with the previous question, the 
entire problem should be considered stochastically. Only thus can we find the key to 
solving a number of particular pertinent questions32.2. 

 

Chapter 2. Correlation between Three Or More Magnitudes 

 

33. The main theorem of the theory of linear regression 
    For the sake of brevity we will call a group of values  
 
    x1, x2, …, xp  
 
an individual of a totality. It can represent the sizes of various organs of one and the 
same being; or, x1 can be the size of an organ of a progeny with the other x’s denoting 
the sizes of that, or of other organs of his successive ancestors. They can represent 
prices of the same commodity in different places of a market at the same moment or 
prices of various commodities in the same place, etc.  
    The methods of uniting definite values of magnitudes in a group vary infinitely but 
throughout a study this procedure should be certainly done in the same way. Each xi can 
take differing values in different groups, or, as we say, in different individuals of a 
totality. Had the connection between these magnitudes been strictly functional, and had 
we known the values of all of them except one, we would have been able to determine 
it as well.  
    In case of correlation the connection is freer. Not one, but a set of values of x1 
corresponds to a totality of definite values of x2, …, xp, and the arithmetic mean of this 
set is a function of those values. We denote this mean for the array of a definite 
complex of values of x2, …, xp by x1m, the size of the array, nx2…xp, or, shortened, n(x1), 
the standard deviation of x1 in that array, σ1m.  
    As previously, we will call regression equation that, which connects the mean value 
of one variable with the values of the other ones. If all the variables entering the 
equation are of the first degree, we will have a linear regression and a curvilinear 
otherwise. Because of random causes we will never actually encounter a strictly linear 
regression and have only to manage with approximation. Therefore, we will as 
previously distinguish between empirical and theoretical regressions. In case of three 
magnitudes the geometrical image conforming to linear regression is a plane, and some 
other surface for curvilinear regression.  
    For the case of a greater number of magnitudes a vivid geometrical representation is 
impossible, but mathematicians have an ersatz of obviousness in a multivariate space 
with various conceivable images in it similar to those representable in the three-
dimensional space. Nevertheless, we do not need to turn to this concept since the 
empirical mutual relations between magnitudes can be represented in a number of 
tables and we will analytically describe the theoretical regression by the equation 
 
    X1 = a11 + a12 x2 +  a13 x3 + … + a1p xp                                                          (33.1) 
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and in a similar way for the other variables. 
    We turn now to the main theorem of the theory of linear regression proved in § 16 
for the particular case of two variables33.1. Denote the difference between the empirical 
and theoretical values [of the appropriate magnitude] by d1: 
 
    d1 = x1m – X1 
 
and determine the coefficients of equation (33.1) under the condition 
 

    2
( 1) 1 min.xn d =∑  

 
    Consider the following sum for the i-th array and extend it over all the values of the 
x1-th array 
 

    2 2 2
1 11 12 2 13 3 1 1 1 1 1 1 1[ ( ... )] ( ) [( ) ( )]p p m m

i i i

x a a x a x a x x X x x x X− + + + + = − = − + − =∑ ∑ ∑  

    2 2 2 2
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    2 2 2
( 1) 1 1 11 12 2 1 ( 1) 1[ ( ... )] σx p p x m

i

n d x a a x a x n= − + + + −∑  

 
and that extended sum will be 
 

    2 2 2
( 1) 1 1 11 12 2 1 ( 1) 1[ ( ... )] σ .x p p x mn d x a a x a x n= − + + + −∑ ∑ ∑  

 
    Since the last term on the right side depends on the essence of the totality itself rather 
than on a11, a12, …, a1p, the entire right side will be minimal33.2 when 
 

    2
1 11 12 2 13 3 1[ ( ... )]  min.p p

i

x a a x a x a x− + + + + =∑                                            (33.2) 

 

Thus, the main condition [the only condition] of the method of least squares, as in the 
case of two variables, is reduced to determining such a linear function (33.1) that, when 

applying it for deriving in each individual case the magnitude [the value] of the first 

variable given all the other ones, we obtain errors with the least sum of squares. 
 

34. The case of three variables 
The regression equations will now be 
 
    X1 = a11 + a12x2 + a13x3  
    X2 = a21 + a22x2 + a23x3  
    X3 = a31 + a32x2 + a33x3  
 
We will determine the coefficients of the first one; those of the other two can be written 
down according to symmetry. A regression coefficient ought to obey the condition 
(33.2). Differentiating consecutively with respect to a11, a12, a13, we have 
 

    1 11 12 2 13 3 0x a a x a x− − − =∑ ∑ ∑ ∑  

    2
1 2 11 2 12 2 13 2 3 0x x a x a x a x x− − − =∑ ∑ ∑ ∑                                                      (34.1) 
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    2
1 3 11 3 12 2 3 13 3 0x x a x a x x a x− − − =∑ ∑ ∑ ∑  

 
    Now, ∑x1 = ∑x2 = ∑x3 = 0 because we again assume that x1, x2, x3 are the deviations 
of the appropriate magnitudes from their arithmetic means and, therefore, the first 
equation immediately provides a11 = 0. Then, 
 

    2 2 2 2
12 2 12 2 13 3 13 3 σ ,   σ ,  a x a N a x a N= =∑ ∑  

 

    1 2 1 2 12 1 3 1 3 13 2 3 2 3 23σ σ ,  σ σ , σ σx x N r x x N r x x N r= = =∑ ∑ ∑  

 
where r12, r23 and r13 are the correlation coefficients for the variables considered in 
pairs and calculated by methods known to us. [After elementary operations excluded 
from translation] the equations (34.1) are reduced to 
 

    2
12 2 13 2 3 23 1 2 12σ σ σ σ σ ,a a r r+ =  2

12 2 3 23 13 3 1 3 13σ σ σ σ σa r a r+ =  

 
    so that 
 

    12 23 13 13 12 231 1
12 132 2

2 23 3 23

σ σ
,  .

σ 1 σ 1

r r r r r r
a a

r r

− −
= =

− −
                                                         (34.2) 

 
    Here, a12 and a13 are the regression coefficients. The equation of theoretical 
regression will be 
 
    X1 = a12x2 + a13x3                                                                                          (34.3) 
 
or, if x1, x2 and x3 are measured from the usual zero rather than being deviations from 
arithmetic means, 
 
    1 1 12 2 2 13 3 3( ) ( ).X x a x x a x x= + − + −                                                               (34.4) 

 
    In case of linear regression this equation furnishes arithmetic means x1m for the 
arrays of x1 formed by x2 and x3. If regression diverges from the linear type, this 
equation still provides some indications about the dependence between the magnitudes 
because it represents some mean linear dependence and its application to separate 
particular cases will result in errors whose sum of squares is minimal. 
    The mean (square) magnitude of that error [of those errors], call it ∑1, is of some 
interest. Its square, see (33.2), is equal to 
 

    2 2
1 1 12 2 13 3

1
( ) ( ) .x a x a x

N
= − −∑ ∑  

 
Inserting the values of a12 and a13 from (34.2) and performing some simple algebraic 
operations [Slutsky adduces them in a long footnote], we will obtain 
 

    
2 2 2

2 2 12 23 13 12 23 13
1 1 2

23

1 2
( ) σ .

1

r r r r r r

r

− − − +
=

−∑                                                         (34.5a) 
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    Other formulas can be written down according to symmetry: 
 

    
2 2 2

2 2 12 23 13 12 23 13
2 2 2

13

1 2
( ) σ ,

1

r r r r r r

r

− − − +
=
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2 2 2

2 2 12 23 13 12 23 13
3 3 2
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1 2
( ) σ .

1

r r r r r r

r
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=

−∑                                                   (34.5c) 

    These expressions are very important since we can apply them, when using formulas 
(34.3) and (34.4), for estimating the mean [square] value of the errors of determining 
the magnitude [the value] of the indication in particular cases. If the distribution obeys 
the normal (the Gaussian) law, the standard deviations in all arrays will be identical 
with the mean square errors (34.5) becoming the standard deviations of separate arrays 
 

    1 1 2 2 3 3σ , σ , σ .m m m= = =∑ ∑ ∑  

 
Making use of the table of the integral of probability [for the normal distribution] we 
can also determine the probability of any deviation from the value provided by the 
regression equation. 
    There exists some degree of dependence between the three correlation coefficients: 
since the left side of each of the expressions (34.5) is a sum of squares of errors, and 
cannot therefore be negative, the common numerator of the fractions there ought to be 
positive, and the coefficients are linked by inequality 
 

    2 2 2
12 23 13 12 23 131 2r r r r r r− − − +  > 0. 

 
    Isolating a complete square of (r23 – r12r13), we get 
 

    2 2 2 2 2
23 12 13 12 13 12 13( ) 1 ,r r r r r r r− < − − +  

 
and therefore 
 

    2 2 2 2 2 2 2 2
12 13 12 13 12 13 23 12 13 12 13 12 131 1 .r r r r r r r r r r r r r− − − + < < + − − +  

 
    Now we can calculate the boundaries for r23 given some values of r12 and r13, with 
those inequalities providing a number of interesting indications: 
 
    r12 = r13 = 0, then – 1 ≤ r23 ≤ 134.1; r12 = r13 = ± 1, then r23 = 1;  
    r12 = 1, r13 = – 1, then r23 = – 1; r12 = 0, r13 = ± 1, then r23 = 0; 

    r12 = 0, r13 = ± r, then 2 2
23 1 1 ;r r r− − < < −   

    r12 = r13 = ± r, then 2r
2 – 1 < r23 < 1; 

    r12 = r, r13 = – r, then – 1 < r23 < 1 – 2r
2 34.2;  

    r12 = r13 = ± 0.5 , then 0 < r23 < 1; 

    r12 = 0.5 , r13 = – 0.5 , then – 1 < r23 < 0 
 
    It could be thought that, supposing that x1 is positively correlated with x2 and x3, 
these two magnitudes should be also correlated positively, but this is not necessarily so. 
For example, if r12 = r13 = 1/4, r23 can take any value in the interval [1; 2(1/4)2 – 1] = 
[1; – 0.875]; if r12 =7/10 and r13 = – 7/10, r23 takes any value in interval  
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[– 1; 1/50]. Only if r12, equal in absolute value to r13, exceeds 0.5 , r23 invariably takes 
a definite sign (positive if the signs of r12 and r13 coincide, and negative otherwise). 
    Is the precision of determining a magnitude by a regression equation always higher 
when passing from correlation between two magnitudes to that of between three? In the 
first instance the mean [square] error of determining x1 will be 
 

    2
1 12σ 1 ,r−   

 
cf. formula (18.2), and, in the second case, equal to the square root of the fraction of the 
formula (34.5a). 

    For precision to become higher, the square of that fraction should be less than 1 – 2
12r  

or greater than 2
12r . Since the denominator of that square is positive, the obtained 

inequality can be written as 
 
    (r13 – r12r23)

2 > 0. 
 
    The left side can still vanish, so that, after adding the third variable, precision cannot 
become less, but can persist rather than increase. This occurs when the regression 
coefficient with numerator (r13 – r12r23), see formula (34.2), vanishes. Let for example 
r12 = 0.8, r23 = 0.5, r13 = 0.4. Then, only considering x2, we have x1 with mean [square] 
error 
 

    21
1 1 2 2 1 1 1

2

σ
0.8( ),   σ 1 0.8 0.6σ .

σ
x x x x= + ⋅ − = − =∑  

 
    It could be thought that the addition of the third variable rather substantially 
correlatively connected with the first two of them will heighten the precision of that 
determination. However, just as previously [see formula (34.2)], 
 
    ρ1(2) = a12(σ1/σ2) = 0.8(σ1/σ2), ρ1(3) = a13(σ1/σ3) = 0.  
 
As proven, the mean [square] error ought to persist. Indeed [cf. formula (34.5a)] ∑1 = 
0.6σ1. 
Thus, the correlation connection of the first two magnitudes with the third one (with x3) 
had not in the least influenced our formulas and did not heighten the certainty or 
precision of our conclusions.  
    Another extreme case is presented by the transition of correlation connection into a 
strict functional dependence. It only takes place if only one value of x1 will correspond 
to each pair of x2 and x3, i. e., when the mean square error of determining x1, given the 
other two variables, vanishes. For understanding this case clearer we will simplify it by 
supposing that the correlation of the first magnitude with the second one is the same as 
with the third: r12 = r13 = r. Assume also that ρ = r23, then the mean square error ∑1 will 
be exactly zero if the fraction in formula (34.5a) vanishes, which means that 
 

    
2 2 2
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2 2 ρ 2 1 ρ
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    For example, if ρ = 0.7572, correlation becomes a strict functional dependence at r = 
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0.9373. 
 

35. Examples 
    Now, 0.7572 is the correlation coefficient between barometrically measured air 
pressure (AP) at Southampton (S), southern coast of England, and Laudale (L), western 
coast of Scotland (Pearson & Lee 1897, pp. 458 – 459)35.1 the distance between them 
being 444 miles, and the meteorological station Stonyhurst (St) situated almost in the 
middle between them. According to Pearson’s rough calculation, the correlation 
coefficient between points St and each of the other locations should almost coincide: 
both are near to 0.94 – 0.95. When moving away from the line L – S but leaving equal 
the correlation coefficients between the moving position and each of these stations, we 
will come to a point in which these coefficients decrease to 0.9373 (see above end of § 
34). A meteorological station, if established there will be, as Pearson (pp. 458 – 459) 
supposes, somewhere near Whitby, and will have a remarkable feature in that the air 
pressure measured there will be a precise linear function of the pressures at S and L.  
    The treatment of meteorological data by the correlation method could have [then] 
advanced weather forecasting, it would only need much calculations for determining 
the correlation coefficient between the factors of weather in some points for a previous 
moment and these factors in other points for subsequent moments. With properly 
chosen points and intervals of time interesting results would have probably be ensured. 
Pearson & Lee only attempted to turn the meteorologists’ attention to the new method. 
Calculation of tens and hundreds of correlation coefficients from daily meteorological 
data collected during a number of years is only possible for an institution rather than for 
separate individuals. 
    However, to show how close the calculated magnitudes can coincide with the really 
existing, provided the stations were chosen properly, Pearson offered a simplified 
method. The regression equation is linear. Assuming a linear dependence between the 
pressure at St on the one hand and S and L on the other hand, he issued from the 
equation 
 
    APSt = xAPS + yAPL + z. 
 
    For determining the constants x, y and z 12 observations for the 15th day of each 
month were chosen [p. 460] and treated by the method of least squares. Then APSt was 
calculated given the measurements at S and L for 50 moments spaced 14 days apart [p. 
460]35.2. [Slutsky provided these results and their comparison with observations.] We 
see that the differences are very small, “fairly evenly” distributed “positively and 
negatively” and that their mean [absolute] value is only ca. 1/40 inches = 0.635mm. 38 
errors are less than 1mm, 11 are greater but less than 2mm, and only one error is still 
greater [equal to 0.19 inches = 4.8mm]. Pearson has grounds to consider these results as 
confirming that not very far from St there should exist in Lancashire a point in which 
correlative dependence becomes strictly functional. 
    We can attempt also to estimate the attained degree of approximation by deriving the 
value of a fictitious correlation coefficient for determining the air pressure at St just as 
precisely not from two, but from one magnitude. The mean square error as calculated 
by the data in the provided table is 0.041 inches, the standard deviation of the pressure 
at St (p. 435 of their paper) is 0.3503 and the dependence between these magnitudes 
should be such that 
 

    20.041 0.3503 1 ,  0.993r r= − =  
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which is already an essential approximation to a strict functional dependence.  
   Not only in the field of heredity, where r = 0.5 is a normal value, but even in the 
correlation of organs we do not encounter such close ties. Thus, among organs [with 
reference to Pearson (1899b, p. 181) Slutsky notes that the maximal value of r was 
0.89]. For various aims (forensic medicine, criminal investigations, scientific goals, etc) 
it is possible to determine with considerable success the stature and size of organs of a 
human body by the size of one or two organs [cf. § 38]. However, as the reader sees, in 
these fields we are yet far from the precision achieved by Pearson in forecasting air 
pressure. 
    Our last example pertains to prices of rye in Russia [§ 3, also discussed in §§ 14 and 
23]. The correlation coefficient between the mean monthly price of rye in a given and a 
previous month in Samara is rs, s–1 = 0.93292, for the mean price in Elets and Samara in 
the same month, rES = 0.87796, and, finally, for the mean price in Elets in a given 
month and the price in Samara in the previous month, rE,S–1 = 0.85593. The arithmetic 
means and standard deviations are given in the Supplement [excluded from translation]. 
Issuing from these figures, the regression coefficient for the mean monthly price in 
Samara will be (in copecks) 
 
    xs = 47.04 + 0.383(xE – 52.64) + 0.674(xS–1 – 47.16). 
 
    The mean monthly prices in Samara for 36 months in 1894 – 1896 calculated by this 
equation are [the appended table is excluded from translation]. The reader will see that 
they are close to the actual prices with discrepancies only amounting to 1.9 copecks in 
the mean which is even less than expected from the theory: theoretically, the mean 
square error of our calculation equals [cf. formula (34.5a)] 4.5 copecks, actually 
however, for those three years, only 2.4 cop35.3.  
    This compels us to suggest that, first, other years must provide a greater error; and, 
second, that the distribution of prices does not obey the Gaussian law, see § 40 below. 
In any case, it would have been a rewarding problem to study the fluctuations of prices 
on a large scale and the correlation between them for various cities and differing 
periods. It is certainly very difficult to allow theoretically for all the factors of pricing 
which the businessmen are considering when striking spot deals. Still, the extreme 
precision of our calculations does not allow to consider such a problem impossible. 
And forecasts can perhaps be essentially simplified if the businessmen themselves were 
to be considered as sensitive instruments for studying the correlation dependence 
between the prices struck for spot deals and the actual prices at the appropriate future 
time. It will thus be probably possible to heighten considerably the already attained 
level of accuracy of empirical forecasts. 

 

36. Partial correlation coefficients 
    We have already noted that correlation connection, although not identical to 
causality, can provide valuable indications about the existence of the latter. Regression 
equations connecting several magnitudes allow us to analyze deeper this point by 
separating the influence of various factors one from another. 
    Let phenomena B and C be supposed partial causes of phenomenon A. For 
convincing ourselves in that fact we should have studied the change in A only with B, 
then only with C, each time under an invariable state of all the other possible causes. 
That condition is however impossible to realize, we can only study the change in A 
under an invariable state of some definite factors whose influence we wish to eliminate 
and in many cases this alone is sometimes enough for making very valuable 
conclusions. 
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    Indeed, the main disadvantage for a researcher of social phenomena only consists in 
that he is just an observer unable to experiment, to arbitrarily ensure the constancy of 
one or another group of conditions. The correlation theory provides him with such a 
possibility. Consider a regression equation 
 
    XA – hA = ρA(B)(xB – hB) + ρA(C)(xC – hC) 
 
from this viewpoint. Here, hA is the mean value of xA for all possible values of B and C. 
XA is the mean of xA for their definite values. For studying the change in A only brought 
about by B under invariable C we ought to assume here that xC is constant. Denoting for 
the sake of brevity 
 
    hA + ρA(C)(xC – hC) = h'A = Const, 
 
we have  
 
    XA – h'A = ρA(B)(xB – hB). 
 
    Here, h'A is the arithmetic mean of all the values taken by xA with a given value of xC 
and any value of xB. We see now that with an invariable C the deviations of xA from its 
mean are proportional to those of xB from its own mean with ρA(B) being the coefficient 
of proportionality. 
    Quite similarly, if phenomenon B is invariable, the deviations of xA from its mean 
are proportional to those of xC with ρA(C) being that coefficient: 
 
    XA – h″A = ρA(C)(xC – hC). 
 
The regression coefficients ρA(B) and ρA(C) thus separately measure the dependence 
between A and B and C. 
    Let us consider the following example. The correlation coefficient between the mean 
monthly prices of rye in Moscow and Samara [§ 3, also §§ 14, 23 and 35] is rather 
large, rMS = 0.77. When wishing to know whether the causal connection between the 
prices in Moscow and Samara at the same time is really so tight, we must study the 
change in the former with all other factors except the latter remaining invariable. 
    This is impossible and we will only exclude one of them, the mean price, again in 
Samara, but for the previous month. We have 
 
    rMS = 0.77; rM,S–1 = 0.79; rS,S–1 = 0.93. 
 
Inserting this in formula (34.4) (the standard deviations are provided in the Tables 
[excluded from translation]) we arrive at  
 
    XM – hM =0.49(xS–1 – hS–1) + 0.23((xS – hS).                                                        (36.1) 
 
    We see that the price in Samara for the previous month influences the price in 
Moscow stronger than that for the same time. If choosing cases in which the previous 
price in Samara was the same [as in the given month], its excess over its mean by 10 
copecks will be connected with a mean increase in the Moscow price of only 2.3 cops. 
On the other hand, if the prices in the two cities and at the same time were invariable, 
the increase in the Samara previous price amounting to 10 cop. above its mean level 
will be connected with a mean increase in the Moscow price of 4.9 cop.  
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    We had not eliminated other influences, and without further studies it is hardly 
possible to think here about a causal dependence; it would be more cautious to say that 
the mean Samara price for the previous month indicates more strongly influences on the 
Moscow price than the mean price there at the same time.  
    We conclude that the correlation coefficient rMS is only relatively large because the 
prices in the two cities, directly influencing each other in a comparatively weak way, 
are at the same time strongly influenced by other factors. For separately determining 
the degree of the dependence between the prices in both cities we should eliminate the 
influence of all these other factors by studying cases in which they are invariable. For 
example, to exclude the influence of the previous monthly Samara price we will reason 
thus: 
    The regression equation for Moscow, when considering the previous and the given 
month in Samara, is (36.1), and for Samara, when considering Moscow and the 
previous month in Samara (derived in a similar way) it is 
 
    XS – hS =0.86(xS–1 – hS–1) + 0.10((xM – hM). 
 
For an invariable previous Samara price the regression coefficient of Moscow on 
Samara S–1ρM(S) = 0.23 and the coefficient of Samara on Moscow under the same 
condition, S–1ρS(M) = 0.10. If xS–1 = Const, the correlation coefficient between them, 
called the partial correlation coefficient, is equal to 
 

    1 1 ( ) 1 ( )ρ ρ 0.23 0.10 0.15.S MS S M S S S Mr− − −= ⋅ = ⋅ =  

 
    The general formula for that coefficient will therefore be 
 

    12 13 23
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                                                                                     (36.2) 

 
and, considering symmetry, it is easy to write down the other ones. 
    The probable error of the partial correlation coefficient is represented by the formula  
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identical with that of the complete coefficient [cf. (22.3], see Yule (1907, p. 182ff); for 
a more elementary derivation see Heron (1910). 
    I borrow my second example from Hooker (1907), an extremely interesting paper 
rich in content. His immediate aim was to ascertain the period during which 
meteorological conditions most strongly influence the future harvest. Here, I only 
consider wheat. His chosen period was eight weeks partly overlapping each other, 
weeks 9 – 16, 13 – 20, 17 – 24, etc of the year. It was necessary to determine the 
correlation coefficients between the meteorological conditions of each period with the 
future harvest. The most important of those were rain (the period precipitation) and heat 
(the so-called accumulated temperature above/below 42°F [= 5°.6C]36.1).  
    It occurred that the period 37 – 44 weeks, i. e. the time of sowing and the nearest 
weeks after it, was especially important because the excess of rain during it negatively 
and very appreciably influenced the harvest. The correlation coefficient for that period 
between rain and harvest was the greatest, rwr = – 0.66. The coefficients for the adjacent 
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periods 33 – 40 and 41 – 48 weeks, – 0.55 and – 0.47, were also substantial. Among 
other periods only one, for weeks 1 – 8, had that coefficient equal to – 0.47, whereas 
the rest were considerably smaller. 
    When restricting our attention to the main two periods (Hooker 1907, p. 30), we note 
that the correlation coefficient between the accumulated temperature and harvest was 
0.36 and 0.52 for weeks 37 – 44 and 1 – 8 respectively. Although the probable errors 
were large (Hooker only considered 21 years), 0.36 nevertheless is a value which seems 
to suggest, not with certainty, but with some probability, that in addition to rain the 
temperature accumulated up to the period of sowing also influences the future harvest.  
    This assumption would however be unfounded. The positive coefficient 0.36 only 
tells us that there does exist a correlation connection between the temperature 
conditions during sowing and harvest, but it does not empower us to conclude that it 
will exist under constancy of other factors; and we have expressed this idea by stressing 

in addition. It is indeed possible that temperature conditions only indicate other 
circumstances, for example the greater or lesser rainfall in the autumn, but do not at all 
influence the harvest when the rainfall is usual. 
    We have thus come to the conclusion that it is necessary to separate the influence of 
both factors on the harvest and to calculate the partial correlation coefficients between 
harvest and rain given constant temperature (arwr) and harvest and temperature given 
constant rainfall (rrwa).  
    According to formula (36.2) we have for weeks 37 – 44  
 
    (arwr) = – 0.59, (rrwa) = 0.006. 
 
It occurs that in themselves the temperature conditions during sowing are of no 
consequence, the only important factor is the rainfall. For weeks 1 – 8 both factors are 
essential because 
 
    (arwr) = – 0.55, (rrwa) = 0.49. 

 

37. The general case: correlation between n variables 
    An acquaintance with the theory of determinants is here necessary. Quite sufficient is 
the elementary information, for example in Lorentz (1907) [Slutsky refers to its Russian 
translation]. 
    In this present case the equation of linear regression can be written as 
 
    X1 = a11 + a12x2 + … + a1nxn.                                                                           (37.1) 
 
Here, X1 is the probable mean value of all the x1’s given the values of x2, x3, …, xn; all 
these magnitudes are measured by their deviations from the respective arithmetical 
means for all the totality. As previously, we similarly denote this means by h1, h2, …, 
hn. And similar equations can be written down for each of the other variables; they are 
easily derived by considering symmetry. 
    I proved in § 33 that the coefficients of equation (37.1) ought to satisfy the condition 
 

    2
1 11 12 2 13 3 1( ... ) min .n nx a a x a x a x− − − − − =∑                                                   (37.2) 

 
    [Slutsky derives here the normal equations in unknowns a11, a12, …, a1n with a11 = 0, 
see quite similar reasoning in § 34] and, applying determinants, gets 
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    Both determinants are minors of 
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    The regression equation will then be 
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or, if the magnitudes themselves rather than their deviations from arithmetic means are 
considered, 
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    As proved in § 33, when applying this equation for determining x1 given x2, x3, …, 
xn, we make the least possible error (more precisely, a number of errors having the least 
possible sum of squares). The derivation of a general formula for the mean square error 
is also of interest. To achieve this, we ought to insert the values of a11, a12, …, a1n as 
derived above into expression (37.2), divide it by N and extract a square root. We will 
have 
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    [Performing a number of elementary operations Slutsky gets] 
 

    1 1
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a very simple and very important expression. 

 

38. The case of four variables 
    Expressions (37.3) and (37.4) include all particular formulas derived above for two 
and three variables. Thus, for correlation between two magnitudes 
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and the regression equation will be  
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and the mean square error of determining x1 given x2 is  
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    We will now apply the general formulas for deriving equations for the case of four 
variables. Keeping to the previous notation, we have 
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    [Slutsky explains how to calculate the determinant R.] 
    As an example, we consider the reconstruction of a man’s stature given the size of 
his various organs (Macdonell 1902)38.1. The data below concern the prison population 
in the main penitentiaries of England and Wales and are based on 3000 forms taken 
from the Scotland Yard’s anthropometric bureau. In England, criminals are 
distinguished between habituals and non-habituals and Macdonell’s material concerns 
the latter group characterized by comparatively insignificant crimes and punishment. 
    [Slutsky selected three sizes (left middle finger, F, left elbow, E, left sole, S) out of 
the six considered by the English author for calculating stature, H, and writes them 
down in centimetres to four or five places after the decimal point of which I retain only 
one, and I am only providing the end results. Slutsky notes that anthropometric data 
“sufficiently closely” obey the Gaussian law. “Therefore, as I prove below, the standard 
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deviation of each magnitude is the same in all its arrays and the mean square error of all 
the determinations are equal to the standard deviation of an array, so that  
EH = 0.67449σH”. 
 
            Table 1 (Macdonell 1902) 

                 Measurements (cm) 
 
                       St. deviation   Arithm. mean  
    F                         0.5                   11.5 
    E                        2.0                    45.0 
    S                        1.1                     25.7 
    H                       6.4                     166.4 
 
            Table 2 (Macdonell 1902) 

            Correlation coefficients 
                 See explanation in text 

 
            F         E          S          H 
    F  1          0.85      0.76     0.66 
    E  0.85     1           0.80     0.80 
    S  0.76     0.80      1          0.74 
    H  0.66    0.80      0.74     1 
 

    1. H = 166.4 + 7.8(F – 11.5); 2. H = 166.4 + 2.6(E – 45.0); 
    3. H = 166.4 + 4.0(S – 25.7);  
    4. H = 166.4 – 0.7(F – 11.5) + 2.8(E – 45.0) 
 
    The last-written equation “reveals an original dependence […]: an individual with a 
given E whose F is shorter has a greater stature and vice versa”. Slutsky continues:] 
 
    5. H = 166.4 + 2.8(F – 11.5) + 3.0(S – 25.7);  
    6. H = 166.4 + 1.9(E – 45.0) + 1.5(S – 25.7); 
    7. Reconstruction of H given F, E, and S: Slutsky only provides the appropriate 
regression coefficients. He then indicates the probable errors of H. In all cases they 
amount to 2.5 – 3.3cm and, in addition, he provides that error, 2.4, for the case of all the 
six sizes considered by Macdonell whose additional sizes were length and width of 
head and width of face. Slutsky comments: “In itself, the increase in the number of 
independent variables improves the precision but little, much more important is their 
appropriate choice […]”. 
    He then adduces Macdonell’s table comparing actual and calculated (by issuing from  
one of the six sizes in turn) statures for 10 randomly chosen criminals. Out of the 60 
discrepancies 53 were less than |5|cm, the greatest amounted to 8.1cm in excess; 32 
calculated statures were greater, and 28 shorter than the actual figures, and the mean 
value of the appropriate probable errors persisted (2.5 – 3.3cm as above). Slutsky 
concludes:] 
    The results of the reconstruction are only approximate, and could only be such 
because the regression formulas provide not the individual stature but a mean value for 
a group with a given size of other organs. As proved in § 33, these formulas ensure the 
least mean square error among all other possible formulas of linear dependence. The 
inaccuracy of determination is thus based on the variability inherent in individuals and 
on the incomplete correlation between the organs. For many aims (for example, in 
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forensic medicine, criminal investigations, scientific goals) that precision is, however, 
more or less sufficient. 

 

39. Normal correlation. The equation of distribution
39.1

 
    The correlation theory as explicated above is independent from some special laws of 
distribution, and the applicability of the regression formulas is only conditioned by 
linearity of the distribution of the empirical data. In its initial stage, the correlation 
theory, however, was only an extension of the Gaussian law onto many variables. As an 
extremely important particular case, it certainly deserves to be at least briefly described. 
Let n magnitudes be somehow joined together and denote by x1, x2, …, xn their 
deviations from their appropriate arithmetic means. Assume that their values are 
determined by a set of m causes with m being much larger than n. Let the deviations of 
the intensities of these causes from their mean values be ε1, ε2, …, εm so that  
x1 = x2 = …= xn = 0 if ε1 = ε2 = …= εm = 0. 
    Our main assumptions will be, first, that the changes in the intensities of each 
separate cause are so insignificant that their squares can be neglected. Second, that their 
distribution obeys the Gaussian law, and third, that the probabilities of their various 
values are mutually independent. According to the first assumption, the dependence of 
any xi from the ε’s will be approximately expressed by a linear function; we suppose 
here that such functions can be expanded into a Taylor’s series and, as we assumed, 
their squares and higher degrees can be neglected. Then 
 
    x1 = α11ε1 + α12ε2 + …+ α1mεm  
    x2 = α21ε1 + α22ε2 + …+ α2mεm, …,                                                                (39.1) 
    xn = αn1ε1 + αn2ε2 + …+ αnmεm 
 
    The probability that the deviation of the intensity of the j-th cause from its mean will 
be restricted to interval [εj; εj+ δεj] is (second main assumption) 
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where kj is the standard deviation. 
    Such probabilities are mutually independent (third main assumption), therefore the 
probability that the deviations of the intensities of the causes will at the same time be 
restricted to intervals [ε1; ε1+ δε1], [ε2; ε2+ δε2], …, [εm; εm+ δεm] is 
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    Equations (39.1) allow to express any n (for example, the first n) of the ε’s through n 

x’s and the rest ε’s. We will have a fractional expression for every εj with numerator 
being linear in respect of all the variables, and the denominator in all the expressions 
will be the same and only contain constants. Inserting the determined values of ε1, ε2, 
…, εn in equation (39.2) we will receive an expression for the probability that each xi is 
contained in interval [xi; xi + δxi]: 
 
    P = Const exp[– (U + V + W)/2] δx1δx2 … δxnδεn+1δεn+2 … δεm.                 (39.3) 
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    Here, U is a quadratic function of variables xi, a sum of their squares and products 
taken in pairs with constant coefficients; V is the same function of εn+1, εn+2 ,…, εm; W 
is the sum of terms containing products of one of the two x’s and one of the two ε’s.  
    What is the meaning of the expression (39.3)? It was derived from expression (39.2) 
which was the probability of a certain combination of causes whose intensities were 
contained within certain boundaries. Equations (39.1) indicate, however, that a certain 
totality of values of xi corresponds to each such combination, but the number of causes 
exceeds that of the x’s so that not one, but many combinations of causes can correspond 
to each given combination of the x’s. However, if these latter are known as well as εn+1, 
εn+2,…, εm, the equations (39.1) will determine the other n causes εj so that formula 
(39.3) provides the probability of the combination of the x’s and (m – n) causes.  
    The latter do not, however, interest us since they are to remain unknown; what we 
need to know is the probability of a definite combination of the x’s independently from 
any values of εn+1, εn+2,…, εm, and these magnitudes we now have to eliminate from 
(39.3). We begin with εn+1. Given definite values of the x’s, εn+1 can take values [εn+1; 
εn+1+ δεn+1], [εn+1+ δεn+1; εn+1+ 2δεn+1], … The probability that one of these cases will 
occur is equal to the sum of the appropriate probabilities, and the addition is 
accomplished by integrating the expression (39.3) with respect to εn+1 between limits (– 
∞; + ∞). Infinite limits have appeared because of the need to know the probability of 
the combination of the x’s given any arbitrary value of εn+1. 
    When integrating, the essence of U in equation (39.3) persists, εn+1 vanishes from V 
and W, and a new factor not including either any xi or any εj appears in the constant 
term. Reasoning similarly in respect to all the magnitudes εn+2,…, εm, we will have, 
after (m – n) integrations, an expression of the previous type as far as the x’s are 
concerned but lacking the magnitudes εn+1, εn+2,…, εm. Therefore, the probability that 
the x’s will be contained within intervals [x1; x1+ δx1], [x2; x2+ δx2], …, [xn; xn+ δxn] is 
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    The law of large numbers ensures that, given a large number of trials, the frequency 
of a phenomenon approaches [is near to] its probability. Formula (39.4) is thus an 
expression for the frequency of the phenomenon as well; it indicates the relative 
number of cases in which all the x’s are contained at the same time in those intervals.  
    Suppose that there are N cases in all, then the frequency of distribution will be 
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    The right side is the normal distribution function

39.2
 of n magnitudes correlatively 

connected one with another. 
 

40. The main properties of the normal distribution function.  

The Edgeworth theorem 
    Let x2, x3, …, xn take definite values; x1 can take various values, but, as we shall see, 
their arithmetic mean will be a function of the other x’s. Indeed, isolating in (39.5) all 
the terms containing x1, we will have 
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Here, V is a quadratic function of those other x’s, constant according to our condition. 
Denote terms not containing x1 by W, then 
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However, for given x2, x3, …, xn W is constant, and under the conditions stated the 
distribution of x1 is Gaussian40.1:  
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    As proved in § 9, the arithmetic mean of all the values of x1, given all the other x’s, 
will be 
 

    13 112
2 3

11 11 11

... n
n

a aa
X x x x

a a a
= − − − −                                                                     (40.1) 

 
and the standard deviation 
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    We immediately arrive at an important result:  
    A. Given the normal distribution, regression is strictly linear. 
    B. The particular standard deviation is the same for all the arrays. 
    Under these conditions (see § 18) the mean [square] error of determining one 
variable through the other ones is equal to a particular standard deviation, so that 
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    Let us apply the obtained results for deriving the Edgeworth theorem that establishes 
the dependence between the coefficients of the exponential function in the equation of 
the normal distribution on the one hand, and correlation coefficients and standard 
deviations on the other hand. 
    We proved, see § 37, that any equation of linear regression can be written down as 
(37.3). Comparing it with the equation of linear regression given a normal distribution 
(40.1) we will find that 
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    Then, comparing the expression for the mean [square] error (37.4) with (40.2) we 
will have 
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    Inserting the obtained magnitudes in formula (39.5), we will have it in an elegant 
form 
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which is indeed the Edgeworth theorem. It remains to derive C. [After very much work 
Slutsky gets 
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41. On the probability of a system of deviations  

correlatively connected with each other 
    Here, I wish to explicate one of the most splendid and at the same time important 
applications of the theory of normal correlation (Pearson 1900). Suppose we have a 
system of magnitudes correlatively connected with each other with arithmetic means h1, 
h2, …, hn, standard deviations σ1, σ2, …, σn and deviations from means x1, x2, …, xn. Let 
the deviations, as it actually often occurs, follow the Gaussian law so that their 
distribution will obey equation (40.3) with C provided by (40.4).  
    Various combinations of these magnitudes occur with differing frequencies and 
therefore have different probabilities whose values depend on the exponent of the 
function in (40.3). If that function is constant, the probability of a certain combination 
of the x’s will not change, nor will it depend on any changes of the individual x’s. 
Therefore, if χ2 = Const, the equation 
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will provide all the possible equally probable values of the deviations41.1. 
    For the sake of brevity we will now write (40.3) as 
 
    Z = Z0exp[– (χ2/2)]. 
 
To recall, Z expresses the frequency with which all the combinations of x1, x2, …, xn 
occur satisfying equation (41.1); or, otherwise, all the equally probable (equally often 
occurring) combinations characterized by a definite value of χ2. The number of cases in 
which the first magnitude is contained in interval [x1; x1 + dx1], the second, in  [x2; x2 + 
dx2] etc is equal to 
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    dN = Z0exp[– (χ2/2)]dx1dx2 …. dxn.                                                            (41.2) 
 
    Let us find now the probability that the x’s have any values of the same or lower 
probability than in the given case. Our question reduces to determining the probability 
of all the combinations of the values of x’s for which χ2 is the same as the given one, or 
larger than it. The required probability is equal to the number of all cases in which χ2 is 
equal or greater than its given value divided by the number of all cases in the totality. 
We will find the former number by adding up the expressions similar to (41.2) for all 
the values of x’s beginning with such that provide an χ  equal to its given value and 
taking all those in which χ is greater; that is, for the given χ  to χ = ∞. The latter number 
is determined by adding up the same expressions leading to whichever values of χ from 
0 to ∞. The probability is thus 
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with the limits of integration mentioned above.  
    For simplifying this expression we turn to the geometric representation, see Note 
(41.1). The product of dx1dx2 …. dxn is the elementary volume; it should be multiplied 
by the exponential function, let us say by the density exp (– χ2/2), and all such 
expressions from the surface of the ellipsoid χ to infinity added up. This addition should 
begin by determining the sum of such expressions from a thin ellipsoidal layer [ring] 
between ellipsoids χ and [χ + dχ]. Call its volume dV. Then the mass of the layer will be 
exp (– χ2/2)dV and (41.3) is reduced to  
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    If (41.1) is divided by χ2, the quotient will enter the denominator of each term of 
each sum. The linear dimension of the ellipsoid is proportional to χ, its volume 
proportional to χn and is therefore41.2 equal to V = Cχn so that  
 
    dV = Cnχn–1

dχ 
 
and (41.4) becomes 
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    This is indeed the probability that, because of random circumstances, there can occur 
a system of deviation as, or less probable then the given one. [Simplifying (41.5) 
Slutsky gets for odd and even n respectively] 
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                                        (41.7) 

 
    In calculating these formulas [probabilities] the only difficulties are of a purely 
arithmetical nature, but in most cases even they can be avoided by applying Elderton’s 
tables (1902)41.3 that provide P with sufficient precision, and, for most applications, 
quite sufficient completeness. However, they were compiled under somewhat different 
assumptions. 
    Until now, we assumed that all the n magnitudes, being correlatively connected, were 
mutually independent in the strict functional meaning, whereas the Elderton tables are 
compiled for n1 magnitudes connected by an equation, so that only (n1 – 1) of those 
magnitudes are independent. [We ought therefore to equate n1 = n + 1.]  
 

42. A test for conformity of a theoretical with an empirical distribution 
    Suppose (Pearson 1900) we have a totality whose items are distributed into (n + 1) 
groups according to the value of some indication, and out of each N items let µ1, µ2, …, 
µn+1 in the mean be included in these groups. However, when selecting a sample group 
of N items from the parent population the size of the groups will in general be different: 
m1, m2, …, mn+1. In the mean, for a set of such samples, mi will be equal to µi, but in 
individual cases we will encounter errors [deviations] 
 
    e1 = m1 – µ1, e2 = m2 – µ2, …, e n+1 = m n+1 – µn+1. 
 
    Only n of them are independent because obviously 
 
    e1 + e2 + … + en + en+1 = 0 
 
so that the last one can be calculated given the other ones. Therefore, when applying the 
formulas of the previous section, we should only consider n variables. 
    It is not difficult to prove that the standard deviation of ei, supposing that mi are 
subjected to random variations, will be42.1 
 

    
µ µ

σ (1 )i i
i N

N N
= −                                                                                              (42.1) 

 
and that, according to the main formula of the correlation theory [(16.7)], the 
correlation coefficient between the errors is determined from42.2 
 

    
µ µ

σ σ .i j

i j ijr
N

= −                                                                                                    (42.2) 

 
    Now, the moments r12, r13, …, rij, …, see formulas (42.1) and (42.2), should be 
inserted in the expression for the determinant R (§ 37) which is to be simplified and all 
of its minors Rii and Rii determined42.3. The magnitudes thus obtained ought to be 
inserted into formula (41.1).  
    Pearson had done all that and arrived at a very simple result: 
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Here, the addition should be extended over all the (n + 1) errors. Denote the number of 
groups by n1, then determine the probability sought by χ2 and n1 from the Elderton table 
(1902). If these arguments, χ2 or n1, exceed the boundaries of that table, P 
corresponding to n = n1 – 1 is found by formulas (41.6) or (41.7).  
    Examples. 1. The so-called law of large numbers was repeatedly checked by various 
experiments42.4. Thus, Weldon (Pearson 1900, p. 167) reports that 12 dice were thrown 
26 306 times, and each time the number of dice showing 5 or 6 points was registered, 
see Table42.5. Let us ask ourselves now, how good does the experiment conform to 
theory; is it possible to explain the deviations only by random causes? This question 
cannot be answered by the naked eye, it demands the application of the Pearson test. 
The calculation of χ2 is arranged in the next table42.6 leading to 
 
    χ2 = 43.87241, χ = 6.623625. 
 
    I note that the number of significant digits was obviously larger than necessary; it is 
usually sufficient to calculate χ2 to two, or at most three places after the decimal point. 
There were 13 groups, and 12 independent variables; with the last term on the right side 
χ10/(2·4·6·8·10) being allowed for, (41.7) provides P = 0.000 016. 
    This means that the probability of a system of deviations not more probable than the 
observed is extremely insignificant. Had the experiment been repeated very many times 
under ideal conditions, we would have 62 499 times obtained lesser, and only once the 
same or larger deviations. We can therefore bet 62 499 against 1, i. e., with almost 
absolute certainty, that the dice in that experiment were not precisely made, that the 
results of various throws were not equally probable. 
    The reader sees that the check of a stochastic theorem42.7 was actually a check of the 
physical properties of the dice, which would have probably demanded less time if 
performed by methods of measuring applied in physics. 
    2. I have mentioned many times that the sizes of various parts of the human body are 
usually distributed sufficiently close to the theoretical normal distribution ( to the 
Gaussian law), and I wish therefore to adduce one more pertinent example, the 
distribution of statures of 1052 mothers (Pearson & Lee 1903) [for calculating the test 
of conformity]. Here is the table42.8 providing all the data, necessary for calculating that 
test. A remark should be added here. Each theoretical frequency curve represents a 
continuous function and thus deviates from reality since the size of any group cannot be 
less than unity. It is also conditional because the size of some individuals is located 
exactly on the boundary of two groups and a half of an individual has to be added to 
each of those groups. The theoretical size of a group, however, can be 1/10, 1/100, 
1/1000 and less.  
    This weak point of theoretical curves is indeed revealed in the extreme groups of any 
distribution; theoretical frequencies such as 0.5, 0.3, 0.2 in a number of extreme groups 
should therefore be understood as stating that, for 0.5, in a number of pertinent random 
samples 1 or 0 individuals should occur equally often. For 0.3, […] And each random 
sample ought to include in the mean one individual (0.5 + 0.3 + 0.2) in all the three 
extreme subdivisions taken together. 
    Because of this purely conditional meaning of the fractional magnitudes in the 
extreme groups, it would be a gross mistake to apply the Pearson test considering each 
of them separately. To ensure a comparability of the theoretical and the empirical 
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distributions it is obviously necessary, when applying that test, to unite individuals in 
such groups whose theoretical size will be not less than unity or at least close to it 
(Pearson 1900, p. 164). 
    When applying this consideration to the table above, we will have 17 groups, then χ2 
= 14.47 and the Elderton table (1902) will provide P = 0.56. Having the arithmetic 
mean stature 62.484 inches with standard deviation 2.3904 inches, the function 
 

    
2

2
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exp[ ]
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N x
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−
= −

⋅
 

 
determined by Pearson expressed the size of the group provided that mothers’ statures 
were really distributed according to the Gaussian law. 
    If that formula conformed to reality, in 56 random samples out of 100 we will have 
purely random divergences greater than the observed. The conformity of the empirical 
and the theoretical distributions ought to be thought very satisfactory42.9. 
 

43. A test for conformity of theoretical with an empirical regression line 
    If some magnitudes are not correlated, all the correlation coefficients are zero, the 
determinant R (see beginning of § 37) and all its minors of the type of Rii are unity and 
minors Rij are zero. The equation of distribution [unusual term, also in title of § 39] will 
then be 
 

    
2 2

2
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1
exp[ ],  and χ .
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    The probability of all probable [possible] systems of deviations not higher than that   
of the given one will be determined by the same formulas (41.6) and (41.7) when  
issuing from that value of χ2 and n or from values χ2 and n1 = n + 1 in the Elderton table 
(1902). These considerations directly bear on the regression curve. Indeed, Pearson 
(1905b, p. 13) proved that the errors of the arithmetic mean of an array are not 
correlated with those of another array. It follows that, for deriving the probability of the 
conformity of a theoretical with an empirical regression line we should calculate the 
deviations 
 
    e1 = yx1 – Y1, e2 = yx2 – Y2, … 
 
and the standard deviations of y in separate arrays, 
 
    σnx1, σnx2, … 
 
    The standard deviation of ei is that of the arithmetic mean, and, according to the 
known formula (22.1), equal to 
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= =∑                                                 (43.1, 2) 

 
    We see now that the derivation of the regression curve (§ 28) is the most 
theoretically proper. Indeed, from all curves of a given type the most probable 
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regression curve for which χ2 (43.2) will be the least is that which satisfies the 
condition 
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σ
xi i

xi
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n e
y Y− =∑  

 
i. e., that which we proposed for deriving its coefficients. 
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Additional remarks 

1. On terminology 
    [Slutsky provides considerations mostly concerning the translation of English terms 
into Russian. He believes that Nekrasov’s attempt (1912, pt. 3) to transplant the notion 
of correlation without mentioning that term “does not seem to deserve imitation”, and 
that the term regression is somewhat doubtful: “for a Russian ear, it rings rather 
strange, and even in England itself it cannot fail to seem slightly artificial because of its 
accidental biological origin […]. Future will show whether someone will not be able to 
replace it by a sufficiently apt Russian expression”. (No, it is still with us.)] 

2. On the method of moments 
Pearson’s justification of the method of moments can hardly be recognized as quite 
rigorous. To say nothing about the declared rather than substantiated insignificance of 
the abandoned terms in formula (6.3), the very method of proof based on applying a 
Taylor (or Mac Laurin) series is doubtful. Lakhtin’s attempt (1903, pp. 483 – 488) of a 
more rigorous justification of the method of moments is therefore of interest. 
    For more or less approximately satisfying the condition (6.2) Lakhtin expands 
functions y and Y in infinite series of Legendre polynomials (of spherical functions). 
Such series are more general than the Taylor series: for their convergence it is sufficient 
that these functions taken between given limits were continuous and did not have 
infinitely many extreme points. Statistical curves usually satisfy those conditions. 
    Equating the first n terms of the expansion to zero, Lakhtin derives the main equation 
of the method of moments (6.4.2) for i = 0, 1, 2, …, (n – 1): 
 
    µ0 = µ'0, µ1 = µ'1, µ2 = µ'2, …, µ n–1 = µ'n–1. 
 
[Slutsky does not explain his notation; see, however, § 2.] The abandoned terms can be 
neglected because of the proved convergence of the series. [Just the same, a “declared 
rather than substantiated” statement.] 
 

Tables 
    Tables I – VI show the correlation between the mean monthly prices of rye in 
Moscow, Elets and Samara including also the previous monthly price in Samara [§ 3]. 
The data are those for the years 1893 – 1903, but because of gaps they only concern 
124 months […]. 
    Tables VII – VIII are compiled by issuing from the data in Veselovsky (1909, Suppl. 
4, §§ 2 and 5, pp. 674 – 682) […]. It is my pleasant duty to thank Mr. Dobryden for 
helping me to transfer the data on cards. 
    Table IX is compiled by issuing from materials grouped in Schmitz (1903, pp. 65 – 
69 and 217 – 221) [§ 29]. 
    [The Tables themselves are omitted from the translation.] 
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Notes 

    11.1. An unusual term, repeated below. O. S. 
    11.2. This statement concerns two variables rather than n. O. S. 
    14.1. At the end of § 13 Slutsky applied the term type of regression in another sense. O. S. 
    16.1. This is wrong: the method of least squares possesses certain optimal properties. Slutsky possibly 
followed Markov who, strangely enough, had up to the end of his life defended Gauss’s mature 
justification of that method contradicting himself by denying its properties (Sheynin 2006, pp. 81 and 
84). O. S. 
    16.2. “Given age” is an important restriction lacking in Quetelet’s reasoning. However, Slutsky’s 
examples should have considered the impossibility of an individual having mean weight and mean 
stature. O. S. 
    16.3. Anthropometry is a term introduced on Humboldt’s advice by Quetelet (1870, p. 670) and in 
1871 he also published a French book entitled Anthropométrie. However, for quite a few decades many 
authors continued to use the much more general term anthropology. Macdonell (1902) whose paper 
Slutsky described in § 38 was possibly an exception. O. S. 
    18.1. Slutsky wrote mean error and in general he often omitted the square. Many authors made the 
same mistake: mean error is a definite term of the classical error theory. Note, however, that mean 
square error was indeed introduced in that theory, but not by Gauss. In 1823, in §§ 7 and 8, Gauss had 
introduced variance calling it “medium metuendum, sive simpliciter errorum medium”. Newcomb (1908, 
p. 540) remarked that astronomers “generally designated” the mean square error “as the mean error”.  
    18.2. Slutsky referred to his § 15, apparently to formula (15.1), as I called it. Slutsky had not numbered 
it although he assigned numbers almost to all displayed formulas (consecutively throughout the book). 
His system was at the same time awkward and incomplete. O. S. 
    18.3. An explanation would have been appropriate. O. S. 
    18.4. According to Slutsky, linear regression was accompanied by homoscedastic totalities 
[homoscedastic distributions] which seems to be methodically wrong. O. S. 
    18.5. In itself, this notation is acceptable, but Slutsky greatly complicated it by denoting mean square 
errors in the same way; for example, ∑r often meant the mean square error of the estimate r. I 
experienced difficulties when distinguishing these two cases one from another and in any case I replaced 
∑i by its usual modern symbol. O. S. 
    19.1. There could have been various causes. For example, mothers are less numerous than daughters, 
not all of whom become mothers, and this circumstance could have influenced the result. E. S. 
    20.1. The arithmometer renders an irreplaceable service. In all calculations connected with applying 
the correlation method it is rarely possible or necessary to retain more than two or three significant digits 
in the final results, but the magnitudes playing an intermediate role and needed in further work ought to 
be determined more precisely, so that the errors of calculations will not accumulate and become 
comparable with, or even greater than the probable error of the result. When applying the arithmometer, 
it is not difficult to retain five or even six places after the decimal point and thus to ensure a precise 
coincidence of the results of calculation made by two researchers of the same data. If possible to be 
satisfied by a lower precision, it is advisable to make vast calculations by a good slide rule for reducing 
the work that could have otherwise become excessive. E. S.  
    21.1. The restrictions mentioned just below are not sufficient for the realization of the normal law. O. 
S. The authors of this remarkable memoir arrived at results which they themselves (p. 234) consider only 
approximate. This circumstance ought to become clear even for a layman at least in respect of r when 
understanding that under the Gaussian (the normal) distribution all deviations from + ∞ to – ∞ are 
possible whereas r can only change from 1 to – 1. Its law of distribution will be different. For random 
samples of large size this is of no consequence because considerable deviations are extremely unlikely. 
For very small samples and in problems where large deviations ought to be allowed for, this fact should 
be taken into consideration, see Student (1908). E. S. 
    21.2. Beginners could have falsely concluded that the theory of errors was based on the normal law. O. 
S. 
    22.1. Apart from Pearson & Filon (1898) mentioned above, the following papers ought to be cited: 
Sheppard (1898); Pearson (1902a; 1905b) and Pearson (1903a), a small editorial, indispensable because 
of being written for a broader circle of readers. E. S.  
    22.2. Student(1908, p. 308), see also Hooker (1907, p. 6) and comments on this latter by Edgeworth 
and Yule […]. E. S. 
    23.1. By applying Encke’s table, we find that the probability of a deviation not exceeding, as in the 
first case, more than 2.4 times its probable error, is 0.89450. The probability of a deviation larger in 
absolute value is 0.10550, and that of one larger positive deviation is 0.05275. The probability of the 
contrary event is 0.94725 and the sought ratio of chances is 0.94725/0.05275 = 18/1. 
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    The third case exceeds the boundaries of Encke’s table and we will reason thus. If a magnitude 8.2 
times exceeds its probable error, it will 5.5 (= 0.67449·8.2) times exceed its standard deviation. However, 
according to the Sheppard table (1903) the probability that that magnitude will not deviate in the positive 
direction more than 5.5 times its standard deviation will be 0.999 999 9810, and the ratio will be 0.999 
999 9810/0.000 000 0190 = 53·106/1. E. S. 
    24.1. What did Slutsky mean by general case? For the normal distribution the sample variance and the 
arithmetic mean are independent, this being the Student – Fisher celebrated theorem anticipated by 
Helmert (Sheynin 1995, p. 98) and even Laplace, in the First Supplement to his Théorie analytique des 

probabilités (Sheynin 1977, p. 36). O. S. 
    24.2. There is a misprint in the last term, immediately noticeable since it corrupts symmetry: p20 
should be replaced by p02. E. S.  
    24.3. It is well worth to apply the general formula (24.5) only when asymmetry is very strong, the 
usual formula provides doubtful results and it is extremely important to estimate rigorously the value of 
the obtained correlation coefficient.  
    The moments (the products) pqs ought to be calculated the same way as the usual moments by 

expanding ( )  and ( )q px x y y− −  into a binomial series, multiplying and adding up the results thus 

reducing the central moments pqs to non-central in respect to any axes, of the type 
 

    π .
q s

xy

qs

n x y

N
= ∑  

 
First, the non-central moments πqs are calculated, then the central moments by applying the deduced 
formulas. E. S. 
    25.1. The explicated method is a modification of the difference method applied by Pearson for 
replacing the main and most reliable method of products. In its previous form it was not free from a 
shortcoming since in general it provided somewhat differing values of rxy as compared with the latter. 
See Wright, Lee & Pearson (1907) and Harris (1909). The modified form eliminated the mentioned 
shortcoming. E. S. 
    26.1. Tutubalin (1973, p. 27) reported that a number of mathematicians had experimentally confirmed 
Pearson’s opinion, but he did not refer to anyone. O. S. 
    27.1. I have dropped Slutsky’s Gothic letters replacing them by more usual notation. O. S. 
    27.2. Here, Slutsky added the two last formulas lacking in the expression (7.6). O. S. 
    28.1. Slutsky understands weight (p) exactly in the sense of the theory of errors (and least squares). 
This means that  
 

    
2 2

ξ ξand he assumes that ( ) =( ) . 
var ξ var ξ

C C
p p=  

 
In other words, he believes that varξ2 = (varξ)2 which is wrong. O. S. 
    28.2. The coefficients of the normal equations are very large numbers, and it seems that these are most 
conveniently solved in the following way. At first we only take into account not too many digits and 
calculate a'0, a'1, …, a'm approximately, insert (a'0 + ∆a'0), (a'1 + ∆a'1), … into the equations and find the 
corrections. Estimate their approximate size by the residual free terms; if needed (usually it is not) a next 
step is made […]. E. S. 
    29.1. Slutsky calls both η and η2 correlation ratio, see formula (29.6) below. According to modern 
definition, it is the latter magnitude. O. S. 
    29.2. Slutsky thus indirectly defined the central axis. O. S. 
    31.1. The term not strictly definite (or not perfect) dependence, or common, mutual relations is due to 
Nekrasov (1912), see for example pp. 427, 439. I was unable to make use of this extremely interesting 
work since I have received it during the printing of my own contribution. E. S. [See Foreword, § 2.1.3.] 
    31.2. The same example is in a recent treatise (Smirnov & Dunin-Barkovski 1959, § 9.1.1). O. S. 
    31.3. An ideographic system of writing means that characters (ideograms) signify whole words or their 
significant parts (Chinese hieroglyphics, say). Did many readers understand Slutsky? And his example 
concerning Sirius astonishes. Slutsky should have discussed its proper motion rather than the mysterious 
orbit. More: for us, that motion is connected with the orbit (yes, orbit) of the Sun, but certainly not with 
the Earth’s motion. O. S. 
    31.4. One of Aristotle’s example of a chance event was an intersection of two such chains. Cournot 
(1843, § 40) repeated that explanation, see also his later book (1872/1973, pp. 9 – 10) where he also 
stated that “The idea of hazard […] is the key of (de la) statistics”. 
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    31.5. Another method: Hooker (1901b, p. 603). E. S. 
                  31.6. I allow myself to remark that this problem yet awaits a researcher who will attempt to solve it by 

applying the methods of harmonic analysis that rendered great services in other fields. E. S. 
    32.1. Hooker’s method of “smoothing” the fluctuations is certainly imperfect. Social phenomena are 
not distinguished by strict periodicities so that having, for example, 9 years as the mean period, during 
some nine-years intervals there can occur two maxima or two minima lifting or lowering without 
sufficient cause the level of a given year. A curve thus derived can be smoothened further, by the naked 
eye, say, but a subjective element best avoided will then enter.  
    The best method of “smoothing” is to apply a suitable curve, a parabola for example, whose 
coefficients are not difficult to calculate (§§ 7 – 8 and 27). When determining the correlation coefficients 
by the Hooker method and when applying a curve smoothened by the naked eye, it is in any case 

absolutely necessary to publish a figure of that smoothened curve in a sufficiently large scale without 
which it is impossible to assess the correctness of the work done. E. S. 
    32.2. For references to (yet scarce) attempts to apply the correlation method to economic and social 
problems see Yule (1909). For more complete bibliography, mostly theoretical and biological, see 
Leontovich (1911, pt. 2, pp. 191 – 214). E. S. 
    33.1. Edgeworth (1892) was the first to study the case of n variables with Pearson (1896b) developing 
it further. Our explication is based on Yule’s original paper (1897b) who freed the theory of linear 
regression from unnecessary assumptions. Still, he restricted his study to the cases of two, three and four 
variables. E. S. 
    33.2. Slutsky wrote: “that term will be minimal when…” O. S. 
    34.1. Yule (1897b) mistakenly provided the value 0 which perhaps was a misprint. E. S. 
    34.2. There also (2r

2 – 1) is mistakenly stated. E. S. 
    35.1. In the sequel, Slutsky several times only mentioned the first author, Pearson. O. S. 
    35.2. Pearson & Lee have not explained the possible slight discrepancy between 15

th
 day… and 14 

days. These periods possibly corresponded to different years. O. S. 
    35.3. According to my calculation, the mean square error was 4.1 cop. O. S. 
    36.1. According to the so-called law of the sums of temperatures (Réaumur, in 1738), leaves, flowers 
and fruits come out on plants of a given species after that sum attains certain values. In 1846, Quetelet 
reasonably proposed sums of squares of temperatures instead (Sheynin 1980, pp. 326 – 327). O. S. 
    38.1. Another important work on this subject is Pearson (1899). E. S. 
    39.1. Unusual term. O. S. 
    39.2. Distribution function is a modern term having another meaning. O. S. 
    40.1. The value of C has obviously changed. O. S. 
    40.2. In case of each particular density function that constant can be derived by demanding that the 
area under it be equal to unity. O. S. 
    41.1. From the geometrical viewpoint, (41.1) is an equation of a generalized ellipsoid of equal 
probabilities in an n-dimensional space. To form an appropriate idea it is sufficient to restrict that picture 
to the case of three variables, and, in the sequel, to imagine always a usual ellipsoid. The values of x1, x2, 
x3 (and, in general, x1, x2, …, xn) corresponding to any point on the surface of the ellipsoid are equally 
probable. E. S.  
    41.2. This explanation is hardly sufficient. It is extremely simple, however, to note that a sphere with 
radius R, x2 + y2 + z2 = R2, has volume proportional to R3. O. S. 
    41.3. Slutsky sometimes refers to Elderton’s table in the plural (tables). O. S. 
    42.1. Slutsky explains the derivation of the formula (42.1) below and refers to Chuprov (1909). The 
formula is now generally known. O. S. 
    42.2. The main formula is 
 

    σ σ δµ δµ .i j ij i jN r =∑  

 
However, if the deviations are random, the excessive number of items in the i-th group should be in the 

mean proportionally distributed among the other groups, so that approximately, since the deviations are 
not considerable,  
 

    
µ

δµ δµ
µ

j

j i

iN
= −

−
 

 
and  
 



 95 

    
2 2
µ µ µ µ µµ1

σ σ [δµ ]  σ  µ (1 ) .
µ µ µ

j j j i ji
i j ij i i i

i i i

r
N N N N N N

= − = − = − − = −
− − −∑  E. S. 

 
    42.3. Slutsky explains Pearson’s calculation of R and its minors. O. S. 
    42.4. A check of a mathematical theorem, if proved rigorously, can only mean checking that its 
assumptions are being fulfilled. See also Slutsky’s own adjoining explanation below. O. S. 
    42.5. With the number of dice (0, 1, 2, …, 12) showing 5 or 6 points (or groups 0, 1, …, 12); the 
respective number of cases, theoretical (µ) and observed (m), and the deviations e = m – µ. O. S. 
    42.6. It shows groups 0, 1, …, 12; e2; e2/µ. O. S. 
    42.7. Slutsky mentions the theory of probability (singular) whereas the proper Russian term is theory 

of probabilities. O. S. 
    42.8. The table shows stature in inches 52 – 53, 53 – 54, …, 70 – 71; and the number of mothers, 
actual and theoretical. O. S. 
    42.9. An unsubstantiated statement. O. S.  
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