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Abstract

It is well known that a Bayesian probability forecast for all future observations
should be a probability measure in order to satisfy a natural condition of coher-
ence. The main topics of this paper are the evolution of the Bayesian probability
measure and ways of testing its adequacy as it evolves over time. The process of
testing evolving Bayesian beliefs is modelled in terms of betting. The resulting
picture is adapted to forecasting several steps ahead and making almost optimal
decisions.

This paper has also been published as an arXiv report.
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1 Introduction

Consider a Bayesian forecaster predicting future observations. Two standard
examples, which can be considered as the opposite ends of a spectrum, are
where the observations are outcomes of coin tosses (for a possibly biased coin)
and where the observations are “dry” or “rain” for a number of consecutive
days. Let us take the standard Bayesian position, due to de Finetti [1937, 2017]
and discussed by, e.g., Bernardo and Smith [2000, Sect. 4.1], that the Bayesian’s
beliefs about the future observations should be encoded as a probability measure
on the sequences of observations.

Therefore, we assume that at each point in time the Bayesian has a prob-
ability measure representing his beliefs for the future observations. In this pa-
per we are interested in how the Bayesian’s probability measure changes over
time. We will formalize such a prediction picture as various prediction pro-
tocols. Some prediction protocols are comprehensive in that they record all
information that the Bayesian gets, and then it is natural for the Bayesian to
condition on the new information in the usual sense of probability theory [Kol-
mogorov, 1933, Sect. I.4]. This procedure for updating the Bayesian’s beliefs
is known as “Bayesian conditioning” [Bayes, 1763, Shafer, 1982, 2022]. Lewis
[1999] derives Bayesian conditioning as updating rule via his diachronic Dutch
book argument, which relies on the prediction protocol being comprehensive.
In Sect. 2 we will discuss the narrowness of comprehensive prediction protocols
and, therefore, of Bayesian conditioning. While devising comprehensive predic-
tion protocols is feasible in coin-type situations, it is not in weather-type ones
(cf. the first paragraph of this section).

Section 3 proposes a testing protocol based on betting for the evolving
Bayesian probability measure. This protocol is given in terms of observables
and does not depend on Bayesian conditioning. It is very much in the spirit of
the work on game-theoretic probability [Shafer and Vovk, 2019, Dawid and Vovk,
1999, Vovk, 1993] and the recent discussion papers by Shafer [2021], Waudby-
Smith and Ramdas [2024], and Grünwald et al. [2024] promoting game-theoretic
statistics. While standard game-theoretic probability only deals with one-step
ahead prediction, this paper extends it to predicting the full future. This leads
to various conceptual and technical complications.

A discussion of connections with the standard measure-theoretic picture of
probability and statistics follows in Sect. 4. The measure-theoretic picture will
typically be an imaginary picture that does involve Bayesian conditioning (which
may be happening deeply inside the imaginary picture, far from what we can ob-
serve). The main finding of this section is the equivalence of the game-theoretic
and measure-theoretic pictures for finite probability spaces. However, this the-
oretical vindication of Bayesian conditioning is very remote from what we can
observe in our prediction protocols.

Section 5 adapts the testing protocol of Sect. 3 to predicting K steps ahead,
which generalizes the caseK = 1 considered earlier in game-theoretic probability
(e.g., Shafer and Vovk, 2019, Dawid and Vovk, 1999, Vovk, 1993). Section 6
applies the K-steps-ahead testing protocol to making nearly optimal decisions,
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and Sect. 7 concludes.
Appendixes A–F provide further information. The key one is Appendix A

giving the proofs. Appendix B discusses a seemingly more general (but in
fact equivalent) testing procedure, and Appendix D discusses Jeffrey’s radical
probabilism in the context of testing diachronic Bayesian predictions.

This paper was inspired by Philip Dawid’s brief discussion of one-step-ahead
prediction [Vovk and Shafer, 2025, Sect. 7], and its title is adapted from Dawid
[1982] (being well-calibrated is an important aspect, namely the frequency as-
pect, of agreement with reality). Its other source is Dawid’s super-strong pre-
quential principle [Dawid and Vovk, 1999, Sect. 5.2]. This principle requires that
our testing protocol based on betting must agree with the measure-theoretic pic-
ture, regardless of the imagined data-generating distribution.

1.1 Completely predictive approach

A very common Bayesian picture is where, instead of one probability measure P
over the observations, the Bayesian’s beliefs are modelled as a statistical model
{Pθ | θ ∈ Θ} combined with a prior probability measure µ on Θ. A standard
Bayesian point of view [Bernardo and Smith, 2000, Chap. 4] is that we should
start from one probability measure P and only then, if this is more convenient,
e.g., mathematically, represent it as integral P =

∫
Pθµ(dθ). An example is

the application of de Finetti’s theorem to coin tossing, guaranteeing that any
exchangeable probability measure P can be represented as a mixture

∫
Pθµ(dθ)

of probability measures Pθ corresponding to independent and identically dis-
tributed observations. The case of one probability measure P is simpler and
more fundamental. In Lindley’s words, “We should be concentrating not on
Greek letters but on the Roman letters” (i.e., not on θs, parameter values, but
on the xs and ys, observables) [Vovk and Shafer, 2025, Sect. 7]. This view is
sometimes called the completely predictive approach [Piccinato, 1986].

1.2 Notation and terminology

If a and b are finite sequences (of some elements), we write a ⊆ b to mean that a
is a prefix of b, and we write a ⊂ b to mean that a ⊆ b and a ̸= b. If a ⊆ b, b \ a
is the sequence obtained from b by crossing out its prefix a. The concatenation
of a and b is written simply as ab; we use the same notation when a or b (or
both) are elements; if B is a set of elements or finite sequences, aB stands for
{ab | b ∈ B}. The length of a finite sequence a is denoted by |a|; in particular,
|□| = 0 for the empty sequence □.

If a and b are numbers, a ∧ b := min(a, b).
In our terminology we will mainly follow Shiryaev [2016, 2019]. A finite

probability space is a pair (Ω, P ), where Ω is a finite set, implicitly equipped
with the σ-algebra F of all subsets of Ω, and P is a probability measure on
(Ω,F). Let us say that (Ω, P ) is positive if the probability of each sample point
is positive, P ({ω}) > 0 for all ω ∈ Ω. We let EP stand for the expected value
under P .
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We will also use the following notation:

• P(A) is the set of all positive probability measures on a finite set A;

• if P ∈ P(YK) and x ∈ Yk for a finite set Y and k ≤ K,

P (x) := P (xYK−k); (1)

• if P ∈ P(YK), x ∈ Yk, and x′ ∈ Yk′
for a finite set Y and k + k′ ≤ K,

P (x′ | x) := P (xx′)

P (x)

(under our definitions the denominator will always be positive).

A filtration (Fn) in a finite probability space (Ω, P ), where n ranges over a
contiguous set of integers, is an increasing sequence of σ-algebras in Ω, Fn1

⊆
Fn2

when n1 ≤ n2. We say that a sequence (Yn) of random variables in (Ω, P ) is
adapted if Yn is Fn-measurable for all n; it is predictable if Yn is Fn−1-measurable
for all n. We will mainly concentrate on finite probability spaces.

In this paper I will ignore any distinctions that are sometimes made between
“forecast” and “prediction” and will regard these words as synonymous. I will
never use more exotic words such as “prevision” [de Finetti, 2017, Sect. 3.1.2].

Following Shafer and Vovk [2001, 2019] I use “game-theoretic” to refer to
being based on betting, and the kind of game theory involved here is the theory
of perfect-information games rather than the probabilistic games studied in,
e.g., economics (see, e.g., Shafer and Vovk 2019, Sect. 4.5).

1.3 Dramatis personae

These are the players in our prediction protocols (most of the protocols involve
subsets of players).

• Reality (female): player who chooses sequential observations y1, y2, . . . ,
which are elements of the observation space Y (assumed finite).

• Forecaster (male): player who issues probabilistic forecasts for the future
observations.

• Sceptic (male): player who gambles against Forecaster’s predictions. In-
formally, he is trying to discredit Forecaster.

• Decision Maker (female): player who makes decisions in light of Fore-
caster’s predictions.

The players’ sexes are defined in Shafer and Vovk [2019]. The noun “Bayesian”
will often be used as nearly synonymous with “Forecaster”, and so the Bayesian
is male.
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2 Basic prediction picture

We are interested in the following sequential Bayesian prediction protocol.

Protocol 2.1.
FOR n = 1, . . . , N :

Forecaster announces Pn ∈ P(YN−n+1)
Reality announces the actual observation yn ∈ Y.

In this paper we only consider the case of a finite time horizon N > 1. At
each step n, Pn is a prediction for the whole future ynyn+1 . . . yN (sequence of
length N − n + 1). Earlier we referred to Forecaster as “Bayesian”, in order
to emphasize that his predictions are complete probability measures over the
future observations (while in earlier work we often considered less complete
predictions: see, e.g., Shafer and Vovk 2019, Preface, point 2). Forecaster qua
Bayesian is diachronic, as his beliefs evolve sequentially over time.

Protocol 2.1 does not define a game, since we have not specified the players’
goals, but we will often talk about the plays P1y1 . . . PNyN proceeding according
to the protocol’s rules.

Let us assume, for simplicity, that the set Y is finite (and equipped with the
discrete σ-algebra); this will allow us to concentrate on conceptual issues avoid-
ing technical difficulties and ambiguities (such as countable vs finite additivity).
To exclude trivialities, we also assume |Y| > 1.

In addition, we impose the requirement that Pn(E) > 0 unless E = ∅. This
is a version of Lindley’s “Cromwell’s rule” [Lindley, 1985, Sect. 6.7].

Protocol 2.1 goes beyond Bayesian conditioning, where we insist that, for
each n ≥ 2,

Pn(x) := Pn−1(x | yn−1) :=
Pn−1(yn−1x)

Pn−1(yn−1)
, x ∈ YN−n+1. (2)

Bayesian conditioning (as rule for updating beliefs) was criticised by Hacking
[1967], since the rule ignores the cost of thinking. Lewis [1999] points out
that “we should sometimes respond to conceptual discoveries by revising our
beliefs”. However, the most straightforward reason for violating (2) is that at
step n Forecaster can also learn other information apart from yn (i.e., learn
information outside the protocol). Bruno de Finetti [2017] stated this objection
in this way:

It would be wrong. . . to state, or to think, in a superficial manner,
without at least making sure that these explanations are implicit,
that P (E|H) is the probability of E once H is known. In general, by
the time we learn that H has occurred, we will already have learnt
of other circumstances that might also influence our judgement. In
any case, the evidence that establishes that H has occurred will it-
self contain, explicitly or implicitly, a wealth of further detail, which
will modify our final state of information and, most likely, our prob-
abilistic judgement.
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This objection was also discussed at length by Shafer [1985]. And when pre-
senting his diachronic Dutch book argument for Bayesian conditioning, Lewis
[1999] emphasized that the observations on which we condition should “specify,
in full detail, all the alternative courses of experience you might undergo”.

Let me give an example where Bayesian conditioning is utterly unrealistic
as an updating rule, because we can’t hope to have a comprehensive protocol
including all the information a real-life Bayesian has access to. Consider the
standard case [Dawid, 1982, 2006] of a weather forecaster who issues a prob-
ability for the rain on sequentially numbered days. The observations are the
actual outcomes, say 0 or 1 (encoding a dry or rainy day). In the morning of
day 1 the forecaster announces a joint probability for the future observations
(for days 1, 2, . . . ) as his forecast, and in the morning of day 2 he announces
a new forecast, for days 2, 3, . . . . We can’t assume that the 0/1 observation
on day 1 is all the extra information that he has in the morning of day 2: a
serious weather forecaster, such as the UK Met Office, will have plenty of other
information arriving from weather stations around the globe (and even from
outer space). The prediction protocol is open in that the forecaster is flooded
with information coming from outside the protocol. This is a common situation;
to quote Goldstein [1983, Sect. 4], “in most cases of interest (e.g., the doctor’s
examination of the patient) it is unreasonable to suppose that, even in princi-
ple, there is a partition of possibilities over which probabilities and conditional
probabilities could, in theory, be defined.” We will sometimes use the notation
Fn−1 (formally this is a σ-algebra) for the information available when making
the prediction Pn at time n, albeit in many cases this will be an unmanage-
able notion that is even difficult to imagine (while the moves in our prediction
protocols will be observable).

Remark 2.2. Obviously, we can’t include the data arriving from weather stations
around the globe in a realistic prediction protocol, but we can go further and
argue that even our picture is unrealistic for a large time horizonN : e.g., the first
probability measure P1 ∈ P(YN ) specifies |Y|N − 1 independent parameters,
and this number grows exponentially in N even for |Y| = 2. In Sect. 5 we
consider a more realistic setting of forecasting K steps ahead (such as a week
ahead for K = 7).

Remark 2.3. Another reason why we might want to consider a Bayesian violat-
ing Bayesian conditioning when updating his beliefs is that his computational
resources might be limited: he might keep processing information already avail-
able at the previous steps obtaining new values for probabilities of the same
events. This is a special case of Hacking’s (1967) observation mentioned earlier.

3 Testing probability forecasts

Long-term prediction is much more complicated than one-step-ahead prediction,
and to have a clear understanding of the process we will use two pictures, which
we call game-theoretic and measure-theoretic (following Shafer and Vovk 2019).
The game-theoretic picture is based on betting. In this section we discuss the

5



game-theoretic picture, and in the next one (Sect. 4) we move on to the measure-
theoretic picture.

In the game-theoretic picture we add a third player, Sceptic, to the basic
forecasting protocol. “Sceptic” is just our name for the better, and betting
proceeds according to the following protocol (the intuition behind this protocol
will be explained shortly).

Protocol 3.1.
K0 := 1
FOR n = 1, . . . , N :

Forecaster announces Pn ∈ P(YN−n+1)
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈YN−n+1 fn−1(yn−1x)Pn(x)
−
∑

x∈YN−n+2 fn−1(x)Pn−1(x) (3)
Sceptic announces fn : YN−n+1 → R
Reality announces yn ∈ Y
IF n = N :

Kn := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn(y). (4)

Sceptic’s capital Kn (with an initial capital of 1) is not allowed to become
negative (as soon as it does, the play is stopped and Sceptic loses). We regard
this protocol (and similar protocols below) as a way of testing Forecaster’s
predictions: a large KN means lack of agreement of his predictions with reality.

The interpretation of Protocol 3.1 is that at each step n Forecaster announces
the price Pn(x) for the uncertain quantity 1{(yn,...,yN )=x} for each x ∈ YN−n+1.
We imagine a ticket that pays 1{(yn,...,yN )=x} at the end of the play, and so Pn(x)
is Forecaster’s price (at which he prepared to sell and to buy) for this ticket,
which we will call ticket x. After Forecaster’s move Pn Sceptic buys, for each
x ∈ YN−n+1, some tickets from Forecaster, and fn(x) stands for the number
of tickets x that he chooses to buy (the number can be positive, negative, or
zero). Sceptic pays

∑
x∈YN−n+1 fn(x)Pn(x) for the transaction. If n is not the

last step, at the next step Forecaster announces a new Pn, and Sceptic sells all
his tickets at the new prices. Then Sceptic buys a new set of tickets at the new
prices, etc. (An important special case is where the new set of tickets coincides
with the old set, so effectively no trade happens and Sceptic just keeps the old
set.) The change in his capital at step n < N is summarized in (3):

•
∑

x∈YN−n+1 fn−1(yn−1x)Pn(x) is the amount he gains at this step by sell-
ing, at the current prices Pn, the tickets that he bought at the previous
step; notice that only tickets yn−1x will have non-zero prices;

•
∑

x∈YN−n+2 fn−1(x)Pn−1(x) is the amount paid for those tickets at the
previous step.

At the last step he just cashes in the winning ticket yN : see (4).
The next proposition describes the set of admissible moves for Sceptic at

step n (see Sect. A.1 for a simple proof). Assume, without loss of generality,∑
x∈YN−n+1 fn(x)Pn(x) = 0 for all n (there is no loss in generality since additive
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constants in fn cancel out and do not contribute to the change in Sceptic’s
capital).

Proposition 3.2. Sceptic’s move fn at step n = 1, . . . , N of Protocol 3.1 guar-
antees Kn ≥ 0 if and only if fn ≥ −Kn−1.

3.1 Comparison with Bayesian conditioning

How does (3) compare with Bayesian conditioning, where no new information
outside the protocol arrives and we just define Pn by (2)? In this case we can
simplify the protocol by replacing Sceptic’s moves fn with f ′

n : Y → R defined
by

f ′
n(y) :=

∑
x∈YN−n

fn(yx)Pn(x | y), (5)

and then (3) becomes

Kn−1 := Kn−2 + f ′
n−1(yn−1)−

∑
y∈Y

f ′
n−1(y)Pn−1(y).

Moving this statement to the previous step, we can rewrite Protocol 3.1 as

Protocol 3.3.
K0 := 1
FOR n = 1, . . . , N :

IF n = 1:
Forecaster announces P1 ∈ P(YN )

ELSE:
Forecaster updates Pn−1 ∈ P(YN−n+2) to Pn ∈ P(YN−n+1)

by Bayesian conditioning (2)
Sceptic announces f ′

n : Y → R
Reality announces yn ∈ Y
Kn := Kn−1 + f ′

n(yn)−
∑

y∈Y f ′
n(y)Pn(y).

This is our standard one-step-ahead prediction protocol (cf., e.g., Shafer
and Vovk 2019, Protocol 1.1) except that Forecaster announces his forecasting
strategy in advance. We can see that forecasting multiple steps ahead does not
require any new methods under Bayesian conditioning: testing can proceed one
step ahead.

Without any restrictions on Forecaster, we obtain, instead of Protocol 3.3,
the following protocol equivalent (in the sense of leading to the same capitals
Kn) to Protocol 3.1, in which we still use the notation f ′

n (see (5)).

Protocol 3.4.
K0 := 1
FOR n = 1, . . . , N :

Forecaster announces Pn ∈ P(YN−n+1)
IF n > 1:
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Kn−1 := Kn−2 +
∑

x∈YN−n+1 fn−1(yn−1x)(Pn(x)
− Pn−1(x | yn−1)) (6)

Sceptic announces fn : YN−n+1 → R
Reality announces yn ∈ Y
Kn := Kn−1 + f ′

n(yn)−
∑

y∈Y f ′
n(y)Pn(y). (7)

Protocol 3.4 adds to Protocol 3.3 the possibility to update Pn is a way
different from Bayesian conditioning and includes a term that describes bet-
ting on the difference between the actual forecast Pn(x) and the Bayesian
conditional probabilities Pn−1(x | yn−1) computed from the previous fore-
cast. The equivalence of Protocols 3.1 and 3.4 follows from the equality, for
n < N , of the addend f ′

n(yn) in line (7) of Protocol 3.4 and the subtrahend∑
x∈YN−n+1 fn−1(yn−1x)Pn−1(x | yn−1) in line (6) of that protocol at the next

step.

3.2 Merging Sceptic’s opponents

If we are only interested in strategies for Sceptic (not in strategies for other
players, as in Shafer and Vovk 2019, Preface, ideas 3 and 6) we can simplify
Protocol 3.1 further by merging Forecaster and Reality. We will refer to the com-
bined player as Forecaster (rather than World, as in Shafer and Vovk 2001, 2019,
for agreement with our discussion of Jeffrey’s radical probabilism in Sect. D.1
of Appendix D). Let Pn(Y

N ) be the set of all probability measures Q on YN

satisfying Q(x) = 1 for some x ∈ Yn−1.

Protocol 3.5.
K0 := 1
FOR n = 1, . . . , N,N + 1:

Forecaster announces Qn ∈ Pn(Y
N )

IF n > 1:
Kn−1 := Kn−2 +

∑
x∈YN Fn−1(x)(Qn(x)−Qn−1(x)) (8)

Sceptic announces Fn : YN → R.

To embed Protocol 3.1 into Protocol 3.5, we should take as Qn the extension
of Pn to YN , namely

Qn(x) :=

{
Pn(x \ (y1 . . . yn−1)) if (y1 . . . yn−1) ⊆ x

0 otherwise,
(9)

and we should take as Fn the extension of fn to YN , namely

Fn(x) :=

{
fn(x \ (y1 . . . yn−1)) if (y1 . . . yn−1) ⊆ x

u otherwise,

where, e.g., u := 0 (but in fact the value of u does not matter as it is always mul-
tiplied by 0 in the embedded protocol, and we can use different us for different
n and x).

Protocol 3.5 lasts for N+1 rather than N steps in order for KN to be defined
by (8). Sceptic’s last move FN+1 is never used.
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4 Measure-theoretic picture

This section may be skimmed or skipped completely; the remaining sections do
not depend on it.

The measure-theoretic picture is stochastic and assumes an overall probabil-
ity measure used by Forecaster and Reality for generating their moves. In other
words, it is just the standard measure-theoretic framework [Kolmogorov, 1933,
Doob, 1953] for probability. In this section we will define testing in the measure-
theoretic picture and will see that it is equivalent to (albeit more complicated
and less natural than) testing in the game-theoretic picture, i.e., the testing pro-
cedure described in the previous section. Similar results have been established
in game-theoretic probability in the case of one-step-ahead prediction; see, e.g.,
Shafer and Vovk [2019, Theorem 9.7].

Our check of equivalence will have two sides: the validity of the game-
theoretic picture in the measure-theoretic framework, and the validity of a nat-
ural measure-theoretic picture in the game-theoretic framework. In our proofs
in Appendix A (Sect. A.2) we will use a standard theorem of duality; in general,
it can be said that the measure-theoretic and game-theoretic pictures are dual
to each other in a certain sense.

What exactly do I mean by equivalence? The idea is to show that we have
identical ways of gambling in both pictures. On the measure-theoretic side, we
have the standard notion of measure-theoretic martingale (defined later in the
section), and we define a test martingale as nonnegative martingale with initial
value 1. On the game-theoretic side, a game-theoretic test martingale is Sceptic’s
capital Kn (for all possible n), for a fixed strategy for Sceptic, as function of
Forecaster’s and Reality’s moves provided this function is nonnegative. Roughly,
the equivalence means the equivalence of the two notions of test martingale, but
the exact statement will become clear in the process of its demonstration (when
we reach Proposition 4.1).

4.1 Validity of the game-theoretic picture

Let (Ω, P ) be a finite probability space equipped with a filtration Fn, n =
0, 1, . . . . Intuitively, we regard Fn−1 as the information available to Forecaster
and Sceptic at the beginning of step n in Protocol 3.1. For concreteness, let
us assume that all new information (including yn, which is part of the new
information) arrives at the end of step n and none arrives between the steps;
therefore, Fn, n = 1, 2, . . . , is the information available at the end of step n.

In the measure-theoretic framework for Protocol 3.1, we assume that
y1, . . . , yN are realizations of an adapted Y-valued process Y1, . . . , YN (mean-
ing, as usual, that Yn is Fn-measurable, n = 1, . . . , N), that each Pn is
computed from P as the conditional probability measure for Yn given Fn−1,
and that Sceptic follows a predictable strategy (where “predictable” has the
technical meaning that fn(x) is Fn−1-measurable for each x). Sceptic’s capital
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Kn is then an adapted process, and we have

Pn(x) = P ({Yn . . . YN = x} | Fn−1) a.s., x ∈ YN−n+1. (10)

Now the increment (3) in Sceptic’s capital is

Kn−1 −Kn−2 =
∑

x∈YN−n+1

fn−1(Yn−1x)P ({(Yn, . . . , YN ) = x} | Fn−1)

−
∑

x∈YN−n+2

fn−1(x)P ({(Yn−1, . . . , YN ) = x} | Fn−2)

= EP (fn−1(Yn−1, . . . , YN ) | Fn−1)− EP (fn−1(Yn−1, . . . , YN ) | Fn−2) ,

and so we have
EP (Kn−1 −Kn−2 | Fn−2) = 0 a.s. (11)

The exceptional (for n = N) increment (4) is

Kn −Kn−1 = fn(Yn)− EP (fn(Yn) | Fn−1),

which gives the analogue

EP (Kn −Kn−1 | Fn−1) = 0 a.s.

of (11). Therefore, K0,K1, . . . ,KN is a measure-theoretic martingale w.r. to the
filtration (Fn): EP (Kn | Fn−1) = Kn−1, n = 1, . . . , N .

4.2 Validity of the measure-theoretic picture

A non-terminal situation in Protocol 3.1 (and also in Protocol 2.1) is a tuple
(P1, y1, . . . , Pn) for some n ∈ {1, . . . , N}, where yi ∈ Y and Pi ∈ P(YN−i+1)
for all i. Informally, this is a situation in which Sceptic makes a move. A
terminal situation is a tuple (P1, y1, . . . , PN , yN ), where again yi ∈ Y and
Pi ∈ P(YN−i+1) for all i. Non-terminal situations and terminal situations are
referred to collectively as situations. A strategy for Sceptic can be defined as a
function mapping the non-terminal situations to an allowed move, namely map-
ping a situation (P1, y1, . . . , Pn) to f : YN−n+1 → R in the case of Protocol 3.1.
For a fixed strategy for Sceptic his capital becomes a real-valued function of a
situation; as mentioned earlier, we refer to such functions as game-theoretic test
martingales provided they are nonnegative.

A game-theoretic process is a Borel measurable real-valued function of a situ-
ation. A nonnegative game-theoretic process S is a visible measure-theoretic test
martingale if, for any finite probability space (Ω, P ) equipped with a filtration
(Fn)

N
n=0 and any adapted sequence of random variables Y1, . . . , YN ,

Sn := S(P1, Y1, . . . , Pn+1), n = 0, . . . , N − 1,

SN := S(P1, Y1, . . . , PN , YN )
(12)

10



is a test martingale in the usual sense of S0 = 1 and

EP (Sn | Fn−1) = Sn−1, n = 1, . . . , N, (13)

where the Pi in (12) are defined by (10), which becomes

Pi(x) := P ({Yi . . . YN = x} | Fi−1) , x ∈ YN−i+1,

in our current notation. The adjective “visible” refers to the martingale (Sn)
depending only on the players’ moves in Protocol 2.1 (and not depending on
the hidden aspects of the realized sample point ω ∈ Ω).

The following statement of agreement between the game-theoretic and
measure-theoretic pictures will be proved in Sect. A.2.

Proposition 4.1. A game-theoretic process is a game-theoretic test martingale
if and only if it is a visible measure-theoretic test martingale.

Proposition 4.1, however, has a weakness. Let us say that a game-theoretic
process is a game-theoretic test supermartingale if it can be obtained as Scep-
tic’s capital while he is allowed to discard part of his capital at each step (but
is still not allowed to go into debt). For example, in the case of Protocol 3.1
this corresponds to replacing (3) and (4) by Sceptic’s moves allowing him to
choose Kn−1 and Kn, respectively, as any nonnegative number not exceeding
the corresponding right-hand side. And a game-theoretic process is a visible
measure-theoretic test supermartingale if it is defined in the same way as a visi-
ble measure-theoretic test martingale except that the “=” in (13) is replaced by
“≤”. The notion of a game-theoretic test supermartingale is obviously redun-
dant, in the sense of every game-theoretic test supermartingale being dominated
by a game-theoretic test martingale. But the requirement (13) holding for any
finite probability space might appear restrictive, and so it is less obvious that
measure-theoretic test supermartingales are redundant in this sense. Therefore,
in Sect. A.2 we will start from proving the following modification of Proposi-
tion 4.1.

Theorem 4.2. A game-theoretic process is a game-theoretic test supermartin-
gale if and only if it is a visible measure-theoretic test supermartingale.

This theorem implies that every visible measure-theoretic test supermartin-
gale is dominated by a visible measure-theoretic test martingale. We will also
check this directly in Sect. A.2.

Remark 4.3. This section illustrates the “hidden variable” account of belief
change (Adams, 1975, Chap. 4, note 14, Diaconis and Zabell, 1982, Theorem 2.1,
Skyrms, 1992, Sect. 1), according to which belief update is Bayesian conditioning
in a bigger belief space.

5 Predicting K steps ahead

For a large time horizon N , the protocols considered in the previous sections are
unrealistic in that Forecaster is asked to produce probability measures on huge
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sets such as YN . Starting from this section, we will assume that all predictions
made by Forecaster are only for the next K < N observations, with K ≥ 1,
and we will sometimes refer to K as the prediction horizon. We are typically
interested in the case K ≪ N .

We can still use the Bayesian prediction protocol (Protocol 2.1), but now
Sceptic is not allowed to bet more than K steps ahead. In terms of Protocol 3.1,
the function fn : YN−n+1 → R depends on its argument (yn, . . . , yN ) only
via its first K elements yn, . . . , yn+K−1 (let us assume for the moment that
n + K − 1 ≤ N). Writing fn(yn, . . . , yn+K−1) instead of fn(yn, . . . , yN ), we
obtain the following modification of Protocol 3.1.

Protocol 5.1.
K0 := 1
FOR n = 1, . . . , N :

Forecaster announces Pn ∈ P(YN−n+1)
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈Y(K−1)∧(N−n+1) fn−1(yn−1x)Pn(x)
−
∑

x∈YK∧(N−n+2) fn−1(x)Pn−1(x)

Sceptic announces fn : YK∧(N−n+1) → R
Reality announces yn ∈ Y
IF n = N :

Kn := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn(y).

Of course, we obtain an equivalent protocol if we replace Pn ∈ P(YN−n+1) by
Pn ∈ P(YK∧(N−n+1)) in the third line, and this replacement would eliminate
an irrelevant part of Pn. Alternatively, we obtain an equivalent protocol if we
require Pn ∈ P(YK).

Remark 5.2. In the example of weather forecasting one week ahead (cf. Re-
mark 2.2), the predictions Pn ∈ P(YK) are quite different from the predictions
produced by a typical weather app. Weather apps produce marginal probabili-
ties of rain whereas the probabilities in Pn ∈ P(YK) are joint. Testing marginal
probabilities is easier than the kind of testing exemplified by Protocol 5.1. See
Vovk [2023] for details.

6 Bayesian decision making

Why do we need long-term forecasts? One reason is that they facilitate nearly
optimal decisions.

6.1 An optimality result for the Bayes decision strategy

Consider the following decision-making protocol.

Protocol 6.1.
FOR n = 1, . . . , N :

Reality announces λn : D×YN−n+1 → [0, 1]

12



Decision Maker announces dn ∈ D
Reality announces the actual observation yn ∈ Y.

At each step n Decision Maker is asked to choose a decision dn from a finite
set D of permitted decisions. Before that, Reality announces a loss function λn

determining Decision Maker’s loss

λn(dn, yn . . . yN ) ∈ [0, 1]

at this step. In applications the loss functions are usually given in advance, but
we include them in the protocol in order to weaken the conditions of our math-
ematical result (Theorem 6.5 below). The loss functions are assumed bounded
and scaled to the interval [0, 1]. The total loss can be computed only after the
last step and equals

LossN :=

N∑
n=1

λn(dn, yn . . . yN ) ∈ [0, N ]. (14)

Of course, LossN is a function of Reality’s and Decision Maker’s moves, but we
will leave the arguments of LossN implicit.

A strategy for Decision Maker in Protocol 6.1 is a function giving a deci-
sion dn at each step n as function of Reality’s previous moves y1, . . . , yn−1 and
λ1, . . . , λn. It would be ideal to have a strategy A for Decision Maker that
is provably either better than any other strategy B or approximately equally
good, but this is clearly impossible; we need a qualification of the type “with
high probability”, and our decision making protocol is too poor to express it.

As a first step towards the goal of designing an optimal (in some sense)
strategy for Decision Maker, we add a new player, Forecaster, to Protocol 6.1.
The following protocol is a combination of Protocols 6.1 and 2.1.

Protocol 6.2.
FOR n = 1, . . . , N :

Reality announces λn : D×YN−n+1 → [0, 1]
Forecaster announces Pn ∈ P(YN−n+1)
Decision Maker announces dn ∈ D
Reality announces the actual observation yn ∈ Y.

Protocol 6.2 allows us to design a plausible strategy (Bayes strategy, or
Bayes optimal strategy) for Decision Maker (where dn is now allowed to depend,
additionally, on Forecaster’s previous moves P1, . . . , Pn):

dn ∈ argmin
d∈D

∑
x∈YN−n+1

λn(d, x)Pn(x). (15)

However, we cannot prove anything about this strategy as we do not know any-
thing about connections between the forecasts Pn and the actual observations
yn. Therefore, we add Sceptic to our protocol, as in Protocol 3.1.
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Protocol 6.3.
K0 := 1
FOR n = 1, . . . , N :

Reality announces λn : D×YN−n+1 → [0, 1]
Forecaster announces Pn ∈ P(YN−n+1)
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈YN−n+1 fn−1(yn−1x)Pn(x)
−
∑

x∈YN−n+2 fn−1(x)Pn−1(x)
Decision Maker announces dn ∈ D
Sceptic announces fn : YN−n+1 → R
Reality announces yn ∈ Y
IF n = N :

Kn := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn(y).

In order to prove a law of large numbers for decision making showing that
the Bayes strategy is indeed optimal in some sense, we need the following com-
bination of Protocols 6.3 and 5.1 that only involves prediction K steps ahead.
(We will see in Sect. 6.2 that such a law of large numbers inevitably fails for
Protocol 6.3.)

Protocol 6.4.
K0 := 1
FOR n = 1, . . . , N :

Reality announces λn : D×YK → [0, 1]
Forecaster announces Pn ∈ P(YK)
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈Y(K−1)∧(N−n+1) fn−1(yn−1x)Pn(x)
−
∑

x∈YK∧(N−n+2) fn−1(x)Pn−1(x) (16)
Decision Maker announces dn ∈ D
Sceptic announces fn : YK∧(N−n+1) → R
Reality announces yn ∈ Y
IF n = N :

Kn := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn(y).

We will continue to use the notation LossN introduced in (14), which is now
modified to

LossN :=

N−K+1∑
n=1

λn(dn, yn . . . yn+K−1), (17)

but we will also be interested in Decision Maker’s loss LossN (A) computed by
replacing his actual decisions by the decisions prescribed by a decision strat-
egy A:

LossN (A) :=

N−K+1∑
n=1

λn(d
A
n , yn . . . yn+K−1),

where

dAn := A(λ1, P1, y1, λ2, P2, . . . , yn−1, λn, Pn), n = 1, . . . , N −K + 1;
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we are only interested in strategies that are functions of the previous moves by
Reality and Forecaster. Let us adapt the Bayes strategy (15) to Protocol 6.4:

dn := dBn ∈ argmin
d∈D

∑
x∈YK

λn(d, x)Pn(x), (18)

with dBn chosen as the first element of the argmin in a fixed linear order on D
if there are ties among d; LossN (B) is its loss over the first N steps.

If E is a property of Reality’s, Forecaster’s, and Decision Maker’s moves in
Protocol 6.4, we define the upper game-theoretic probability of E as the infimum
of α > 0 such that Sceptic has a strategy that guarantees Kn ≥ 0 for all n and
that ensures αKn ≥ 1 whenever E happens. The following optimality result
will be proved in Appendix A (Sect. A.4).

Theorem 6.5. Let ϵ ∈ (0, 0.3). The Bayes strategy B for Decision Maker in
Protocol 6.4 guarantees

P

(
LossN (B)− LossN ≥ 2

√
KN ln

1

ϵ

)
≤ ϵ. (19)

An alternative statement of Theorem 6.5 not using the notion of game-
theoretic probability is that there exists a strategy for Sceptic that achieves
either

1

N
LossN (B)− 1

N
LossN < 2

√
K

N
ln

1

ϵ
(20)

or KN ≥ 1/ϵ. For a small ϵ and large N (as compared with K ln 1
ϵ ), this strategy

demonstrates that B performs better than or similarly to the actual moves dn
unless Forecaster is discredited. This is a version of the law of large numbers
that works only when K ≪ N .

Remark 6.6. Notice that the strong law of large numbers for a fixed K (and
with N → ∞, as usual) is trivial: we can apply the standard one-step-ahead
strong law of large numbers to each Kth observation (starting from observation
1, starting from observation 2,. . . , and finally starting from observation K).
Theorem 6.5 is less trivial, but interestingly, it is based on the same idea. The
argument used in the arXiv version 1 of this paper is different but leads to a
weaker result (Theorem 7.5 in that version). See Remark F.7 for further details.

Theorem 6.5 shows that, for any other strategy A for Decision Maker, we
have

P

(
LossN (B)− LossN (A) ≥ 2

√
KN ln

1

ϵ

)
≤ ϵ; (21)

we, however, prefer the stronger statement (19) allowing Forecaster to choose
his moves on the fly. We can rewrite (21) as

P
(

1

N
LossN (B)− 1

N
LossN (A) ≥ δ

)
≤ exp

(
−δ2N

4K

)
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for any δ ≥ 2.2
√
K/N . The restriction δ ≥ 2.2

√
K/N is coming from the

condition ϵ < 0.3 in Theorem 6.5; without this restriction, we can still claim
that

P
(

1

N
LossN (B)− 1

N
LossN (A) ≥ δ

)
≤ 5

K

δ2N
exp

(
−δ2N

4K

)
(22)

(for a proof, see the end of Sect. A.4).

Remark 6.7. In Theorem 6.5 we compare Decision Maker’s actual loss LossN
with the loss she would have suffered following the Bayes strategy B, defined
by (18). Our interpretation of this theorem depends on the assumption that
Reality’s and Forecaster’s moves are not affected by Decision Maker’s moves.

6.2 Predicting K < N steps ahead is essential for our state-
ment of optimality

Theorem 6.5 is about predicting K steps ahead. How important is this restric-
tion? Let us check that it may not be true that

1

N
(LossN (B)− LossN ) < δ (23)

with high probability in Protocol 6.3 for δ ≪ 1 if we use the definition of
the cumulative loss given in (14) (there is little difference between (14) and
(17) for K ≪ N , but for K = N the latter leads to vacuous statements for
LossN (B) − LossN ); as before, B stands for the Bayes optimal strategy. The
intuition behind this demonstration is that at each step Decision Maker is asked
to predict the last observation yN , and this creates heavy dependence between
losses at different steps that ruins the law of large numbers.

Set D := Y := {0, 1}, and suppose (in the spirit of measure-theoretic
probability) that Forecaster computes his moves from a probability measure
P ∈ P({0, 1}N ) governing Reality. The loss functions output by Reality are

λn(dn, yn . . . yN ) :=

{
0 if dn = yN

1 otherwise,
(24)

and the true probability measure P is such that P ({yN = 1}) = 0.4 (so that
yN = 0 is slightly likelier than yN = 1).

The Bayes optimal strategy B given by (15) is dBn := 0. Let us compare it
with the complementary strategy A := 1−B (or simply A := 1). We have

1

N
(LossN (B)− LossN (A)) =

{
1 with probability 0.4

−1 with probability 0.6,
(25)

and so the inequality (23) is grossly violated with a significant probability.
Applying the idea leading to (25) on a smaller scale (to eachKth step instead

of the last step), we obtain the following lower bound for Protocol 6.4.
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Proposition 6.8. For all N and K < N/5,

P
(
LossN (B)− LossN ≥

√
KN

)
≥ ϵ, (26)

where B is the Bayes optimal strategy and ϵ is a universal positive constant.

The lower bound
√
KN in (26) matches the upper bound in (19) (Theo-

rem 6.5) as far as K and N are concerned. (The result in (19) is best inter-
preted as an upper bound, despite the inequality “≥”; this can be seen from its
restatement in the form (20).)

See Appendix F for related results (Propositions F.1 and F.6) in measure-
theoretic probability.

Proposition 6.8 only concerns the optimality of the upper bound in (19) in K
and N , but the next proposition shows that it is also close to being optimal in ϵ.
In this proposition we use a slightly different definition of LossN : now, unlike
in (17), we sum the losses of all decisions, including those of dN−K+2, . . . , dN
(they will be defined in a very natural way).

Proposition 6.9. Suppose that N and K are such that
√

N/K is an even
integer. Then the Bayes optimal strategy B satisfies, for any ϵ > 0 such that√
ln 1

ϵ is integer,

P

(
LossN (B)− LossN ≥

√
KN ln

1

ϵ

)
≥ ϵ4/15 (27)

provided √
KN ln

1

ϵ
≤ N/4. (28)

The condition (28) is mild in this context; without it, the bound (27) appears
useless. The substitution ϵ := ϵ4/15 in Proposition 6.9 gives the following
corollary, which shows that the upper bound in (19) is optimal if we ignore
additive and multiplicative constants in the “regret term”

2

√
KN ln

1

ϵ
.

Corollary 6.10. Under the conditions of Proposition 6.9,

P

(
LossN (B)− LossN ≥ 1

2

√
KN ln

1

15ϵ

)
≥ ϵ (29)

provided the term
√

. . . does not exceed N/2.

For proofs of Propositions 6.8 and 6.9, see Sects A.5 and A.6, respectively.
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7 Conclusion

This paper has scratched the surface of the diachronic picture of realistic
Bayesian forecasting not based on Bayesian conditioning. We discussed ways
of testing such forecasts based on betting and their applications to Bayesian
decision making.

Obvious directions of further research include, e.g., considering an infinite
time horizon and more general observation spaces Y. Another direction is to
generalize our basic forecasting protocol: instead of assuming that the forecaster
observes a new outcome yn at each step, we could consider cases where beliefs
are revised (perhaps because new information arrives from outside the protocol)
without new outcomes becoming known; for a first step in this direction, see
Appendix D.
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A Proofs

A.1 Proof of Proposition 3.2

The condition fn ≥ −Kn−1 is sufficient for Kn ≥ 0 by (3).
Now suppose fn(x) < −Kn−1 for some x ∈ YN−n+1. Fix such an x. If Re-

ality sets yn to the first element of x and Forecaster sets Pn+1 to the probability
measure on YN−n concentrated on x \ yn, (3) shows that Sceptic’s capital Kn

will become negative. (Formally, Pn+1 is required to be positive by our defini-
tion of P(·), but we can make Pn+1 arbitrarily close to the probability measure
concentrated on x \ yn.)

21

https://arxiv.org/abs/2309.01173
https://arxiv.org/abs/2309.01173
https://arxiv.org/
https://arxiv.org/abs/2312.00632


A.2 Proof of Theorem 4.2 and Proposition 4.1

We start from Theorem 4.2. Let us consider in detail only the first step in
Protocol 3.1, when we move from prediction P := P1 to prediction Q := P2 (the
rest will be easy). We regard P as fixed (so that our argument is conditional
on P ) and use the notation P (y), where y ∈ Y, and P (x | y), where y ∈ Y and
x ∈ YN−1, as usual. We also use Qr(x | y) for the various Q = P2 possible
after observing y as the first observation y1 (and we assume that Qr are all
different). We will be able to apply the standard duality theorem since r ranges
over a finite set; remember that we consider a finite probability space. It will
be convenient to refer to S1 as the first value of a game-theoretic or measure-
theoretic martingale (Sn)

N
n=0.

In Sect. 4.1 we saw that every game-theoretic test martingale is a visible
measure-theoretic test martingale, and this implies that every game-theoretic
test supermartingale is a visible measure-theoretic test supermartingale; there-
fore, we will be only interested in the opposite direction. Let Sy,r be the first
value of a visible measure-theoretic test supermartingale (Sn)

N
n=0; i.e., Sy,r is

the first value S1 when we observe y1 = y and P2 = Qr. Our goal is to show
that Sy,r is the first value of a game-theoretic test supermartingale.

The primary (measure-theoretic) linear programming problem involves vari-
ables Xy,r ≥ 0 subject to the constraints∑

r

Xy,r = 1

for all y and ∑
r

Xy,rQr(x | y) = P (x | y) (30)

for all y and x. The interpretation is that Xy,r is the conditional probability of
Qr after observing y. The relevant optimization problem is∑

y

P (y)
∑
r

Sy,rXy,r → max . (31)

By the choice of S, the max value is at most 1.
The dual (game-theoretic) problem is∑

y,x

P (x | y)Yy,x +
∑
y

Yy → min (32)

subject to ∑
x

Qr(x | y)Yy,x + Yy ≥ P (y)Sy,r (33)

for all y, r. (The recipe for stating the dual problem given in Matoušek and
Gärtner 2007, Sect. 6.2, is particularly convenient in this context.) The dual
variables Yy,x and Yy are unconstrained. Rewriting (32) and (33) as∑

y,x

P (x | y)(Yy,x + Yy) → min
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∑
x

Qr(x | y)(Yy,x + Yy) ≥ P (y)Sy,r,

respectively, we can see that the optimization problem (32)–(33) is equivalent
to ∑

y,x

P (x | y)Yy,x → min subject to
∑
x

Qr(x | y)Yy,x ≥ P (y)Sy,r. (34)

Replacing the variables Yy,x with new variables Zy,x defined by Yy,x = P (y)Zy,x,
we rewrite the optimization problem (34) as∑

y,x

P (yx)Zy,x → min subject to
∑
x

Qr(x | y)Zy,x ≥ Sy,r, (35)

with the same value, at most 1. Any solution to the optimization problem (35)
achieves our goal: setting f1(yx) := Zy,x, our portfolio of tickets will have the
total final price at least S1 while their total initial price will be at most 1.
To complete the proof of Theorem 4.2, we need to apply the same argument
conditionally on the first n observations y1, . . . , yn for n = 1, . . . , N − 1.

Before proving Proposition 4.1 let us make a short detour and check that
every visible measure-theoretic test supermartingale is dominated by a visible
measure-theoretic test martingale. First we make S = (Sy,r) admissible replac-
ing each Sy,r by the left-hand side of the constraint in (35). The expression
being maximized in (31) becomes∑

y

P (y)
∑
r

Xy,rSy,r =
∑
y

P (y)
∑
r

Xy,r

∑
x

Qr(x | y)Zy,x

=
∑
y

P (y)
∑
x

Zy,xP (x | y) =
∑
y,x

P (yx)Zy,x,

where the second equality uses (30). The last expression is very natural, and
does not depend at all on the primary variables Xy,r, which shows that Sy,r

is the first value of a visible measure-theoretic test martingale except that its
initial value can be below 1 (in which case it can be scaled up to make its initial
value equal to 1).

Finally, if (Sy,r) is the first value of a visible measure-theoretic test martin-
gale, it will coincide with the first value of a game-theoretic test supermartin-
gale, which will be the first value of a game-theoretic test martingale (oth-
erwise we could increase this game-theoretic test supermartingale to obtain a
visible measure-theoretic martingale whose first value would strictly dominate
the first value of the original visible measure-theoretic test martingale, which
is impossible). Repeating this argument for y2, . . . , yN completes the proof of
Proposition 4.1.

A.3 Game-theoretic probability

In the proof of Theorem 6.5 in Sect. A.4 we will need some basic definitions and
results in game-theoretic probability given in this subsection; see Shafer and
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Vovk [2019] for further information. We will let En denote the game-theoretic
expectation (to be defined momentarily) at the point in Protocol 6.4 right after
Decision Maker announcing her move dn (let us call this point the checkpoint).
In our current context En can be defined as follows. If f = f(yn . . . y(n+K−1)∧N )
is a function of theK consecutive moves by Reality starting from yn (and ending
with yN if n+K − 1 ≥ N),

Enf :=
∑

x∈YK∧(N−n+1)

f(x)Pn(x).

More generally, if f depends on other future moves (by Reality and other play-
ers), Enf is the initial capital (if it exists) starting from which Sceptic can attain
exactly the final capital of f at the end of step N . If f also depends on the
moves preceding the step n checkpoint, Enf is found separately for each set of
these preceding moves.

The game-theoretic sample space Ω consists of all possible sequences of moves

ω := (λ1, P1, d1, y1, . . . λN , PN , dN , yN )

by non-Sceptic players in Protocol 6.4. A nonnegative variable X is a function
X : Ω → [0,∞). The upper expectation of X is defined as

E(X) := inf
{
α > 0 | ∃ strategy for Sceptic ∀ω ∈ Ω : αKN (ω) ≥ X(ω)

}
,

where ω are the non-Sceptic player’s moves and KN is regarded as function of
ω. In words, E(X) is the smallest (in the sense of inf) initial capital that Sceptic
can turn into X(ω) or more. An event is a set E ⊆ Ω. The upper probability
P(E) of an event E is defined to be E(1E).

Lemma A.1. For any bounded nonnegative variable X,

E(X) ≤
∫ ∞

0

P(X ≥ u) du. (36)

Proof. Set f(u) := P(X ≥ u); then f : [0,∞) → [0, 1] is a decreasing function.
Replace the ∞ in (36) by C for some upper bound C for X. For each k =
0, . . . , ⌈C/ϵ⌉, fix a strategy for Sceptic that turns f(kϵ) + ϵ into 1{X≥kϵ} or
more. Multiplying this strategy and its initial capital by ϵ and then summing
over the k, we obtain a strategy that turns

⌈C/ϵ⌉∑
k=0

ϵ(f(kϵ) + ϵ) (37)

into at least
⌈C/ϵ⌉∑
k=0

ϵ1{X(ω)≥kϵ} ≥ X(ω).

It remains to notice that (37) tends to
∫ C

0
f(u) du as ϵ → 0.
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A.4 Proof of Theorem 6.5

This subsection uses the definitions and results from game-theoretic probability
given in Sect. A.3. The reader familiar with measure-theoretic probability who
encounters game-theoretic probability for the first time might prefer to read
Appendix F first as a gentle introduction to the rest of this section.

We will also need the following lemma, which is widely used in robust risk
aggregation (and our use of this lemma will mimic its uses in robust risk aggre-
gation).

Lemma A.2. For any C > 0, any α ∈ (0, C/K), and any x1, . . . , xK ∈ R,

K∑
k=1

g(xk) ≥ 1{
∑K

k=1 xk≥C}, (38)

where g is the continuous function

g(x) :=


0 if x < C

K − α
x−(C/K−α)

Kα if C
K − α ≤ x ≤ C

K + (K − 1)α

1 if x > C
K + (K − 1)α.

(39)

Proof. We argue indirectly. Suppose there is a set of numbers x1, . . . , xK for
which (38) holds with “<” in place of “≥”, and let us fix such a set. If xi <
C/K − α and xj > C/K + (K − 1)α, we can replace xi by xi + t and xj by
xj − t, where t > 0 is the smallest number such that xi + t = C/K − α or
xj − t = C/K + (K − 1)α; therefore, we can assume, without loss of generality,
that there is no such pair (i, j). In this case, xk ≤ C/K + (K − 1)α for all k,
but perhaps xj < C/K − α for some j. It remains to apply Jensen’s inequality
to the convex (and increasing) function g|(−∞,C/K+(K−1)α]: as the average of
xk is at least C/K, the average of g(xk) is at least g(C/K) = 1/K.

See the proof of Theorem 4.2 in Embrechts and Puccetti [2006] for another proof
of Lemma A.2, and see Appendix F for further information about robust risk
aggregation.

Set Q := ⌊N/K⌋. Let us first assume that N = QK +K − 1; later we will
get rid of this assumption (it will be easy as N = QK + K − 1 is, in a sense,
the worst case).

To get a handle on the difference LossN (B)−LossN in Protocol 6.4, we first
consider its increment

λi(d
B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1) (40)

on step i ≤ N − K + 1, where dBi is the prediction output by the strategy A
defined by (18). By the choice of dBi , the difference (40) is a supermartingale
difference, meaning that its Ei expectation is nonpositive. Namely,

Ei

(
λi(d

B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1)

)
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=
∑

x∈YK

(
λi(d

B
i , x)− λi(di, x)

)
Pi(x) ≤ 0.

For each k ∈ {1, . . . ,K}, we consider the process

Lk
n = En

∑
i∈{k,k+K,...,k+(Q−1)K}

(
λi(d

B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1)

+
∑

x∈YK

(
λi(di, x)− λi(d

B
i , x)

)
Pi(x)

)
; (41)

including only every Kth step in the sum simplifies the analysis and, more
importantly, makes the result stronger (cf. Remark 6.6). This process starts
from zero, and it is a game-theoretic martingale (namely, Lk

n = Kn−1 for some
strategy for Sceptic in the modification of Protocol 6.4 replacing Kn := 1 by
Kn := 0 and allowing K to become negative), as the following explicit expression
shows:

Lk
n :=

∑
i∈{k,k+K,...,k+(q−1)K}

(
λi(d

B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1)

+
∑

x∈YK

(
λi(di, x)− λi(d

B
i , x)

)
Pi(x)

)
+

∑
x∈YK−j

(
λk+qK(dBk+qK , yk+qK . . . yn−1x)−λk+qK(dk+qK , yk+qK . . . yn−1x)

)
Pn(x)

+
∑

x∈YK

(
λk+qK(dk+qK , x)− λk+qK(dBk+qK , x)

)
Pk+qK(x) (42)

where q and j ∈ {0, . . . ,K − 1} are the integers from the representation n =
k+ qK + j, and we are only interested in n ≤ QK. The first sum (i.e., the sum∑

i∈{k,k+K,...,k+(q−1)K}) in (42) includes the terms (40) (for i ≡ k (mod K))
that are determined by the checkpoint on step n. The rest of the expression in
(42) accounts for the term (40) that is partially determined, which corresponds
to i = k + qK. And we do not have terms corresponding to i > k + qK
since at the checkpoint on step n the expectation of the expression in the outer
parentheses in (41) is still 0 for such i.

To check that (42) is indeed a game-theoretic martingale, it suffices to notice
that

Lk
n − Lk

n−1 =
∑

x∈YK−j

fn−1(yn−1x)Pn(x)−
∑

x∈YK−j+1

fn−1(x)Pn−1(x),

where

fn−1(x) := λk+qK(dBk+qK , yk+qK . . . yn−2x)− λk+qK(dk+qK , yk+qK . . . yn−2x),

has the same form as the capital increment in (16). This assumes that n is not
one of the borderline values k+qK, which case should be considered separately.
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If we only consider the values of the game-theoretic martingale (42) at steps
k + qK, q = 0, 1, . . . , Q,

Lk
k+qK :=

∑
i∈{k,k+K,...,k+(q−1)K}

(
λi(d

B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1)

+
∑

x∈YK

(
λi(di, x)− λi(d

B
i , x)

)
Pi(x)

)
, q = 0, 1, . . . , Q, (43)

its increments will be bounded by 2 in absolute value, and we can apply the
game-theoretic Hoeffding inequality [Shafer and Vovk, 2019, Corollary 3.8 for
Protocol 3.5] to it. However, a tighter inequality is obtained when we apply
the one-sided version of the game-theoretic Hoeffding inequality [Shafer and
Vovk, 2019, Corollary 3.8 for Protocol 3.7] to the process (43) with the sum
over x ∈ YK removed. This process is a game-theoretic supermartingale whose
increments are bounded by 1 in absolute value, and the one-sided Hoeffding
inequality gives

P (Xk ≥ U) ≤ exp

(
−U2

2Q

)
≤ exp

(
−U2 K

2N

)
, (44)

where U ≥ 0 and

Xk :=
∑

i∈{k,k+K,...,k+(Q−1)K}

(
λi(d

B
i , yi . . . yi+K−1)− λi(di, yi . . . yi+K−1)

)
;

we assume that the game-theoretic supermartingale is constant after k+(Q−1)K
(the last i in the range of summation in (43)).

Applying (44) and Lemmas A.1 and A.2 (see below for details) gives, for any
C > 0,

P(X1 + · · ·+XK ≥ C) ≤
K∑

k=1

E(g(Xk)) ≤
K∑

k=1

∫ ∞

0

P(g(Xk) ≥ u) du (45)

≤
K∑

k=1

∫ ∞

0

P
(
Xk ≥ γ

C

K
+ (1− γ)Cu

)
du (46)

≤
K∑

k=1

∫ ∞

0

exp

(
−
(
γ
C

K
+ (1− γ)Cu

)2
K

2N

)
du (47)

=

√
KN

(1− γ)C

∫ ∞

γC√
KN

exp
(
−v2/2

)
dv (48)

=

√
KN

(1− γ)C

√
2πΦ̄

(
γC√
KN

)
<

KN

γ(1− γ)C2
exp

(
− γ2C2

2KN

)
. (49)

The first and second inequalities in (45) follow from Lemmas A.2 and A.1,
respectively. The inequality (46) follows from the definition of g in (39) with
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α := (1−γ)C/K. Indeed, we can assume, without loss of generality, u > 0, and
then g(X) ≥ u implies

X − (C/K − α)

Kα
≥ u,

which is equivalent to

X ≥ γ
C

K
+ (1− γ)Cu.

The inequality (47) follows from Hoeffding’s inequality (44). The equality (48)
follows by the substitution

v :=
γC√
KN

+ (1− γ)C

√
K

N
u.

The equality in (49) introduces the notation Φ̄ := 1−Φ for the survival function
of the standard Gaussian distribution. And the last inequality in the chain
follows by applying the standard upper bound [Feller, 1968, Lemma VII.1.2]
on Φ̄.

We can rewrite the inequality between the extreme terms in the chain (45)–
(49) as

P (LossN (B)− LossN ≥ C) ≤ KN

γ(1− γ)C2
exp

(
− γ2C2

2KN

)
. (50)

Comparing this with (19), we can see that we need to solve the inequality

KN

γ(1− γ)C2
exp

(
− γ2C2

2KN

)
≤ ϵ. (51)

Ignoring the part before the exp and replacing “≤” by “=”, we obtain the
solution

C =

√
2KN ln 1

ϵ

γ
,

which motivates the substitution

C :=

√
2KN ln 1

ϵx

γ
(52)

in (51). After this substitution, (51) simplifies to

ϵx−1 ≤ 2
1− γ

γ
x ln

1

ϵ
. (53)

Setting x := 2γ2 in (52) gives an expression that matches the corresponding
expression in (19).

The condition x > 1 (required for (53) to hold as ϵ → 0) narrows down the
range of γ from γ ∈ (0, 1) to γ ∈ (2−1/2, 1). Setting, e.g., γ := 0.8 ensures that
(53) holds for all ϵ ∈ (0, 0.32).
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It remains to consider the case N < QK+K−1. If the final value of Lk
k+qK

(corresponding to q = Q) is undefined (because k + qK +K − 1 > N), we set
it equal to its previous value (for q = Q− 1).

This completes the proof of Theorem 6.5. Inequality (22) follows from (50)
with γ := 1/

√
2.

A.5 Proof of Proposition 6.8

Similarly to (24), let us set D := Y := {0, 1} and

λn(dn, yn . . . yn+K−1) :=

{
1 if dn ̸= y⌈n/K⌉K

0 otherwise.
(54)

We are only interested in n ≤ N−K+1 (see (17)), which implies n+K−1 ≤ N
and ⌈n/K⌉K ≤ N ; therefore, (54) is well-defined. Now the true probability
measure P is such that yn = 1 with probability 1/2 independently for different
n (and now we will rely on our tie-breaking convention). As in Sect. 6.2, the
players comply with P . Let A be the decision strategy that always outputs 1;
notice that B always outputs 0 (assuming that the linear order on D is 0 < 1).
It suffices to prove (26) (and later (27)) with LossN replaced by LossN (A), and
this is what we will do.

The N steps are now split into ⌈N/K⌉ blocks of K steps (except, possibly,
the last block), n ∈ {1, . . . ,K}, n ∈ {K + 1, . . . , 2K}, etc. Within each block,
A suffers the same loss at each step, and B suffers the same loss at each step.
By the central limit theorem, the probability is at least ϵ (a universal positive
constant) that B performs worse than A in at least

√
N/K + 1 more blocks

than vice versa. In such cases

LossN (B)− LossN (A) ≥ K
√
N/K =

√
KN.

This gives (26) with P in place of P. By Ville’s inequality, we can replace the
probability measure P by the upper game-theoretic probability P.

A.6 Proof of Proposition 6.9

We will obtain Proposition 6.9 by applying a lower bound for large deviations in
the form of Matoušek and Vondrák [2008, Proposition 7.3.2] to the argument of
the previous subsection. As mentioned before the statement of the proposition,
now we define LossN by summing the losses over all steps n = 1, . . . , N , as in
(14). The loss at each step n is still given by the right-hand side of (54). This
is the derivation (see below for some explanations):

P

(
LossN (B)− LossN (A) ≥

√
KN ln

1

ϵ

)

= P

(
1

K
LossN (B) ≥ N

2K
+

1

2

√
N

K
ln

1

ϵ

)
(55)
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= P
(
X ≥ n

2
+ t
)
≥ 1

15
exp

(
−16t2/n

)
= ϵ4/15. (56)

The first equality, (55), follows from

LossN (A) + LossN (B) = N (57)

(which allows us to eliminate LossN (A)) and obvious transformations. The first
equality in (56) introduces the notation

X :=
1

K
LossN (B), n :=

N

K
, t :=

1

2

√
N

K
ln

1

ϵ
,

which is the notation used in Matoušek and Vondrák [2008, Proposition 7.3.2].
The inequality “≥” in (56) is identical to Matoušek and Vondrák [2008, Propo-
sition 7.3.2].

Matoušek and Vondrák [2008] have two conditions in their Proposition 7.3.2:
t ≤ n/8, which becomes (28), and t being an integer, which we strengthen to√
N/K being an even integer and

√
ln 1

ϵ being an integer.

Remark A.3. Kunsch and Rudolf [2019, Lemma 3] slightly improve the constants
in Matoušek and Vondrák [2008, Proposition 7.3.2], and using their result we
can improve the bound ϵ4/15 in (56) to ϵ3/5. This allows us to rewrite (29) in
the form

P

(
LossN (B)− LossN (A) ≥

√
1

3
KN ln

1

5ϵ

)
≥ ϵ. (58)

Remark A.4. Let us check informally what the optimal counterparts of the
constants 1/3 and 5 in (58) would be in the domain of applicability of the
central limit theorem. We have for the probability measure P of Sect. A.5:

P
(
LossN (B)− LossN (A) ≥ Φ̄−1(ϵ)

√
KN

)
≈ ϵ,

where Φ̄−1(ϵ) is the upper ϵ-quantile of the standard Gaussian distribution.
This follows from the variance of

LossN (B)− LossN (A) = 2LossN (B)−N

(cf. (57)) being approximately KN . This gives the ideal approximate equality

P

(
LossN (B)− LossN (A) ≥

√
2KN ln

1

ϵ

)
≈ ϵ

in place of (58). It is interesting that this is exactly what we get from (52) when
we make γ ≈ 1 and x ≈ 1 (it is clear that we can make γ ∈ (0, 1) and x > 1 as
close to 1 as we want at the price of restricting ϵ to a narrower range (0, ϵ∗)).
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B Protocols in terms of ideal futures

Testing by betting in general and game-theoretic probability in particular can
be interpreted in terms of trading in a financial market, and in this appendix I
will make this interpretation explicit. Now we complement the basic forecasting
protocol with an idealized market allowing Sceptic to trade in futures contracts
(these are the most standard financial derivatives; see, e.g., Hull 2021, Chap. 2,
and Duffie 1989). Futures contracts is an old idea (see, e.g., Schaede 1989)
that arose gradually in financial industry, but in our prediction protocols it is
a powerful way of reducing prediction multiple steps ahead to one-step-ahead
prediction. In this appendix we will only need a highly idealized picture of them
(Sect. B.1), but later (Appendix C) we will discuss their real-life counterparts.

We will also need another piece of notation: Ym:n stands for the set of all
sequences of elements of Y of length between m and n inclusive (so that Y0:n

stands for the sequences of elements of Y of length at most n, and Y1:n stands
for the non-empty sequences of elements of Y of length at most n).

B.1 Ideal futures contracts

In Sect. 3 we extended the forecasting picture of Sect. 2 by allowing Sceptic
to bet against Forecaster. Betting was described in terms of tickets, which are
known as forward contracts in finance. In our diachronic picture, however, we
allowed trade in tickets (they were sold and bought), which essentially turned
them into what is known as futures contracts in finance. In this appendix we
will talk about futures contracts explicitly using very convenient terminology
developed in finance. Our terminology, however, will be slightly adapted to our
needs (for example, the unit of time will be a step rather than, e.g., a day, and
the trader will be called Sceptic).

A futures contract Φ has an expiration step m. The contract is settled at the
end of step m; namely, its final price F+

m is announced by Reality. In the middle
of step n ∈ {1, . . . ,m}, the current price Fn of Φ is announced by Forecaster,
and Sceptic can then take any position fn ∈ R in Φ. If n < m, Sceptic gains
capital fn(Fn+1 − Fn) at the next step (which actually means losing capital
if fn(Fn+1 − Fn) < 0). If n = m, at the end of the expiration step m (at
maturity) Sceptic gains fm(F+

m − Fm). These gains keep accumulating as the
play proceeds.

Let us say that Sceptic takes a constant position f at time n < m if he
maintain the same position f through steps n, . . . ,m. This leads to gaining
capital f(F+

m −Fn) at maturity. This mode of using futures contracts emulates
forward contracts (which are similar to futures contracts but not exchange-
traded).

B.2 General testing protocol

The following extension of Protocol 2.1 describes another, seemingly stronger
than Protocol 3.1, way of testing Forecaster’s predictions. (However, we will
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reduce the extended protocol to Protocol 3.1 in Sect. B.3.)

Protocol B.1.
K0 := 1
Forecaster announces P1 ∈ P(YN )
Sceptic announces f1 : Y1:N → R
Reality announces y1 ∈ Y
K′

1 := K0 + f1(y1)−
∑

y∈Y f1(y)P1(y)
FOR n = 2, . . . , N :

Forecaster announces Pn ∈ P(YN−n+1)
Kn−1 := K′

n−1 +
∑

x∈Y1:(N−n+1) fn−1(yn−1x)Pn(x)
−
∑

x∈Y2:(N−n+2) fn−1(x)Pn−1(x) (59)

Sceptic announces fn : Y1:(N−n+1) → R
Reality announces yn ∈ Y
K′

n := Kn−1 + fn(yn)−
∑

y∈Y fn(y)Pn(y). (60)

Protocol B.1 does not define KN , and we set KN := K′
N . The interpretation of

KN is the same as for Protocol 3.1: a large KN evidences lack of agreement of
the forecasts with reality, provided Sceptic is not allowed to go into debt.

An advantage of Protocol B.1 over Protocol 3.1 is that, even though it is
stated for a finite time horizon N , it is easier to modify to make the time horizon
infinite, so that n = 2, 3, . . . in the FOR loop. The simpler protocol of Sect. 3
uses the finiteness of the time horizon in a more essential way.

The financial interpretation of Protocol B.1 is that we have a market of
futures contracts Φ(x), x ∈ Y1:N , that pay

F+
m(x) := 1{y1...ym=x}

at the end of step m := |x|, as discussed in Sect. B.1. At each step n (but before
observing yn) Forecaster announces the prices for all the futures contracts Φ(x),
x ∈ Y1:N , in the form of a probability measure Pn ∈ P(YN−n+1); namely, the
price of Φ(x), x ∈ Y1:N , at step n is

Fn(x) :=

{
Pn(x \ y1 . . . yn−1) if y1 . . . yn−1 ⊂ x

0 if not.
(61)

A standard argument shows that such Pn will exist provided the market is
coherent; Sceptic can secure a sure gain if Fn do not form a probability measure
concentrated on the continuations of y1 . . . yn−1 [de Finetti, 2017, Chap. 3].

At step n Sceptic needs to take positions in all Φ(x), y1 . . . yn−1 ⊂ x ∈ Y1:N .
The position in Φ(y1 . . . yn−1x) is denoted by fn(x) in Protocol B.1. (There is
no need to take positions in the other Φ(x) since their prices are 0 and will stay
0.)

After yn is disclosed by Reality, the increment in Sceptic’s capital (due to
the matured futures contracts Φ(y1 . . . yn−1y)) is

K′
n −Kn−1 =

∑
y∈Y

fn(y)
(
F+
n (y1 . . . yn−1y)− Fn(y1 . . . yn−1y)

)
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= fn(yn)−
∑
y∈Y

fn(y)Pn(y),

which agrees with (60). And after Pn is disclosed by Forecaster at the next step
n := n + 1, the increment in Sceptic’s capital (due to the remaining futures
contracts) is

Kn−1 −K′
n−1 =

∑
x∈Y2:(N−n+2)

fn−1(x)
(
Fn(y1 . . . yn−2x)− Fn−1(y1 . . . yn−2x)

)
=

∑
x∈Y1:(N−n+1)

fn−1(yn−1x)Fn(y1 . . . yn−1x)

−
∑

x∈Y2:(N−n+2)

fn−1(x)Fn−1(y1 . . . yn−2x)

=
∑

x∈Y1:(N−n+1)

fn−1(yn−1x)Pn(x)−
∑

x∈Y2:(N−n+2)

fn−1(x)Pn−1(x),

where the last equality follows from (61), and the last expression agrees with
(59).

B.3 Simplification

We can rewrite Protocol B.1 in other forms, such as Protocol 3.1, getting rid of
some of Sceptic’s arbitrary choices. To compare protocols with the same allowed
moves for Reality and Forecaster, we can use the notion of the test martingale
space (TMS), which we define modifying the definition given in Sect. 4 as fol-
lows. A strategy for Sceptic still specifies his move as function of Forecaster’s
and Reality’s previous moves, but now we do not impose any measurability con-
ditions on strategies. As before, the corresponding test martingale is Sceptic’s
capital as function of Forecaster’s and Reality’s moves provided this function
is nonnegative. The TMS of a given protocol is the set of all possible test
martingales. We regard two protocols to be equivalent if they have the same
TMS.

As already mentioned, the general testing protocol, Protocol B.1, was for-
mulated with a view towards an infinite time horizon, where N becomes ∞. In
Sect. 3 we introduced a much simpler protocol using an idea that only works
for a finite time horizon.

Proposition B.2. Protocol B.1 and Protocol 3.1 have identical TMS.

Proposition B.2 simplifies the market in futures contracts that we need: all the
contracts now mature at the end of step N ; we will call such futures contracts
final. The intuitive reason why the final futures contracts are sufficient is that
a general futures contract Φ(x) is equivalent, to all intents and purposes, to the
portfolio consisting of the final futures contracts Φ(x′) for all x′ ⊇ x.

Proof of Proposition B.2. Consider step n < N of Protocol B.1. Let O(x, c),
where x ∈ Y1:(N−n) and c ∈ R, be the operation that adds the constant c
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to fn(x) and subtracts the same constant c from all fn(xy), y ∈ Y. The
key observation used in our simplification of Protocol B.1 is that, for any x ∈
Y1:(N−n) and c ∈ R, O(x, c) does not change the increment in the capital
Kn −Kn−1. Let us check this property. If x ∈ Y2:(N−n), O(x, c) will not affect
(60) whatsoever, and it will change neither minuend nor subtrahend in (59) at
the next step (there is a next step since n < N). And if x ∈ Y, applying the
operation O(x, c) does not change the increment in the capital Kn−Kn−1 given
by (60) and then by (59) at the next step since

• the changes in the sum in (60) and in the second sum in (59) at the next
step will balance each other out, and

• the changes in the term fn(yn) in (60) and in the first sum in (59) at
the next step will also balance each other out (this is relevant only when
x = yn).

Applying O(x, c) repeatedly to the xs in the order of increasing length, we
can assume, without loss of generality (i.e., without changing the TMS), that
fn(x) is different from 0 only for x ∈ YN−n+1, which implies that:

• we can ignore (60) for all steps n apart from n = N , and so (4) is performed
only for n = N ;

• we can ignore the bits “1 : ” and “2 : ” in (59), obtaining (3).

Protocol 3.1 also merges the four lines in Protocol B.1 preceding the FOR loop
into the loop.

C Mechanics of futures trading

Section B.1 gives an idealized picture of futures trading. The main elements of
simplification in it are:

• the interest rate is assumed to be zero;

• the positions and futures prices are assumed to take any real values (al-
though we are only interested in positive prices for futures contracts);

• there is no difference between the selling and buying prices (no bid/ask
spread);

• there are no other transaction costs.

In this paper we are only interested in binary futures contracts (where the
outcome is 0 or 1). However, the most popular market mechanism, described
in this appendix, works for general futures contracts, which are not restricted
to the binary case.

A good reference for traditional futures markets is Duffie [1989]. While some
of the physical details of trading described in it might be obsolete, the general
principles are still applicable. Another good reference is Harris [2003].
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By far the most popular platform for prediction markets is the Iowa Elec-
tronic Markets (IEM). The IEM was created in 1988 and has always been a
small-scale operation; the development of prediction markets has been greatly
hindered by the US anti-gambling regulation [Arrow et al., 2008]. The IEM was
created by academics, and its role is mainly educational; in particular, it has
a great help system explaining the market microstructure (which I often follow
in this section). It received two no-action letters, in 1992 and 1993, from the
US Commodity Futures Trading Commission (CFTC) reducing the chance of
legal action against it. Its competitors sometimes have better bid/ask spreads,
but their positions are less secure; e.g., Intrade (1999–2013) is now defunct and
PredictIt (launched in 2014) had their CFTC no-action letter withdrawn in
2022.

A futures contract is a contract that pays a specified amount Fm at a speci-
fied future time, called the expiration time m (it was the expiration step in the
main part of the paper). The amount is uncertain at the time of trading but
becomes well-defined at the expiration time, when trading ceases. An example
of m and Fm is “6 November 2024” and “Democratic Nominee’s share of the
two-party popular vote in the 2024 US Presidential election” in US dollars. This
is, essentially, one of the types of futures contracts traded at the IEM in Au-
gust 2023 (of the “vote share” variety; the other main variety is “winner takes
all”). Let us fix m and Fm. At each time the market participants can hold any
number of the futures contracts (positive, zero, or negative), which is known as
their positions in the futures contracts. They can also submit orders to change
their positions. The main kinds of orders are market orders and limit orders.
A limit order specifies the number of futures contracts to buy or sell at a given
price (known as the bid price for orders to buy and the ask price for orders to
sell); it may also specify the time when the order expires.

At the core of a futures market is the order book listing the outstanding limit
orders. The prices specified in those orders are

BnB
< BnB−1 < · · · < B1 < A1 < A2 < · · · < AnA

, (62)

where nB is the number of different bid prices in the currently active limit orders
to buy and nA is the number of different ask prices in the currently active limit
orders to sell. The prices in the list (62) are sorted in the ascending order,
and the difference A1 − B1 is known as the bid/ask spread. With each price
level x is associated the total number N(x) of futures contracts that the market
participants with active limit orders wish to trade (to buy if x = Bn for some
n and to sell if x = An for some n; N(x) = 0 for all other x). The order book
consists of the prices (62) and the numbers N(x) of futures contracts offered at
each price level x (within each price level x older orders appear before newer
orders). It consists of a bid queue (the data related to the bid prices) and an
ask queue (the data related to the ask prices).

A market order is simpler than a limit order and only specifies the number
of futures contracts to buy or sell. When a new market order is submitted by
a market participant MP, it is matched with the order book immediately and
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a trade is performed. Namely, if the order is to sell N contracts, the bid queue
is traversed from the top (i.e., from B1) until the required number of orders to
buy is found: we find the smallest k such that N(B1)+ · · ·+N(Bk) ≥ N (all the
N(B1)+· · ·+N(BnB

) contracts requested in the bid queue are bought if there is
no such k) and arrange a trade with MP selling all his futures contracts to the
market participants with active limit orders with the prices in {B1, . . . , Bk};
for the price Bk only the oldest orders are fulfilled (perhaps partially). The
procedure for market orders to buy is analogous.

When a new limit order is submitted by a market participant, it is simply
added to the order book. We can assume that the limit orders to buy specify
prices below A1 and the limit orders to sell specify prices above B1 (otherwise, a
market order can be submitted). When a limit order in the order book expires,
it is, of course, removed from it.

An important element of futures markets is the system of margins. Typ-
ically market participants have positions in several types of futures contracts
(corresponding to different m and Fm) and other securities, and the total values
of their portfolios can go up or down. To reduce the chance of the exchange
losing money, they are required to maintain margin accounts at specified levels.
If a margin account falls below the specified level as result of changing market
prices, a margin call is issued requiring the account to be replenished.

In the IEM, short (i.e., negative) positions are formally prohibited, which
allows it to avoid imposing margin requirements. But it is still easy to emulate
short positions (e.g., a short position in the vote share for the Democratic Nom-
inee can be modelled as a long position in the vote share for the Republican
Nominee).

A natural question is how a futures market is started; namely how to make
the order book non-empty. In the IEM, the market participants are allowed to
buy fixed price bundles for a given price. For example, such a bundle might
contain the vote share for the Democratic Nominee and the vote share for the
Republican Nominee, with a fixed price of $1 (the sum of the two vote shares
is 1, and so the final pay-off of the bundle is known to be $1).

D Radical probabilism

Our testing protocols, such as Protocol 3.1, assume that we learn the observa-
tions yn with full certainty. According to Jeffrey’s doctrine of radical proba-
bilism [Jeffrey, 1992], we do not learn anything for certain; at best, we learn
that the nth observation is yn with a high probability. Radical probabilism can
be regarded as extension of Cromwell’s rule, which is an assumption about the
synchronic picture at each step n, to the diachronic picture. The uncertainty of
observations is a recurring topic in the philosophy of science. See, e.g., Popper’s
discussion of “basic statements” in Popper [1950, Chap. 5] (where he also refers
to Reininger’s and Neurath’s similar ideas) and Andersson [2016]. In this section
we will discuss two modifications of Protocol 3.1 allowing uncertain evidence.
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D.1 Additive picture

A straightforward modification of Protocol 3.5 making evidence uncertain is the
following one.

Protocol D.1.
K0 := 1
FOR n = 1, 2, . . . :

Forecaster announces Qn ∈ P(YN )
IF n > 1:

Kn−1 := Kn−2 +
∑

x∈YN Fn−1(x)(Qn(x)−Qn−1(x)) (63)
Sceptic announces Fn : YN → R.

Whereas the loops in Protocols 3.1 and 3.5 are over finite ranges of n, in Proto-
col D.1 the loop is infinite since we do not learn any of y1, . . . , yN with certainty.
Even though in Protocol D.1 yn are never disclosed explicitly, they may be dis-
closed implicitly via Qn: cf. (9). The capital updating rule (63) is very natural:
namely, a possible interpretation of this rule is that Qn−1 is the expectation of
Qn (cf. Goldstein 1983, Theorem in Sect. 3).

Notice that Protocol D.1 is only a modification, not generalization, of Pro-
tocol 3.5: whereas Qn in the former protocol is required to be positive (by our
definition of P(·)), it is not positive in the latter protocol (being positive is
incompatible with possessing certain evidence).

D.2 Multiplicative picture

Protocol D.1 and all the protocols discussed in the main part of the paper are
similar to Protocol 3.1 in that Sceptic’s capital is updated by adding various
terms. This subsection introduces a multiplicative protocol, in which Sceptic’s
capital is updated by multiplication. Both multiplicative and additive protocols
are ubiquitous in game-theoretic probability (although the difference between
them is rarely pointed out). This is the multiplicative version of Protocol D.1:

Protocol D.2.
K0 := 1
FOR n = 1, 2, . . . :

Forecaster announces Qn ∈ P(YN )
IF n > 1:

Kn−1 := Kn−2

(
Gn−1(□) +

∑
x∈YN

Qn(x)
Qn−1(x)

Gn−1(x)
)

(64)

Sceptic announces Gn : (YN ∪ {□}) → R summing to 1.

This protocol uses the notation □ for the empty sequence, and in its last line
Sceptic is required to ensure Gn(□)+

∑
x∈YN Gn(x) = 1. The interpretation of

(64) is that Sceptic invests some of his capital Kn−2 into tickets x for various
x ∈ YN and deposits the remainder of Kn−2 into a zero-interest bank account
□; the share of the capital invested or deposited is Gn−1(x) and Gn−1(□),
respectively. As usual, the capital Kn is not allowed to become negative.
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To see the equivalence of the additive and multiplicative protocols, notice
that (64) is equivalent to

Kn−1 −Kn−2 =

(
Gn−1(□) +

∑
x∈YN

Qn(x)

Qn−1(x)
Gn−1(x)− 1

)
Kn−2

=

( ∑
x∈YN

(Qn(x)−Qn−1(x))
Gn−1(x)

Qn−1(x)

)
Kn−2.

This establishes the one-to-one correspondence

Fn−1(x) =
Gn−1(x)

Qn−1(x)
Kn−2 (65)

between Fn−1 in (63) and Gn−1 in (64). The correspondence (65) assumes that
Kn−2 > 0, and the case Kn−2 = 0 should be considered separately (Sceptic’s
capital will stay at 0 once it reaches 0 in either protocol).

We obtain a useful modification of Protocol D.2 replacingGn : (YN∪{□}) →
R in the last line by Gn ∈ P(YN ). Then the multiplicative protocol becomes a
special case of Cover’s protocol modelling investment into |Y|N securities such
as stocks (see, e.g., Cover 1991 or Vovk 1998, Example 9). As in Sect. 3, we
have a market in securities Φ(x), x ∈ YN , but they may be never settled. For
each security Φ(x) the protocol gives its price Qn(x) at time n. The prices
are normalized in that Qn(x) sum to 1 over x; e.g., Qn(x) may be the market
shares. The capital update rule (64) involves the price relative Qn(x)/Qn−1(x)
(as used in Cover 1991). At each step Sceptic decides on the distribution Gn

of his current capital Kn−1 among the securities Φ(x). If Gn ∈ P(YN ), we do
not allow “short selling”, i.e., holding a negative amount of a security, and we
require Sceptic to invest all of his capital. In general, allowing any Gn : YN → R
we allow both short selling and leaving part (positive or negative) of Sceptic’s
capital on a zero-interest bank account.

D.3 Radical probabilism and reality

The additive picture and, especially, the multiplicative one shed new light on
the protocols in the main part of the paper. The latter cover the case where
Qn, n = 1, . . . , N , is concentrated on [x] ⊆ YN (the set of all continuations
of x) for some x ∈ YN−n+1. The difference between radical probabilism and
the standard Bayesian scenario considered in the main paper corresponds to the
difference between stocks and futures contracts. Sooner or later, reality settles a
futures contract, but stock prices can be forever variable (in our ideal picture).

It would be interesting to establish conditions under which this paper’s re-
sults can be extended to the more general and simpler protocols of this appendix.
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E Internal and external coherence

A fundamental role in Bayesian statistics is played by the requirement of co-
herence: if the Bayesian’s beliefs do not form a probability measure, we can
set a “Dutch book” against him, which is a system of bets leading to his sure
loss. In this paper we were mainly interested in a stronger property, agreement
with reality, in which sure loss is replaced by a substantial gain for an opponent
(Sceptic) who follows a strategy that can ever lose only a small amount (1 in our
prediction protocols). Both coherence and agreement with reality are defined
in terms of betting.

One subtlety of the standard Bayesian treatment of coherence is that co-
herence only implies finite additivity and not countable additivity (see, e.g.,
de Finetti 2017, Sect. 18.3, and Bernardo and Smith 2000, Sect. 3.5.2). In
the finite case considered in this paper, however, the difference between finite
and countable additivity disappears. (Starting from a finite case is standard
in probability theory; see, e.g., Kolmogorov 1933, Chap. I, and Shiryaev 2016,
Chap. 1.)

Coherence is a property of consistency of the Bayesian’s beliefs, so we could
call it internal coherence. The English word “coherence” may cover not only in-
ternal coherence but also agreement with reality (a kind of external coherence).
For example, one of the earliest abstract uses of “coherence” given in the Ox-
ford English Dictionary is from Abraham Fraunce’s “The lawiers logike” (1588):
“Where there is a greater cohærence and affinitie betweene the argument and
the thing argued”. While using “coherence” in its meaning of internal coherence
is standard in Bayesian statistics, here we will also discuss external coherence. I
will argue that Lewis’s diachronic Dutch book argument is a step towards exter-
nal coherence and that the game-theoretic testing procedure involving Sceptic
can also be interpreted as a check of external coherence.

The following proposition will show that neither the standard static notion of
coherence nor Lewis’s dynamic requirement of no diachronic Dutch book impose
any restrictions on the forecasts and observations at different times. Therefore,
for discussing the diachronic aspects of Bayesian forecasting we need a stronger
requirement, such as withstanding Sceptic’s tests. And the latter requirement
appears to be a natural variation on Lewis’s dynamic coherence.

Proposition E.1. For any sequence of outcomes y1, . . . , yN ∈ Y and any se-
quence of probability measures Pn ∈ P(YN−n+1), n = 1, . . . , N , there is a
positive finite probability space (Ω, P ) with filtration F0, . . . ,FN and an adapted
sequence of Y-valued random elements Y1, . . . , YN such that the event

∀n ∈ {1, . . . , N} : Pn = P (· | Fn−1) & Yn = yn

has a positive probability.

The Bayesian is incoherent in the usual sense of Ramsey and de Finetti if we
can set up a system of bets under which he always loses, called a Dutch book.
This static notion is not directly applicable in the diachronic setting since we
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learn the full sequence P1, . . . , PN only at the very end of the forecasting session,
when it is too late to bet.

But we can, in principle, apply Lewis’s dynamic modification of the usual
static notion of coherence. This modification was used by Lewis [1999, p. 406]
in his diachronic Dutch book argument; lack of coherence becomes, in Lewis’s
words, “a risk of loss uncompensated by any chance of gain”. Unlike Lewis,
however, we do not assume that our prediction protocol is comprehensive; oth-
erwise, we would have to conclude, as Lewis did, that Pn are connected via
Bayesian conditioning.

Let us say that the Bayesian (Forecaster in our protocol) is dynamically
incoherent in a particular play if there is a way of betting against him that
never leads to the better’s loss but, in this particular play, leads to the better’s
gain. In other words, it’s a gain that is not compensated by a potential loss; we
will call it a gratis gain. Lewis [1999] (and other people before 1999) used the
expression “diachronic Dutch book” to mean the existence of a play for which
the Bayesian is dynamically incoherent. While dynamic coherence is external
(depends on the actual outcomes yi), the requirement of no diachronic Dutch
book becomes one of internal coherence.

Proposition E.1 implies that Forecaster is never dynamically incoherent pro-
vided the bets are fair (the expectation of the better’s final capital does not
exceed the initial capital) under every possible probability measure P compati-
ble with the forecasts. This is true under any strategy for probability updating
(or in the absence of such a strategy). Indeed, if the gain in the capital is positive
for play P1y1 . . . PNyN and nonnegative for all other plays, the expected gain
will be positive under any positive probability measure P compatible with the
play P1y1 . . . PNyN , and the existence of such a P is asserted in Proposition E.1;
therefore, the bets cannot be fair.

We can see that there can be no diachronic inconsistency between Pn for
different n or between Pn and yn leading to a gratis gain for the better. Our
testing protocol in Sect. 3, however, shows that such inconsistency can lead to
an almost gratis gain for the better. Namely, when for a particular play KN is
large, we can regard it as an almost gratis gain for the better (Sceptic). (This
assumes that Sceptic’s capital is measured in small monetary units, but we can
always scale it up if the monetary units are not small.) For example, a gross
failure of the law of large numbers would lead to an almost gratis gain.

Proof of Proposition E.1. Let us fix such sequences of probability measures
Pn ∈ P(YN−n+1) and outcomes yn ∈ Y. As a first step, define Ω as YN ,
P as P1, Yn(ω) as the nth element ωn of ω ∈ Ω, and let the σ-algebra Fn be
generated by Y1, . . . , Yn.

Next modify the finite probability space (Ω, P ) and filtration (Fn) as follows
(there is no need to modify Yn). Split each sample point y1ω2 . . . ωN that starts
from y1 into two sample points, y′1ω2 . . . ωN and y′′1ω2 . . . ωN , and make the
sets {y′1} × ΩN−1 and {y′′1} × ΩN−1 Fn-measurable for n ≥ 1. Split the old
value c := P1({y1} × ΩN−1) into P ({y′1} × ΩN−1) := ϵc, for a sufficiently small
ϵ > 0, and P ({y′′1} × ΩN−1) := (1 − ϵ)c. Without changing P ({ω1 . . . ωN}) for
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ω1 /∈ {y′1, y′′1}, set

P ({y′1ω2 . . . ωN})
P ({y′1} × ΩN−1)

:= P2({ω2 . . . ωN}), ω2, . . . , ωN ∈ Ω,

and define
P ({y′′1ω2 . . . ωN})
P ({y′′1} × ΩN−1)

, ω2, . . . , ωN ∈ Ω,

in such a way that we have an agreement with P1:

∀ω2, . . . , ωN ∈ Ω :
P ({y′1ω2 . . . ωN , y′′1ω2 . . . ωN})

P ({y′1, y′′1} × ΩN−1)
=

P1({y1ω2 . . . ωN})
P1({y1} × ΩN−1)

;

this is possible for a sufficiently small ϵ > 0.
Apply the same procedure to the probability subspace of (Ω, P ) consisting

of the sample points y′1ω2 . . . ωN , thereby splitting y2 into y′2 and y′′2 . Continue
by splitting y3, y4, etc.

F Measure-theoretic martingale law of large
numbers

Our discussion of Bayesian decision theory in Sect. 6 was based on a law of
large numbers for predicting K steps ahead. This law of large numbers may
also present an independent interest, and the purpose of this appendix is to give
clean self-contained measure-theoretic statements of its various versions. In this
appendix we consider general probability spaces (Ω,F , P ), not necessarily finite.

A filtration (Fn), n = 0, 1, . . . , N , in a general probability space (Ω,F , P )
is still an increasing sequence of σ-algebras, F0 ⊆ · · · ⊆ FN . A sequence
Y1, . . . , YN of random variables in (Ω,F , P ) is adapted if Yn is Fn-measurable for
n = 1, . . . , N . We usually assume |Yn| ≤ 1 for agreement with the assumption
λn ∈ [0, 1] that we made in Sect. 6 about the loss functions: Yn corresponds to
a difference between two values of such a loss function λn.

Interestingly, we can get nearly optimal results by using the primitive idea of
decomposing forecasting K steps ahead into K processes of forecasting one step
ahead, as in Remark 6.6. This gives us the following proposition (analogous to
Theorem 6.5).

Proposition F.1. Let (Ω,F , P ) be a probability space equipped with a filtration
(Fn), n = 0, 1, . . . , N . Fix a prediction horizon K ∈ {1, . . . , N}. Let Y1, . . . , YN

be an adapted sequence of random variables in (Ω,F , P ) bounded by 1 in absolute
value, |Yn| ≤ 1 for n = 1, . . . , N . Then we have, for any ϵ ∈ (0, 0.7),

P

(∣∣∣∣∣
N∑

n=K

(Yn − EP (Yn | Fn−K))

∣∣∣∣∣ ≥ 4

√
KN ln

1

ϵ

)
≤ ϵ. (66)
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Proof. In this proof we will need one result from robust risk aggregation (this
theory was originated by Kolmogorov [Makarov, 1981]; it is briefly described in
Vovk and Wang 2020, Remark 2 and then widely used in that paper). Namely,
we will need the following special case of Theorem 4.2 of Embrechts and Puccetti
[2006].

Suppose nonnegative random variables Xk, k = 1, . . . ,K, satisfy

P(Xk ≥ x) = exp(−ax2) (67)

for all x ≥ 0, where a is a positive constant. The value E of the optimization
problem

P(X1 + · · ·+XK ≥ C) → max (68)

(the max, or at least sup, being over all joint distributions for (X1, . . . , XK)
with the given marginals) does not exceed

E := inf
t<C/K

K
∫ C−(K−1)t

t
exp(−ax2) dx

C −Kt
. (69)

We can extend the statement in the previous paragraph to a wider class of
random variables Xk, k = 1, . . . ,K. Namely, it suffices to assume that they
satisfy

P(Xk ≥ x) ≤ exp(−ax2) (70)

for all x ≥ 0, instead of (67). We will apply the statement to the random
variables Xk given by

Xk :=
∑

n∈{k+K,k+2K,...,k+⌊N/K⌋K}

(Yn − EP (Yn | Fn−K)) .

By Hoeffding’s inequality, for any C > 0 and any k ∈ {0, . . . ,K − 1},

P (Xk ≥ C) ≤ exp
(
−C2/(2⌊N/K⌋)

)
≤ exp

(
−C2/(2N/K)

)
,

where the non-existent terms in the sum (those corresponding to n > N if any)
are interpreted as 0. Therefore, (70) holds with

a :=
K

2N
. (71)

Let us set t := C
2K in (69) (this is the middle of the range of t). This gives

the upper bound
2K

C

∫ ∞

C
2K

exp(−ax2) dx

for E, which can be rewritten (see below for an explanation) as

2K

C

1√
2a

∫ ∞

√
2a C

2K

exp(−y2/2) dy =
2K

C

√
2π√
2a

Φ̄

(√
2a

C

2K

)
(72)
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=
2
√
2π

√
KN

C
Φ̄

(
C

2
√
KN

)
<

4KN

C2
exp

(
− C2

8KN

)
. (73)

The first expression in (72) is obtained by the substitution y :=
√
2ax, the

equality in (72) uses the notation Φ̄ for the survival function of the standard
Gaussian distribution, the following equality (the one in (73)) is obtained by
plugging in (71), and the final inequality in (73) follows from the usual upper
bound for Φ̄ [Feller, 1968, Lemma VII.1.2].

To find a suitable solution to the inequality

4KN

C2
exp

(
− C2

8KN

)
≤ ϵ

2
,

we plug in C =
√

8KN ln 1
ϵx (intuitively, x ≈ 1) obtaining, after simplification,

ϵx−1 ≤ x ln
1

ϵ
.

Assuming ϵ < 0.7, we can set x := 2.

Remark F.2. In the proof of Proposition F.1 we did not make any attempt to
optimize the coefficient 4 in (66). However, the same argument shows that 4
can be replaced by a number as close to

√
2 as we wish if we narrow down the

permitted range of ϵ (leaving the lower end of the range at 0, of course).

Remark F.3. Since the bound E in (69) plays an important role in this appendix
(and implicitly in Appendix A.4), it is reassuring to know that in many interest-
ing cases E actually coincides with the value of the optimization problem (68).
This is shown in Theorem 2.3 by Puccetti and Rüschendorf [2013]. (And the re-
statement of Embrechts and Puccetti’s result in Puccetti and Rüschendorf 2013,
Sect. 1, is particularly convenient.) One of the cases [Puccetti and Rüschendorf,
2013, Sect. 3] in which E is the value of the optimization problem is where the
probability density function of Xk is monotonically decreasing over its domain
[0,∞). This condition, however, is only satisfied for x ≥ 1/

√
2a (the last con-

dition becomes x ≥
√
N/K for the value of a, given in (71), that we will be

interested in).

Remark F.4. In the proof of Proposition F.1 we set t := C
2K in (69). In the arXiv

version 2 of this paper, I used two other choices, t → C
K and t := 0, which led

to weaker results (if we ignore the coefficient in front of the
√

in (66)). Namely,
the former choice is equivalent to using Bonferroni’s inequality (as noticed by
Embrechts and Puccetti [Puccetti and Rüschendorf, 2013, Remark 4.1(i)]), and
the latter choice gives a worse dependence of ϵ, namely ϵ−2 in place of ln 1

ϵ .

Let us state Proposition F.1 in a cruder way. Now we consider a sequence of
probability spaces (ΩN ,FN , PN ), N = 1, 2, . . . , each equipped with a filtration
(FN,n), n = 0, 1, . . . , N . Fix a sequence KN ∈ {1, . . . , N}, N = 1, 2, . . . , of
prediction horizons. Let, for each N , YN,1, . . . , YN,N be an adapted sequence of
random variables in (ΩN ,FN , PN ) bounded by 1 in absolute value, |YN,n| ≤ 1
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for n = 1, . . . , N . When I say that a relation RN (O(XN )) involving O(XN )
(such as (74) below) holds in probability, I mean that for any ϵ > 0 there exists
C > 0 such that PN (RN (CXN )) ≥ 1− ϵ from some N on.1 According to (66),∣∣∣∣∣

N∑
n=KN

(YN,n − EPN
(YN,n | FN,n−KN

))

∣∣∣∣∣ = O
(√

KNN
)

(74)

in probability. An even cruder form of (74) (and of Proposition F.1) is the
following corollary.

Corollary F.5. Let (ΩN ,FN , PN ), N = 1, 2, . . . , be a sequence of probability
spaces (ΩN ,FN , PN ) each equipped with a filtration (FN,n), n = 0, 1, . . . , N .
Suppose the sequence KN ∈ {1, . . . , N}, N = 1, 2, . . . , of prediction horizons
satisfies KN = o(N). Let, for each N , YN,1, . . . , YN,N be an adapted sequence
of random variables in (ΩN ,FN , PN ) bounded by 1 in absolute value. Then∣∣∣∣∣ 1

N −KN + 1

N∑
n=KN

(YN,n − EPN
(YN,n | FN,n−KN

))

∣∣∣∣∣→ 0 (N → ∞) (75)

holds in probability.

Remember that when we say that random variables ξN in probability spaces
(ΩN ,FN , PN ) converge to 0 in probability, as in (75), we mean that, for any
δ > 0, PN (|ξN | > δ) → 0 as N → ∞.

The following proposition (analogous to Proposition 6.8) is an inverse to
(74). To make it slightly stronger, we state it for finite probability spaces.

Proposition F.6. There exist ϵ > 0, a sequence of finite probability spaces
(ΩN , PN ), N = 1, 2, . . . , each equipped with a filtration (FN,n), n = 0, 1, . . . , N ,
and, for each N , an adapted sequence YN,1, . . . , YN,N of random variables in
(ΩN , PN ) bounded by 1 in absolute values, |YN,n| ≤ 1 for n = 1, . . . , N , such
that, for any sequence KN ∈ {1, . . . , ⌊N/5⌋}, N = 5, 6, . . . , and for all N ≥ 5,
we have

PN

(
N∑

n=KN

(YN,n − EPN
(YN,n | FN,n−KN

)) ≥
√
KNN

)
≥ ϵ.

Proof. Fix independent {−1, 1}-valued variables X1, . . . , X⌈N/KN⌉ in (ΩN , PN )
taking values ±1 with equal probabilities, and set

YN,n := X⌈n/KN⌉, n = 1, . . . , N.

Therefore, the N steps are split into ⌈N/KN⌉ blocks of length KN (with a
possible exception of the last block, which may be shorter), and YN,n is constant

1Of course, this definition makes an intuitive sense only when the statement RN (x) becomes
weaker as x increases.
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within each block. By the central limit theorem, the probability is at least ϵ (a
universal positive constant) that YN,n = 1 in at least

√
N/KN + 1 more blocks

than YN,n = −1. In such cases

N∑
n=KN

(YN,n − EPN
(YN,n | FN,n−KN

)) =

N∑
n=KN

YN,n ≥ KN

√
N/KN =

√
KNN,

where each FN,n is generated by YN,1, . . . , YN,n.

Remark F.7. One inefficient approach to the K-steps ahead martingale law of
large numbers (used in the arXiv version 1 of this paper and already alluded to
in Remark 6.6) is to apply Hoeffding’s inequality to the martingale difference

Xn :=

(n+KN−1)∧N∑
i=n

(EPN
(YN,i | FN,n)− EPN

(YN,i | FN,n−1)) ,

whose increments are bounded by 2KN in absolute value. It is a martingale
difference in the sense E(Xn | FN,n−1) = 0, n = 1, . . . , N , and it satisfies

N∑
n=1

Xn =

N∑
n=KN

(YN,n − EPN
(YN,n | FN,n−KN

))

+

N+KN−1∑
n=N+1

(EPN
(YN,n | FN,N )− EPN

(YN,n | FN,n−KN
))

≈
N∑

n=KN

(YN,n − EPN
(YN,n | FN,n−KN

))

(where the ≈ assumes KN ≪ N and ignores borderline effects). This argument,
however, requires KN = o(N1/2).
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