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Abstract
The most common bets in 19th-century casinos were even-money bets on red or
black in Roulette or Trente et Quarante. Many casino gamblers allowed them-
selves to be persuaded that they could make money for sure in these games
by following betting systems such as the d’Alembert. What made these sys-
tems so seductive? Part of the answer is that some of the systems, including
the d’Alembert, can give bettors a very high probability of winning a small
or moderate amount. But there is also a more subtle aspect of the seduction.
When the systems do win, their return on investment — the gain relative to
the amount of money the bettor has to take out of their pocket and put on the
table to cover their bets — can be astonishingly high. Systems such as le tiers
et le tout, which offer a large gain when they do win rather than a high prob-
ability of winning, also typically have a high upside return on investment. In
order to understand these high returns on investment, we need to recognize
that the denominator — the amount invested — is random, as it depends on
how successive bets come out.

In this article, we compare some systems on their return on investment and
their success in hiding their pitfalls. Systems that provide a moderate gain with
a very high probability seem to accomplish this by stopping when they are
ahead and more generally by betting less when they are ahead or at least have
just won, while betting more when they are behind or have just lost. For his-
torical reasons, we call this martingaling. Among martingales, the d’Alembert
seems especially good at making an impressive return on investment quickly,
encouraging gamblers’ hope that they can use it so gingerly as to avoid the
possible large losses, and this may explain why its popularity was so durable.

We also discuss the lessons that this aspect of gambling can have for evalu-
ating success in business and finance and for evaluating the results of statistical
testing.
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1 Introduction

There is a vast literature, dating from the end of the 18th century, on betting
systems for casino games: books and pamphlets that teach the systems to gam-
blers, others that chronicle and deplore the ruin to which their use leads. Math-
ematicians have occasionally joined the chorus of disapproval, providing gen-
eral explanations of the futility of such systems and studying some of the sys-
tems in detail. Much of this mathematical work can be found in Chapter 8 and
in the bibliography of Stewart Ethier’s The Doctrine of Chances [15].1

In this article, we ask a question not so often addressed: what made vari-
ous betting systems so attractive to novice gamblers? Because the systems were
often touted by casinos to encourage more gambling, we can sharpen the ques-
tion by asking what aspects of the systems helped blind the casinos’ customers
to the risks they were taking.

The most popular casino betting systems in the 18th and 19th centuries
were systems for even-money bets, and we will focus on such systems in this
article. The systems were not always strategies in the modern game-theoretic
sense, for often they left some decisions to the player, most importantly the de-
cision when to stop betting. In order to study the systems mathematically, we
turn them into strategies by imposing a stopping rule; sometimes the strategy
will simply play a fixed number of rounds, sometimes it will stop early if a
certain gain is attained.

One way of understanding the phenomena that we study in this paper is to
think about the expected return on an investment. According to the definition
usually used in finance, the return on an investment K is the ratio

R :=
E

K
, (1)

where E is the net gain. If K is a constant but E is a random variable with
E(E) = 0, then (1) implies that E(R) = 0. But in the context of casino betting,
and also in the context of many financial investments, K itself is random and
negatively correlated with E, because the bettor or investor often increases the
investment after initial losses. In this case E may be positively correlated with
1/K, and when E(E) = 0, we have

E(R) = Cov

(
E,

1

K

)
> 0.

The same tendency to increase the investment to counterbalance initial losses
may make the probability P(E > 0) very high, at the cost of making losses
very large when they do happen.

1Other landmarks in the mathematical study of casino games include treatises by Marcel
Boll (1936 [6]), Lester Dubins and Leonard Savage (1965 [13]), and Richard Epstein (1965
[14]). There is also a rigorous mathematical literature on “advantage play” — i.e., strategies
for playing in situations where the player has an advantage over the house [16, 18, 30], but
this is not our topic here.
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In the next section, §2, we describe some of the best known betting systems.
In §3, we develop a small general theory, which includes Ville’s inequality and
definitions of important characteristics of betting strategies: the mean upside
return and the martingaling ratio. In §4, we compare a number of systems on
their mean upside return, martingaling ratio, and other properties that make
them attractive. Finally, in §5, we discuss the relevance of our betting concepts
to finance theory and statistical theory.

In an appendix, §6, we discuss the word martingale, proofs of Ville’s in-
equality, Doob’s conservation of fairness, the games Trente et Quarante and
Roulette, and the typical limits casinos put on bets in these games. The betting
systems that were most popular in the 19th century were for even-money bets
on red or black in Trente et Quarante and Roulette. Although precise details of
the rules of these games are not crucial for the themes of this article, the games
do constitute the historical context of the systems we are discussing, and so we
describe the bets on red and black in these games and the house’s advantage
in each case.

2 Some classical betting systems for red and
black

We now describe some classical betting systems. We begin with the simplest
and most classical: the martingale and the paroli. The martingale doubles its
bet after every loss, while the paroli doubles its bet after every win. As we
explain in §2.1, the two systems have opposite results: the martingale produces
a small gain with high probability, while the paroli produces a large gain with
low probability.

In §§2.2 and 2.3, we look at two systems that were featured in the earli-
est surviving books in which more complicated systems were described, G.
N. Bertrand’s Trente-un dévoilé [4] and Alexandre Toussaint de Gaigne’s Mon
histoire au Trente-un [10]. These are the d’Alembert and le tiers et le tout. The
d’Alembert can be thought of as a disguised or moderate martingale, while le
tiers et le tout can be thought of as a disguised or moderate paroli.

We conclude, in §2.4, by describing a system introduced by Émile Borel in
1949 [7]. Borel’s system is completely impractical for casino play, but it is of
interest because of its mathematical transparency.

The betting systems touted by casinos and described by authors about sys-
tems usually involved more than varying the size of the bet. In a game of red
and black, for example, you can switch from betting on one color to betting
on the other. The casino’s victim might be encouraged to think that he or she
could gain further advantage by betting on the color that was hot or the color
that was overdue. In the French literature on red and black, a betting system
was sometimes thought of as having two components: the massage, which told
you how to vary the size of the bet (a unit bet was called a masse), and the
marche or attaque, which told you how to vary the color on which you bet and
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perhaps how to wait to bet; see [24] for details. The marche or attaque made no
difference when the casino’s advertised odds were accurate. Even some of the
authors who touted systems seem to have realized this, for they put greater
emphasis on the massage and left the details of the marche or attaque more to the
reader; see for example the 1902 manual by G. d’Albigny [9]. Mathematicians
who write about betting systems often simply ignore the marche and attaque,
assuming that a betting system consists only of a massage. We will follow this
mathematical tradition, and to fix ideas we will suppose that the player always
makes a nonnegative bet on black.

2.1 Martingales and parolis

We can distinguish two fantasies that might bring people into a casino. Some
casino goers are looking for a sure thing, a way of betting that is certain to win,
even if what it wins is modest. If you could win for sure, you could do it over
and over and make a living or more. Other casino goers resemble the typical
buyer of a lottery ticket. They acknowledge that they are unlikely to win, but
they want to try to their luck, and they are looking for a big win.

The simplest recipes that engage these two fantasies in a game of red and
black are the martingale and the paroli, respectively.

• The martingale is a purportedly sure way of netting 1 monetary unit. You
begin by betting 1 unit. (On black; recall that all bets discussed in this
article are on black.) If you win, you are done. If you lose, you double
your bet, and you keep doubling until you win. In theory, you are sure to
win eventually. If you lose k times before winning, then your losses add
up to

1 + 2 + . . .+ 2k−1 = 2k − 1,

but your win of 2k leaves you with the promised net gain of 1. (See §6.1
and [19] for a discussion of how this use of the word martingale, which
goes back to the 18th century, is related to the current use of the term in
probability theory.)

• The paroli doubles not when you lose but when you win. You may begin
the same way, by betting 1 unit. You keep betting 1 unit until you win.
Then you double your bet, and if you win you double again. If you win
k times in a row and then stop betting, you have won 2k − 1, from which
you must deduct at most a few units that you lost before your first win.
You have parlayed a few units of capital into a very large haul. (The
word paroli came into the European languages from Neapolitan Italian.
American gamblers made it into parlay.)

For the casino owner touting betting systems to potential customers, the
problem with the martingale and the paroli is that their pitfalls are too obvious.

• If the martingaler could keep on doubling indefinitely, he would even-
tually win. But how long can he afford to double, and how long would
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the casino permit it? Casinos always limit the size of a single bet, and
the limit is usually not much more than 1000 times the minimum bet. As
210 = 1024, you cannot double more than 10 times. If you do double up
to 10 times, you will hit the limit and lose 1023 units about once in 1024
times. Even when you do win, you will often be investing a lot to win a
little. If you lose and hence double 6 times before winning, you will have
invested 63 units just to walk away with a 1 unit profit.

• The paroli seems less dangerous. Each time you double, you again risk
the single unit with which you won the first bet, but otherwise you are
only risking what you have won. As many a rogue has explained, you
are martingaling with the casino’s money. But the futility of the exercise
is too obvious. The probability of winning 10 times in a row and netting
1023 units being only 1 in 1024, you can expect to do it only about once
in 1024 tries, and you lose 1 unit every time you fail.

There many other systems, however, that behave like the martingale or the
paroli while obscuring their dangers. By 1800, it was common to call any sys-
tem that makes money with high probability a martingale. We will follow this
usage here, and we will also call any system that gives some probability for a
large gain a paroli. When we examine the systems that have been proposed,
we find that the martingales achieve their effect by betting more when they are
behind or when they have just lost and perhaps also less when they are ahead
or have just won,2 while the parolis do the opposite. But these stratagems work
only within some limits, and these limits have never been fully delineated.

If you have the time and money to play long enough, you can make a mar-
tingale out of almost any betting system simply by stopping when you are
ahead. This is the simplest way of betting less when you are ahead. Decide
what net gain you want, keep playing until you get it, and then stop. For ex-
ample, if the banker has no advantage and you repeatedly make a unit bet
until you are 3 units ahead or have bet 200 times, whichever comes first, you
will reach your goal of 3 units about 83% of the time.

2.2 The d’Alembert

How can the casino owner or his confederate hide from the martingaler the
risks he or she is taking? A gambler’s willingness to start betting without
deciding how much they are willing to risk opens up a big opportunity for
deception. A mathematician can calculate the amount of capital required to
implement a well-defined strategy, i.e., the maximum amount that you would
ever need to take out of your pocket to play it through to the end no matter

2The notorious Doctor Petiot wrote that the absolute and principal rule of martingales
is that you should never increase your bet after a gain [21, p. 24]. Pretending to provide a
means of escape for Jews from Nazi-occupied France, Petiot murdered them with injections
he passed off as preventive medicine, then plundered their cash and valuables. He completed
his book, Le hasard vaincu. . . Les lois des martingales, while in detention and published it,
handwritten, during his trial. He was convicted and executed by the guillotine in 1946.
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how the successive rounds come out. This is also the maximum amount the
strategy can lose. If your strategy is simply to make a one-dollar bet on every
round for 200 rounds, then this maximum is obviously $200. But most gam-
blers would be unable to calculate the maximum required to play a more com-
plicated betting system for a given number of rounds, and they might easily
play the system many times without ever experiencing losses near this maxi-
mum. If they obtain a good return on their investment each time (a reasonable
net gain relative to what they have actually taken out of their pocket), they may
easily succumb to the delusion that they have discovered a sure thing or that
they have chanced into a durable streak of good luck.

One of the oldest casino betting systems is the one that calls for the player
to begin with a unit bet, increase the size of the bet by one unit after every loss,
and decrease it by one unit, except when it is already only one unit, after every
win. Since the late 19th century, this system has been called the d’Alembert, on
the erroneous theory that it was invented by the mathematician Jean Le Rond
d’Alembert. Whatever its origin, the d’Alembert was already one of the most
popular systems by the 1790s.

As Bertrand reported in 1798, admirers of the d’Alembert thought it was
bound to succeed because the numbers of wins and losses will eventually
equalize. Consider what happens when you play the d’Alembert after having
bet one unit and lost. Whenever the number of subsequent wins and losses,
including this first loss, are equal, your net gain will be equal to the number of
wins (or, equivalently, equal to one-half the number of rounds played).3

The flaw in this venerable argument for the d’Alembert is that you may
run out of money before your wins and losses equalize. But as Jacques-Joseph
Boreux explained in 1820 [29], the system often appears to work in practice. If
you set a modest goal and play the d’Alembert repeatedly, playing each time
until the goal is reached or you are forced to stop (because you run out of
money, the séance is over, or your proposed bet exceeds the house limit), you
can expect a string of relatively quick successes before you ever fail, and the
successes will not usually require taking too much money out of your pocket.4

This article undertakes to quantify the magic of the d’Alembert and to com-
pare its ability to seduce to that of some other well known betting systems.
Here are some features on which we will make the comparison:

1. The probability with which the system achieves a given modest gain
when there is a given limit on how much the player has to lose.

2. How quickly it achieves this goal when it does achieve it. This is im-
portant not only because quick success can impress the player but also

3This is obvious when the losses and wins alternate, because after each loss, the subsequent
win is one unit larger. To complete the proof, it suffices to notice that interchanging the results
of two consecutive rounds changes neither the net gain for the two rounds nor the bet size for
the round following the two. For a more formal proof, see Ethier [15, pp. 290–291]. Ethier
makes the d’Alembert into a strategy by assuming that (1) if the first bet is a win, you stop
immediately, and (2) if the first bet is a loss, you stop the first time the number of wins and
losses equalize. But this is only one possible stopping rule.

4For more on the history of the d’Alembert and other betting systems, see [24].
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because the house’s advantage, being a percentage of the total money
bet, extracts more from the player as more bets are made.

3. The average return on the capital actually risked (the amount taken out
of pocket to finance the bets) when it achieves the goal. We call this the
mean upside return.

4. How well the magnitude of the potential loss is hidden.

We also try to understand the general features of betting systems that allow
them to excel on these different dimensions of seduction.

2.3 Le tiers et le tout (the third and the whole)

The French name le tiers et le tout can be translated as “the third and the whole”.
To begin, you take 3 units out of your pocket and put them on the table, and
you bet 1 of the 3 units. As long as you are winning you always bet a third of
what you have on the table. If you win the first bet, for example, you have 4
units on the table, and so you bet 4/3. But the first time you lose, you bet the
whole of what you have left on the table. If you lose this second bet, you take
3 more units out of your pocket to start over.5

If you could continue to bet in this way for a long time, you would eventu-
ally win many times without losing twice in a row. From a streak in which you
win w times and lose l times, with w > l and no losses twice in a role, you will
have a net gain of 3×(4/3)w−l−3 units. Whenw−l = 10, this is approximately
50 units. Before this streak, you may have lost twice in a row one or more times,
with a net loss of 3 units every time. So you hope that this happened only a few
times. Simulations show that if your capital and the house’s limits on bets were
great enough that you could play for 200 rounds, you would gain rather than
lose money only about 3% of the time, but when you did gain, you would gain
on average over 3500 units while taking only about 100 out of your pocket.

The popularity of le tiers et le tout, like that of a lottery, derived largely from
publicity about individuals who won big with it. Beginning in the early 1860s,
many books on betting systems mention a Spaniard named Garcia, said to have
won a fantastic amount of money at the Homburg casino, only to return and
lose it the following year. Some versions of the story say that he used no system
([1, p. 70], for example); others contend that he played le tiers et le tout ([5,
p. 147], for example).

2.4 Borel’s martingale

Suppose you begin with a unit bet, then multiply the bet size by 1 − α every
time you win and by 1 + α every time you lose, where 0 < α < 1. This system

5This description of le tiers et le tout conflicts with our general picture, in which the
player never puts on the table more than needed to cover the bets he actually makes. When
we calculate how much the system actually requires the player to invest, we will align with
the general picture by assuming that the player first puts only one of the three units on the
table, adding the second two only when needed.
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could not be played in any casino, because it requires precise and sometimes
very small bets, but it is of considerable theoretical interest. It was introduced
by Émile Borel in a note published in 1949 [7]. Following Ethier [15, p. 114], we
call it Borel’s martingale.

Borel showed that the system’s net gain after n rounds is

1

α

(
1− (1− α)X(1 + α)n−X

)
, (2)

where X is the number of wins. Borel’s simple proof of (2) used induction on
the number of rounds. We can also prove it easily by the following calculation.

Proof. Let xk, for k = 1, . . . , n, be equal to 1 if the kth bet loses, −1 if it wins.
Then the net gain after n rounds is

n∑
k=1

(−xk)

k−1∏
j=1

(1 + αxj) =

n∑
k=1

xk

− ∑
J⊆{1,...,k−1}

∏
j∈J

αxj


=

1

α

− ∑
∅6=J⊆{1,...,n}

∏
j∈J

αxj


=

1

α

1−
∑

J⊆{1,...,n}

∏
j∈J

αxj

 ,

and this is equal to (2).

Borel pointed out that when there is no house advantage and play continues
indefinitely, (1−α)X(1 +α)n−X tends almost surely to zero, and hence the net
gain (2) tends almost surely to its upper bound 1/α. The smaller α, the greater
this gain but the slower the convergence to 1/α. Borel suggested that the most
interesting values for α might be in the neighborhood of 1/2 or 1/3.

3 A small theory of sequential betting

Now we explore some general features of sequential betting. In §3.1 we state
and discuss Ville’s inequality, which tells how the probabilities for what a bet-
ting strategy can achieve is limited by the amount of capital it deploys. In §3.2
we discuss the randomness of the amount a player risks and how this random-
ness permits the existence of betting strategies that have a high mean upside
return. In §3.3 we introduce the martingaling ratio, a simple measure of the
extent to which a betting strategy resembles a martingale.

The theory of this section applies far beyond the games of red and black
considered in the preceding section, where successive outcomes are indepen-
dent and binary. It applies to any betting game in which a player sees outcomes
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y1, y2, . . . in sequence and the house invites him to bet on what yn+1 will be af-
ter seeing y1, . . . , yn.6 We assume agreement on a probability distribution P for
the outcomes, or rather for a sequence Y1, Y2, . . . of random variables such that
yn is the realized value of Yn. The Yn may or may not be mutually indepen-
dent. We write E for P’s expectation operator. We write Pn for the conditional
probability distribution for Yn+1, Yn+2, . . . given y1, . . . , yn, and En for its ex-
pectation operator.7

We emphasize the ideal case where the house has no advantage, i.e., any
bet the house offers on the nth round comes down to offering a payoff Gn =
Gn(Yn) such that En−1(Gn) = 0. We also consider the case where the house
has an advantage, i.e., En−1(Gn) < 0.

3.1 Ville’s inequality

WriteK0 for the player’s initial capital andKn for his capital after the nth round
of play. In practice the player will stop betting after some finite number of
rounds, after which Kn will not change. But for the moment we do not assume
this.

Suppose the player fixes K0 and adopts a betting strategy S that takes
account only of previous outcomes. This makes his bet on Yn a function of
y1, . . . , yn−1, and it thereby makes his capital Kn a random variable, a function
of the random variables Y1, . . . , Yn. The sequence (Kn)n≥0 is then a stochastic
process. On our assumption that the house has no advantage, so that each gain
Gn satisfies En−1(Gn) = 0 and Kn = Kn−1 +Gn, we have

En−1(Kn) = Kn−1. (3)

So (Kn)n≥0 is a martingale in the sense in which this word is used modern
probability theory. When the prices at which the strategy bets on each round n
are not necessarily given by En−1 but may instead by less favorable, (Kn)n≥0
is still a supermartingale. (See §6.1.)

In this context, we can assert that a strategy must be prepared to risk a lot
to have a high probability of a modest gain. This assertion is made precise by
Ville’s inequality, which says that if the initial capitalK0 is positive and S never
risks more than this initial capital K0 no matter how its bets come out, so that
all the random variables Kn are nonnegative, then

P (Kn ≥ cK0 for some n) ≤ 1

c
(4)

6The pretense that the sequence continues forever is harmless, as our story is over whenever
the bettor stops betting.

7We assume that Pn and En exist. They do exist in our games of red and black, where
Y1, Y2, . . . are mutually independent and Pn and En do not even depend on n. But in the
general theory the objects Pn and En depend on the first n outcomes and are therefore
themselves random objects.
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for any positive constant c. The inequality continues to hold when the house
has an advantage. We discuss its proof in §6.2.8

Suppose, for example, that you want a strategy that will gain at least one
unit with probability at least 1 − p, where p is small. Adding one unit to K0

is the same as multiplying it by c := (K0 + 1)/K0, and (4) says that this can
happen with probability 1− p only if

1− p ≤ K0

K0 + 1
,

or
K0 ≥

1− p
p

.

For example, to have a 99% probability of gaining $1, a strategy needs to start
with at least $99.

For a given betting strategy S, let us write KS for the least value of the
initial capital K0 such that the martingale (Kn)n≥0 is nonnegative. We call KS
the capital required by S. If S always stops betting after some finite number of
rounds N (possibly depending on the previous outcomes and thus random),
its net gain is the random variable

GainS := KN −K0.

We call
GainS

KS
S’s return on the capital it requires. Ville’s inequality tells us that the best such
return we can expect with probability 1− p, for p small, is approximately p.

3.2 The randomness of risk

For the sake of clarity, let us insist on the convention that when a player makes
a bet he must have on the table the money to cover it, that he leaves any win-
nings on the table until the end of his betting, and that he adds to what he
has on the table on each round only enough to cover his next bet. In general,
covering the bet means covering the greatest loss that might result from the
bet. When we consider only even-money bets, this greatest loss is simply the
amount of the bet — the amount he will win if he wins the bet and lose if he
loses the bet. It does not matter where the player gets the money. He may take
it out of his pocket or borrow it from a friend or from the casino itself.

Under these assumptions, the total amount of money the player puts on the
table in the course of a finite sequence of bets is well defined and depends only

8Proofs of the inequality are given by [31, p. 100], [12, p. 314], and [28, p. 132]. See [27,
p. 170] for a vast generalization of the inequality, under which the probabilities on each round
are not necessarily conditional probabilities from some initial probability distribution, the
bets authorized on each round may fall short of defining a complete probability distribution
for that round’s outcome, and you may follow a strategy using information that comes from
outside the game or simply decide how to bet as you go along.
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on the bets the player makes and their outcomes. Let us write risk for this
total investment, the amount he risks. Let us also write gain for his net gain
from a given finite sequence of bets, and let us write

return :=
gain

risk
. (5)

This quantity is the player’s return on his investment. It can be positive or nega-
tive, but it cannot be less than −1. The player cannot lose more than he risks.

There is nothing novel about (5). It is the standard definition of return on
investment in finance. But in the financial literature — textbooks, research ar-
ticles, and the popular press — it is most often assumed, sometimes accurately
and sometimes falsely, that the denominator in (5) is fixed, like the amount of
a certificate of deposit in a savings bank. Here, in the casino, this denominator
obviously has a random aspect. It depends in part on the random outcomes in
the game.

If the player follows a strategy S that tells him how to move on each round
as a function of the outcomes of previous rounds and always tells him to stop
after a finite number of rounds, then the numerator and denominator of (5) are
both completely determined by the random outcomes in the game. We may
then write

ReturnS :=
GainS

RiskS
, (6)

with capital letters indicating that all three quantities are random variables.
As we will see, many strategies more than double the money the player

risks with high probability. In this case the mean return, E(ReturnS), which
combines a low probability for values between −1 and 2 with a high proba-
bility for values greater than 2, can itself be 2 or more. Such a return, 200%,
would be very impressive or even astonishing in many financial contexts. It
also contrasts sharply with what Ville’s inequality told us about the return on
required capital that a strategy can guarantee with high probability. A strat-
egy’s required capital is a fixed number, whereas the investment risked by a
player playing the strategy is a random number, bounded above by the capital
required by the strategy.

When we are studying parlaying strategies, which lose money with high
probability but win a lot when they do win, we will also be interested in

US := E (ReturnS | GainS > 0) ,

which we call S’s mean upside return. Because ReturnS is bounded below by
−1, US differs little from E(ReturnS) when P(GainS > 0) and E(ReturnS) are
both high.

3.3 Martingaling

Consider again a strategy S that always stops playing after a finite number
of rounds, so that GainS is well defined. When the house has no advantage,
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E(GainS) = 0. We can expand this equation to

P(GainS > 0)E (GainS | GainS > 0)

+ P(GainS < 0)E (GainS | GainS < 0) = 0. (7)

Assuming that S calls for some betting, so that P(GainS = 0) < 1, (7) implies
that

P(GainS > 0)

P(GainS < 0)
=

E (−GainS | GainS < 0)

E (GainS | GainS > 0)
. (8)

In words: the odds in favor of gaining rather than losing are equal to the ratio
of the expected size of the loss when you lose to the expected value of the gain
when you gain.

Building on the examples of §2, we say that a gambler who seeks a high
probability of a net gain at the cost of risking a much larger net loss is martin-
galing. We say that the betting strategy S is martingaling if the ratio

MS :=
P(GainS > 0)

P(GainS < 0)
(9)

is greater than 1, and we call this ratio S’s martingaling ratio.
If the house has an advantage, so that E(GainS) < 0, then we obtain the

inequality
P(GainS > 0)

P(GainS < 0)
<

E (−GainS | GainS < 0)

E (GainS | GainS > 0)
(10)

instead of the equality (8). Let us call the right-hand side of (10) S’s gain-loss
ratio and give it its own symbol:

GLS :=
E (−GainS | GainS < 0)

E (GainS | GainS > 0)
.

As we will see, the house’s advantage may not hamper very much a
player’s ability to obtain a large martingaling ratio. Whatever the player does
to obtain a given martingaling ratio when the house has no advantage, doing
even more of it may give him a similar martingaling ratio when the house has
an advantage. A martingale that doubles up to 5 times will win more than
98% of the time if the house has no advantage. In American Roulette, where
the player wins only 18/38 of the time, this probability drops below 98%, but
the player can get it above 98% again by doubling up to 6 times. The real
downside is that the gain-loss ratio will be much worse.

We now look at the martingaling coefficients of a few simple strategies. For
simplicity, we assume again that the house has no advantage.

The first example, with two rounds of betting, gives us some insight into
how betting more after you lose and less after you win can give you a high
martingaling ratio.
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Example 1. Consider two rounds of game of red and black with even-money
bets, with no advantage for the house. As usual, we always bet on black, and we
bet 1 on the first round. On the second round, we bet 1−α if we win on the first,
1 + β if we lose, where 0 < α, β < 1. There are four equally likely possibilities:

gain1 gain2 Gain

win 1 win 1− α 2− α > 0
win 1 lose −1 + α α > 0
lose −1 win 1 + β β > 0
lose −1 lose −1− β −2 + β < 0

(11)

The total gain, our random variable Gain, being positive in three out of four
equally likely cases, the martingaling ratio is 3.

Suppose the house does have an advantage, and that each round is a win for
the player with probability p < 1/2. Under this assumption, the system wins at
least one round and hence makes money with probability 1− (1− p)2 and loses
both rounds and loses money with probability (1− p)2, for a martingaling ratio
of

1− (1− p)2

(1− p)2
=

1

(1− p)2
− 1, (12)

which remains greater than 1 provided

p > 1−
√

1

2
≈ 0.29.

This example should not be over-interpreted, because the martingaling ef-
fect may disappear as additional rounds are played. Martingalers would like
to believe that they can martingale repeatedly, but repeated martingaling can
quickly become no martingaling at all. This is illustrated by the following ex-
ample.

Example 2. Suppose X is a random variable that is equal to 1 with probability
2/3 and equal to −2 with probability 1/3. Then E(X) = 0, and we can think of
buying X for zero as a betting strategy. The martingaling ratio for this strategy
is MX = 2. Suppose Y is another random variable, independent of X and with
the same probability distribution. Then MX+Y = 4/5.

Example 3. Let S be the strategy that follows Borel’s martingale for a fixed
number N of rounds. As in §2.4, write X for the number of wins. We see
from (2) that S’s martingaling ratio is

MS =
P
(
(1− α)X(1 + α)N−X < 1

)
P
(
(1− α)X(1 + α)N−X > 1

) (13)

=
P
(

X
N−X > ln(1+α)

− ln(1−α)

)
P
(

X
N−X < ln(1+α)

− ln(1−α)

) . (14)
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Because the logarithm is concave,

ln(1 + α)

− ln(1− α)
< 1. (15)

When there is no house advantage, the median value of the random variable
X/(N −X) is 1. So MS > 1.

When α = 1/2, the quantity (15) is approximately 0.58, and it follows that
the martingaling ratio (13) will remain greater than 1 for even the most extreme
house advantage. The convergence noted by Borel will also continue to hold. If
the player’s chance of winning on each round is p, then for large n his net
gain (2) becomes

2

(
1−

(
3

n−X
n

2

)n)
≈ 2

(
1−

(
31−p

2

)n)
,

and this tends to 2 provided only that 31−p < 2 or, approximately, p ≈ 0.37. It
is evident, by continuity, that the remarkable properties of Borel’s martingale
will still hold if the size of the bet is multiplied by 1−α after a win and by 1 +β
after a loss, provided that α and β are not too different.

4 Simulations

The empirical comparison of betting systems is delicate, because, as we have
emphasized, most systems do not tell the player when to stop and hence are
not well-defined strategies. Even systems that do have a stopping rule are
typically played repeatedly and hence require, for practical evaluation, an ad-
ditional stopping rule. It is also important to remember that most players of
systems do not play a strategy. They start betting without knowing when they
will stop, and on any round they may deviate from the system or switch to an-
other system on a whim. Nonetheless, we can gain insight by imposing various
stopping rules on systems and examining how the resulting strategies perform.

It is impossible to survey thoroughly the vast range of betting systems that
have been created. There was already a huge literature in French on betting
systems during the 19th century, and by the end of the century the creation of
new systems was a pastime as well as a business. The Belgian poet Maurice
Maeterlinck, writing in 1919, noted that the La Revue de Monte-Carlo had pub-
lished a new system in every issue since its founding in 1905. Books full of
systems also appeared in English in the early 20th century. One “A. T. Player”
published a book with 35 systems in 1911, followed by a second edition with
140 systems in 1925 [22]. Here we will consider only systems we have already
discussed along with two additional systems, the Labouchere and the Oscar.

4.1 A small catalog of strategies

All the strategies we consider are assumed to stop betting after 200 rounds
unless instructed to stop sooner. Sometimes a strategy is assigned a parameter
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G, indicating that it must stop as soon as it attains a gain of G. Some also have
other parameters telling them when to stop. The maximum of 200 rounds is
chosen to reflect the number of rounds that a gambler would be able to play in
a day or two; see §6.5.

We use the following acronyms for strategies based on systems already dis-
cussed.

• CB (constant bet). Always make a unit bet until a stopping criterion is
satisfied.

• PM (pure martingale), parameterD. Make a unit bet on the first round. If
you win, stop. If you lose, double your bet up to D times until you win.
Then stop. See §2.1.

• SM (small martingales), parameter D. Play the pure martingale with pa-
rameter D repeatedly, for some small value of D such as 2, 3, or 4. If the
goal isn’t reached after doubling D times, start the strategy over with a 1
unit bet.

• PP (pure paroli), parameter D. Make unit bets until you win. Then dou-
ble your bet up to D times so long as you are winning. Then stop. See
§2.1.

• SM (small parolis), parameter D. Play the pure paroli with parameter D
repeatedly, for some small value of D such as 2, 3, or 4.

• DA (d’Alembert). See §2.2.

• TT (le tiers et le tout). See §2.3.

• BM (Borel’s martingale), parameter α. See §2.4.

We will also consider strategies based on two other systems, the Labouchere
and the Oscar.

• LA (Labouchere). Begin with the list of numbers 3, 4, 5, 6, 7, which add to
25. You will add and remove numbers from the list as you play. On each
round you bet the sum of the number at the beginning and the number
at the end of the current list (So initially you bet 3 + 7 = 10. If there is
only a single number remaining on the list, you bet that amount.) When
you win, erase the two numbers (or single number) you bet from the list.
When you lose, add the amount lost as an additional number at the end of
the list. Usually the list will eventually all be erased, and at that point you
have a net gain of 25 and you stop. Henry Labouchere, a British politi-
cian with great inherited wealth made this system well known when he
boasted, in 1877, that it had “invariably” paid the expenses for his visits
to the casino at Homburg [15, p. 313], [24]. A key feature of this system is
that you will always have a net gain equal to the sum of the list when the
list is all erased. A different list may be used as a starting point, but we
only consider versions of the original proposed list 3, 4, 5, 6, 7 here, scaled
in accordance with the desired gain of a strategy.
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S P(GainS > 0) MS GLS KS US
No house advantage

constant bet 94.4% 17.2 16.9 200 0.68
martingale, D = 10 99.9% 1457 1957 1,024 0.60
paroli, D = 10 97.0% 31.9 32.2 200 0.80
d’Alembert 99.6% 264 280 20,100 0.62
le tiers et le tout 98.7% 77.0 70.1 300 0.31

American Roulette (win 18/38 of the time)
constant bet 94.2% 16.3 16.6 200 0.68
martingale, D = 10 99.9% 1665 2028 1,024 0.60
paroli, D = 10 96.7% 28.9 30.4 200 0.80
d’Alembert 99.6% 226 243 20,100 0.63
le tiers et le tout 98.5% 67.2 67.8 300 0.31

Table 1: Comparing five strategies for a séance of 200 rounds. Here no limit
on the player’s capital or the size of a bet is imposed, but the worst case loss
KS is shown. All five strategies begin with a 1 unit bet and play until either
achieving a profit of at least 1 unit or the sequence of 200 rounds is complete.
Note that the observed difference between MS and GLS in the case of no house
advantage reflects random sampling error.

• OS (Oscar). Start with a unit bet, increase it by one unit every time you
win. This tends to be a slight paroli, but it becomes a martingale when it
is played with a stopping goal G. Ethier portrays the system as a 20th-
century invention in the United States [15, p. 314].

4.2 Numerical results

The most seductive betting systems give the impression of “easy money” by (1)
achieving a high probability of reaching a goal of G units, (2) multiplying on
average the capital actually risked (taken out of pocket) by an impressive factor
in those cases where the goal is reached, and (3) reaching the above gain in as
short a time as possible. Criteria (1) and (2) are measured by the martingaling
ratio and mean upside return, respectively.

Table 1 shows the martingaling ratios and mean upside returns for five dif-
ferent strategies based on some of the systems we have been discussing. A
quick glance at this table demonstrates the initial allure of these gambling sys-
tems: the statistics do not vary much between the case with no house advan-
tage and a small house advantage of 5-6%. In performing further compar-
isons of betting systems below, we may therefore restrict attention to the case
in which there is no house advantage.

The gambler who plays a martingale that doubles up to 10 times has a 99.9%
probability to realize a profit of 1 unit. If he plays the d’Alembert until reaching
a gain of 1 unit, he will come out ahead 99.6% of the time. By comparison, he
comes out ahead just 94.4% of the time by making constant bets. The results are
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similar in the case where the house has an advantage. We see that for a given
strategy the ratio GLS exceeds MS when the house has an advantage, but in
general by a relatively small margin. A strategy’s gain-loss ratio in the case
when the house a small advantage can be approximated by the martingaling
ratio.

Fittingly, the martingale has the largest martingaling ratio among the strate-
gies we consider: for a gambler with unlimited capital, the martingale offers a
99.9% probability of gain, trading off a small chance of a large loss for a high
chance of a small gain. The martingale thus satisfies one key criterion of a se-
ductive betting system: it is almost guaranteed to yield a profit on any given
implementation. For the purpose of yielding a profit of 1 unit, the martingale
also performs well in terms of mean upside return. From the table, we see
that the paroli and le tiers et le tout have lower martingaling ratios than both
the martingale and d’Alembert. Le tiers et le tout also has a lower mean upside
return.

For the purpose of netting of a profit of 1 unit, the martingale seems as
good a strategy as any other, but the d’Alembert is competitive. How does
the d’Alembert achieve both impressive returns and comparable probability of
winning to the martingale? Notice that the initial capital requirementK0 of the
d’Alembert is 20,100, which far exceeds that of any other strategy in the list.
But this capital requirement is concealed in the description of the d’Alembert,
which asks the bettor to increment his bets by only +1 or -1 after each round.
The pure martingale, by contrast, has a much lower capital requirement but
fails to disguise that requirement in its protocol to double the bet after each loss.
How does the comparison between d’Alembert and other strategies change if
the goal increases to 2, 3 or many more units?

Some further numerical results for strategies based on other betting sys-
tems, namely the Labouchere and Oscar, and for different parameters of the
goal G and stopping rule are shown in Table 2. As in Table 1, we write MS and
US for the martingaling ratio and mean upside return of a strategy S, respec-
tively. We now write SS for the average amount spent (taken out of pocket)
in cases where the goal is reached and NS for the average number of rounds
played in cases where the goal is reached. In addition to these statistics, we in-
clude columns to measure how well each strategy does at achieving the stated
goal:

• probability of reaching within ε > 0 of the goal given a positive gain,

GS(ε) := P(GainS ≥ G | GainS > 0) =
P(GainS ≥ G)

P(GainS > 0)
,

and

• the average ratio GainS/G of the gain relative to the goal over the trials
in which GainS > 0,

RS := E

(
GainS

G
| GainS > 0

)
.
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S P(GainS > 0) MS US SS NS GS(ε) RS
G = 2:

CB 88.8% 7.9 1.13 3.5 21 100.0% 1
SM (D = 2) 94.4% 17.0 0.89 5.5 12 99.9% 0.999
SP (D = 2) 90.9% 10.0 1.31 5 18 99.9% 1.4

DA 99.2% 128 0.87 10.5 8 100.0% 1.19
LA 99.9% >10000 1.09 28.5 11 100.0% 1
OS 99.5% 232 1.00 10 18 99.9% 0.999
BM 99.9% > 10000 0.93 23.5 197 73.4% 0.999
TT 96.8% 30 0.62 9.5 14 100.0% 1.8

G = 3:
CB 83.5% 5.1 1.48 4 31 99.8% 0.999

SM (D = 2) 91.7% 11.0 1.12 6.5 17 99.9% 0.999
SP (D = 2) 87.7% 7.1 1.57 5.5 22 99.9% 1.26

DA 98.9% 89.7 1.06 14 11 100.0% 1.17
LA 99.9% >10000 1.09 36.5 5 100.0% 1
OS 99.1% 108 1.25 13 28 99.9% 0.999
BM 99.1% 110 1.16 19.5 200 0.6% 0.994
TT 95.6% 21.5 0.85 11.5 18 100.0% 1.7

G = 4:
CB 78.2% 3.6 1.79 4.5 42 99.6% 0.998

SM (D = 2) 88.9% 8.0 1.29 7.5 22 99.8% 0.999
SP (D = 2) 83.1% 5.0 1.97 7 31 99.8% 1.31

DA 98.5% 68 1.20 17 15 99.9% 1.15
LA 99.9% >10000 1.09 63.5 11 100.0% 1
OS 98.1% 53 1.45 16 41 99.7% 0.998
BM 95.9% 23 1.40 15 200 0.0% 0.963
TT 94.5% 17 0.95 13 22 100.0% 1.58

G = 20:
CB 47.4% 0.90 4.38 6 176 33.7% 0.60

SM (D = 2) 57.8% 1.4 3.3 11 109 81.6% 0.883
SP (D = 2) 52.2% 1.1 4.74 9.5 114 78.0% 0.884

DA 92.6% 13 2.20 44.5 57 99.8% 1.06
LA 99.9% >10000 2.08 78 10 100.0% 1
OS 77.6% 3.5 2.80 23.5 182 28.4% 0.542
BM 63.6% 1.7 2.98 7.5 200 0.00% 0.431
TT 79.4% 3.8 2.53 27 53 99.9% 1.36

Table 2: Simulation results for constant bet (CB), small martingale (SM) with
D = 2, small paroli (SP) with D = 2, d’Alembert (DA), Labouchere (LA) with
sequence L = G

25 (3, 4, 5, 6, 7), Oscar (OS), tiers et le tout (TT) and Borel’s mar-
tingale (BM) with α = 1/G in bets in red and black with no house advantage.
All strategies play until reaching G or a maximum of 200 rounds, whichever
arrives first. The initial capital is chosen large enough to cover all possible
outcomes of a given 200 round session. Note: the choice of L in Labouchere
scales the bet sizes in order to be consistent with the desired goal of G in each
case. The choice of α in Borel’s martingale is chosen to be consistent with the
strategy’s projected gain of 1/α when the number of rounds is large. Choice of
ε = 10−10 because some strategies, such as BM, can only achieve the goal in the
asymptotic limit.
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We add the extra parameter ε > 0 in G(ε) because some strategies, such as
Borel’s martingale, can only achieve the goal asymptotically, but can reach a
gain within a small tolerance ε of G in a finite number of steps. For our simu-
lations, we have chosen ε = 10−10. (Note that we omited these columns from
Table 1: P(G | GainS > 0) = 100% and E(GainS/G | GainS > 0) = 1 for the
systems in Table 1 for G = 1 because each of these has a minimum profit of 1
on the event GainS > 0.)

Table 2 shows these values for 100,000 simulations of a 200 round sequence
for each of the listed strategies. When simulating the Labouchere we assume
the initial list of L = (3, 4, 5, 6, 7) is scaled so that it sums to the goal G. This
way, the key feature of the Labouchere is realized in that it reaches its desired
profit exactly when the list becomes empty. We also assume that all strategies
begin with sufficient capital to either achieve the goal of G or complete the
session of all 200 rounds of play. Under these assumptions, the Labouchere
will produce the same statistics regardless of the goal, as Table 2 shows.

Notice that even though all strategies stop after achieving a gain ofG, some
strategies, e.g., small parolis, d’Alembert and le tiers et le tout, are able to pro-
duce gains in excess of G because their bet sizes prior to stopping depend
only on the previous outcomes and do not specifically depend on the goal.
Although these strategies can net a larger than targeted profit, they incur more
risk than is needed to attain the stated goal. This aspect of each strategy causes
the martingaling ratio to be lower than it would be if bets were otherwise cho-
sen to target the specific goal.

For G = 2, 3, 4, a single implementation of the d’Alembert has a 98-99%
probability of netting a profit, which on average is about 115-120% the size of
the stated goal. When an event has probability 98%, it will likely happen on
each of the first few trials. The probability that it will happen on the first 4
trials, for example, is 92%. The probability that it will happen on the first 10
trials is more than 80%. Thus, a gambler who plays the d’Alembert strategy is
more than 80% likely to net a profit on each of the first 10 times he implements
it, each time approximately doubling the capital put into play.

By inspecting Table 2, we see that the Labouchere with an initial list scaled
with the goalG achieves a consistently high martingaling ratio and comparable
mean upside return to the d’Alembert. Because the list L is chosen to exactly
achieve the goal G at the moment of stopping, the Labouchere does not over-
shoot the goal as the d’Alembert does. On these metrics, the Labouchere may
be regarded as a superior system in principle, but inferior in practice because
of the difficulty of remembering the running list L throughout a long sequence
of play. In addition, we notice that the Labouchere generally requires a larger
out-of-pocket risk SS and, thus, makes the risks of the strategy more apparent
to the gambler. As a byproduct of this higher probability of gain and larger
out-of-pocket risk, however, the Labouchere tends to achieve its goal in much
fewer rounds of play, especially as the goal increases.

Of the other strategies considered, only the Oscar competes with Labouchere
and d’Alembert in terms of the martingaling ratio for small goals of 2, 3 or 4,
and also offers a consistently higher mean return on risk. The Oscar is less
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S P(GainS > 0) MS US SS NS GS(ε) RS
G = 1:

DA 98.8% 80 0.63 5 3 100.0% 1.22
LA 98.8% 86 1.05 4.5 10 100.0% 1
TT 98.6% 72 0.31 6.0 6 100.0% 1.53

G = 5:
DA 94.4% 16.5 1.36 13.5 14 100.0% 1.11
LA 94.4% 17.5 1.10 13 9 100.0% 1
TT 91.7% 11.0 1.20 14.5 26 100.0% 1.66

G = 20:
DA 81.4% 4.4 2.45 26 48 100.0% 1.05
LA 80.8% 4.2 1.35 29 7 100.0% 1
TT 77.9% 3.5 2.52 26 52 100.0% 1.35

G = 50:
DA 63.9% 1.8 3.9 36 108 99.6% 1.02
LA 59.2% 1.5 1.6 42 5 100.0% 1
TT 60.9% 1.6 4.3 34 72 99.8% 1.25

Table 3: Simulation results for d’Alembert (DA), Labouchere (LA) with
L = G

25 (3, 4, 5, 6, 7) and le tiers et le tout (TT) for goals G = 1, 5, 20, 50. For all
strategies we assume initial capital of K0 = 100. All strategies play until reach-
ing the goal G, going broke, or a maximum of 200 rounds, whichever arrives
first. Note: the choice of L in the Labouchere scales the bet sizes in order to be
consistent with the desired goal of G in each case. For GS(ε) we choose ε = 0.

effective at achieving the larger goal of 20 units, in that it has a smaller success
probability of about 77% and requires an average of more than 180 rounds
of play to achieve the goal. As we might expect from its description, le tiers
et le tout performs comparatively poorly for achieving small gains with high
probability because it is primarily designed to achieve a large gain with small
probability. We investigate its performance for achieving more ambitious gains
in Table 3.

From these experiments, the gambler with unlimited wealth who faces no
limitations on bet size may prefer the Labouchere to the other systems listed.
In practice, the gambler will be limited in both initial capital and the maximum
amount he can bet. Moreover, a gambler with a large amount of capital may be
unsatisfied with a modest goal of just a few units, as the simulations in Table 2
are for achieving a goal of 2, 3, 4 or 20 units for a gambler whose bankroll is ef-
fectively unlimited in size. In Table 3, we compare the d’Alembert, Labouchere
and le tiers et le tout with an initial capital of 100 units and a goal G of 1, 5,
20 and 50 units, representing appreciable fractions of their total bankrolls. In
this case, we see that d’Alembert and Labouchere perform similarly in terms
of martingaling ratio. When the goal is small (G = 1), Labouchere outper-
forms on mean upside return. But as the goal increases the mean upside return
of d’Alembert overtakes Labouchere. As the goal increases, the average ratio
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S P(GainS > 0) G US SS NS GS(ε) RS
MS = 1.5:

DA 60.1% 60 5.33 38 128 98.1% 1.01
LA 60.0% 47 2.58 39.5 6 100.0% 1

MS = 2.5:
DA 71.4% 36 4.27 32 80 100.0% 1.03
LA 72.1% 31 2.38 35 6 100.0% 1

MS = 5:
DA 83.0% 18 3.34 25 43 100.0% 1.05
LA 83.0% 17 2.23 26 7 100.0% 1

MS = 10:
DA 91.5% 8 2.65 17 22 100.0% 1.08
LA 92.4% 7 2.11 16 9 100.0% 1

Table 4: Simulation results for comparing d’Alembert (DA) and Labouchere
(LA) with L = G

25 (3, 4, 5, 6, 7) for fixed values of martingaling coefficient MS .
For all strategies we assume initial capital of K0 = 100. All strategies play until
reaching the goal G, going broke, or a maximum of 200 rounds, whichever arrives
first. Note: to equalize the martingaling coefficients across different strategies,
we must allow the goal G to vary. For GS(ε) we choose ε = 0.

GainS/G (on the event GainS > 0) approaches 1, its value for Labouchere. For
the large goal of G = 50, le tiers et le tout outperforms Labouchere in terms of
martingaling ratio and outperforms both d’Alembert and Labouchere on mean
upside return.

Table 3 thus reveals the magic of the d’Alembert. Though it lags behind in
terms of mean upside return for small goals, it matches Labouchere in terms
of martingaling ratio and requires fewer rounds of play on average to achieve
the goal. But the d’Alembert improves consistently as the goal becomes more
ambitious. For a desired gain of at least 5% of the initial capital, d’Alembert
requires more time to reach the goal, but does so with higher frequency and
by requiring the gambler to take less money out of his pocket. d’Alembert
also competes with le tiers et le tout on mean upside return, even though TT is
designed to produce large gains.

Our final comparison in Table 4 compares the d’Alembert and Labouchere
for fixed values of the martingaling coefficient. For a given value of MS , we
compute the corresponding goal G, mean upside return, and other statistics
based on an assumed initial capital of 100 for sessions that last until the gam-
bler either plays 200 rounds or goes broke. For a given martingaling coefficient,
we note that the mean upside return of DA exceeds that of LA in all cases, as
does the total number of rounds required to reach the goal and the average ra-
tio of the gain to the goal on the event that the goal is achieved. Interestingly,
we find that the amount taken out of pocket is roughly the same for a given
level of MS , with the d’Alembert requiring a slightly smaller average spent
SS in a few cases. Table 4 thus reveals the magic of the d’Alembert, which
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achieves a higher goal and higher mean upside return than Labouchere for
a fixed probability of gain, while requiring about the same amount of risked
capital on average.

5 Conclusion

As we have learned, there can be a vast difference between the capital a strat-
egy requires and the amount a player risks. A strategy cannot be genuinely
implemented unless it begins with enough capital to cover its bets in the worst
case. A player is required only to cover his bets as he makes them, and even
if he thinks he is following a strategy, the capital he needs will be random and
usually much less than the capital required in the strategy’s worst case. Be-
cause its denominator is random, the player’s return can be surprisingly high
on any given implementation of the strategy.

We have also learned something about how martingaling works. By mod-
estly increasing your bet after losses and modestly decreasing it after wins, you
can assure a very high return with very high probability. Similar but more ag-
gressive strategies can achieve even better results when you have more capital
to risk.

What do these lessons tell us about life outside the casino?

5.1 Lessons for finance and business

Finance theory often aspires to be a theory of investment, not a theory of spec-
ulation. To the extent that this encourages financiers and businessmen to be-
have accordingly, a citizen can only applaud. But the failure to teach about
pure gambling can blind the public to what is happening when financiers and
businessmen, wittingly or unwittingly, use strategies resembling the ones we
have been studying.

Financial theorists acknowledge that the arithmetic average of successive
returns on investment is a crude measure of financial success; it can paint a
rosy picture quite different from the more meaningful geometric average. But
the arithmetic average return and its theoretical counterpart, the mean return,
remain the dominant metrics when money managers and corporate executives
boast of their performance. It is difficult, moreover, to find any acknowledge-
ment in the academic or popular press that this metric can be affected by the
randomness of its denominator, even though examples of this affect abound.
The randomness of capital risked is plainly in view whenever an enterprise
seeks additional capital to overcome a setback.

Corporate executives are also surely not immune to the temptations of mar-
tingaling and parlaying when they make internal investment decisions. How
often has a dashing corporate executive, celebrated for their exceptional suc-
cess, simply played a paroli? How often, when a corporate executive succeeds
by risking more when investments go bad, are we seeing the seduction of the
d’Alembert? The public, including investors and politicians, might be better
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served if journalists reporting on these successes understood the mathematics
of gambling.

5.2 Lessons for statistical testing

The mathematical theory of probability began as a theory of betting. But pro-
ponents of its use for statistical inference, beginning with Jacob Bernoulli at the
beginning of the 18th century [2, 3], have steadily sought to purge it of this her-
itage. Here, too, the failure to teach about betting has hampered understanding
and contributed to today’s replication crisis.

This is particularly evident in the case of statistical testing, where we still
struggle to account for multiple testing in reasonable but principled ways. See
[25] for a recent discussion, building on [26, 27], of how understanding and
practice can be enhanced by generalizing statistical tests, which correspond to
all-or-nothing bets against a probabilistic hypothesis, to bets that are not all-or-
nothing. The amount by which such a bet multiplies its capital can then be used
as a measure of the evidence against the hypothesis, much as p-values are now
used. One obstacle to putting this idea into practice is the scientific public’s
limited understanding of the difference between amount of capital required by
a strategy and the random risk of a bettor. When statisticians choose succes-
sive tests depending on the outcome of previous tests and ignore the resulting
randomness, they are making an error analogous to that of a martingaler. We
can avoid this pitfall, even when we cannot settle on a strategy for continued
testing in advance of all testing, if we begin with fixed (notional) capital for
testing and allow later bets only when they can be covered with what remains
of that capital together with winnings from earlier bets.

Harry Crane goes further, arguing that because mathematical probability
is just as much a theory of gambling now as it was at its origin, probabilis-
tic claims attain a real-world meaning only when those who assert them incur
the risks they imply [8]. Crane calls this the Fundamental Principle of Probabil-
ity. Casinos attract investors by making claims about the probabilities against
their customers. Aficionados of betting systems claim that their systems can
beat these probabilities. The risking of real money on the outcomes makes
both of these claims meaningful in a way that is lacking for almost all scientific
claims based on p-values or other statistical methods. Crane attributes today’s
replication crisis to widespread neglect of this principle. Under the FPP, if ei-
ther side is wrong, they will suffer financial loss in the long run. In the absence
of the FPP, and the tangible, real-world risks associated with it, statisticians are
incentivized to tout their analyses without consequence for faulty or mislead-
ing results, just as casino operators tout gambling systems on the false promise
of riches.
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6 Appendix

6.1 Concerning the word martingale

Many mathematicians know martingale as a technical term in probability the-
ory. Any sequence of random variables (Kn)n≥0 satisfying (3) is called a mar-
tingale.9 As we saw in §3.1, this condition is satisfied when (Kn)n≥0 is the cap-
ital process resulting from beginning with capital K0 and following a strategy
for betting on successive outcomes Y1, Y2, . . ., provided that the strategy uses
only the outcomes of the preceding rounds and the bets are at prices given by
expected values conditional on those preceding outcomes. But in this article
we have been using martingale in an older sense, as the name not for a strat-
egy’s capital process but for the strategy itself. How are the two uses of the
word related historically?

The mathematician’s use of the word derives, of course, from the gambler’s
use of it. As Roger Mansuy explains in [19], the practice of doubling one’s bet
in order to cover one’s loss was already called a martingale in the 18th century,
probably because such daring play was associated with the inhabitants of Mar-
tigues, a French city on the Mediterranean. In the 19th century, the name was
extended to other betting systems, and by the middle of the 19th century some
people were calling any betting system in a game of many rounds a martingale.
It was Jean Ville, in his 1939 book [31], who began to call the capital process a
martingale. He made this change because the capital processes are in a one-
to-one correspondence with the strategies, and the capital processes are often
simpler to describe.

Although the point is sometimes not even mentioned when martingales are
taught as part of probability theory, any sequence of random variables satisfy-
ing (3) can be interpreted as the capital process for a betting strategy in some
fair game — i.e., some game in which the odds at which one bets on the nth
round are given by the same conditional probability distribution that is used to
calculate the expected value. The modern mathematical theory of martingales
is, in this sense, still a theory about betting.

Why did 19th-century gamblers tend to call all betting systems martin-
gales? Perhaps it was because any system can usually be turned into a strategy
that is nearly certain to net a modest amount by the simple device of stopping
when you are ahead.

As we mentioned at the beginning of §2, betting systems usually involved
more than the massage, which tells how much to bet. They also had a marche
or attaque, which told how to vary the color on which to bet and perhaps how
to wait to bet. But even those touting the systems often knew that the marche
or attaque does not matter. So in practice, martingale was often a synonym for
massage.

9When (3) holds possibly only with the equal sign replaced by ≤, (Kn)n≥0 is called a
supermartingale. This neologism was introduced in the 1960s; see [27, p. 29].
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6.2 How to prove Ville’s inequality

We begin with Markov’s inequality, which says that when c > 0 and X is a
nonnegative random variable with 0 < E(X) <∞,

P(X ≥ cE(X)) ≤ 1

c
.

Andrei Markov proved this inequality in 1900 [20] using a simple calculation:

P(X ≥ cE(X)) = E
(
1X≥cE(X)

)
≤ E

(
X

cE(X)

)
=

1

c
,

where 1E , wheneverE is an event, designates the random variable that has the
value 1 when E happens and 0 when E fails.

We also need the rule of iterated expectation, which tells us, for example,
that for all n ∈ N,

E(X) = E(En−1(X)). (16)

Combining this with (3) for the process (Kn)n≥0, we find that

E(Kn) = K0 (17)

for all n ∈ N. This is true whenever (Kn)n≥0 is the capital process for a betting
strategy.

Given a positive real number K0, a strategy S that produces a nonnegative
capital processK0,K1, . . .when it begins withK0, and a positive real number c,
consider the alternative strategy that also begins with K0 and makes the same
bets as S except that it makes no bets after the first round n for whichKn ≥ cK0.
This strategy’s capital process, say K0,K′1,K′2, . . ., is nonnegative and satisfies
E(K′n) = K0 for all n ∈ N. So Markov’s inequality yields

P(Kk ≥ cK0 for some k ≤ n) = P(K ′n ≥ cK0) ≤ 1

c

for all n ∈ N. But the increasing sequence of events

{Kk ≥ cK0 for some k ≤ n}

has {Kn ≥ cK0 for some n} as its union, and hence the axiom of continuity
(a.k.a. countable additivity) yields Ville’s inequality, (4).

This entire argument also works, with some equal signs replaced by in-
equalities, when (Kn)nge0 is merely a supermartingale and not a martingale. It
is essentially the same argument that Ville gave in 1939 [31]. It is rigorous only
if the conditional expectation operators En are well defined and satisfy the rule
of iterated expectation. These conditions are certainly satisfied in the casino, on
the assumption that Y1, Y2, . . . are independent. For the general case, Ville re-
lied on Paul Lévy’s theory of conditional probability, which assumed that any
random variable can be represented as a real-valued function on the unit inter-
val [0, 1]. Joseph L. Doob later provided a proof of Ville’s inequality that relied
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instead on Kolmogorov’s theory, which makes no topological assumptions but
obtains conditional expectations that are defined only modulo a set of measure
zero and may not have all the properties that they enjoy in elementary prob-
ability theory. With this formulation, Ville’s inequality becomes a topic in ad-
vanced measure-theoretic probability, and this has made it less widely known
than it deserves to be. It is not mentioned, for example, in Ethier’s admirably
comprehensive treatment of probability in games of chance [15].

6.3 Doob’s conservation of fairness

In 1936, before Ville published his inequality, Doob published a different theo-
rem concerning the futility of betting strategies [11]. This theorem says that you
cannot change the probability distribution for the net gain of a betting strategy
by omitting some rounds. If, for example, you have a strategy for betting on
three rounds, it makes no difference if you play it on the second, eighth, or
tenth rounds rather than the first three. It also makes no difference if you take
account of the outcomes of previous rounds in deciding whether to play on a
given round.

The conclusion of Doob’s theorem was dubbed the conservation of fairness by
Dubins and Savage in 1965 [13, p. 5], and the theorem has been generalized in
various ways; see [15, §8.2, p. 315]. But Ville’s inequality may be more incisive
as a statement of the futility of betting strategies. Even after we have learned
from Doob that the selection of rounds has not changed the probabilities, and
that the expected net gain of a strategy remains zero (or less than zero if the
house has an advantage), we still learn something from Ville’s inequality: we
learn how unlikely it is that the strategy will multiply the capital it requires
substantially. Doob’s theorem adds nothing to the scope of this conclusion,
because any selection of rounds on which to bet can be considered part of the
strategy to which Ville’s inequality is applied.

Doob and Ville were both responding to the work of Richard von Mises,
who contended that the futility of selecting rounds on which to bet was an
essential aspect of mathematical probability. Doob saw his theorem as a way
of reducing von Mises’s insight to a minor result within mathematical prob-
ability as axiomatized by Andrei Kolmogorov. Ville, on the other hand, saw
von Mises’s insight as incomplete. Instead of saying that any way of selecting
rounds on which to bet is futile, we should say that any strategy for betting,
so long as what you can risk is bounded, is futile. As it happened, the view
that Kolmogorov’s axioms say all that needs to be said about the foundations
of probability carried the day after World War II, and Ville’s insights about the
role betting can play in understanding probability theory were subsequently
neglected.

6.4 Games of red and black

The flipping or tossing of a coin has long been the canonical example of a ran-
dom experiment with binary outcomes, the two outcomes being “heads” and

25



“tails”. The frequenters of casinos are seldom willing, however, to bet on the
outcomes of coin flips. It is too easy for a clever fellow with a quick hand to
cheat one way or another.

Most of the betting systems discussed in this article were developed instead
for casino games where the gambler could make even-money bets on “red” or
“black”. The French playing cards that we still use have equal numbers of red
and black cards in a deck — 26 red and and 26 black. Perhaps the first bets on
“red” or “black” were bets on a card drawn from such a deck. But cheating is
easy here too.

In the late 18th century, when the earliest surviving books about betting
systems were written, the most popular game of “red” and “black” was Trente
et Quarante, where cheating is remarkably difficult. This game continued to be
popular in the 19th century and is still played in some European casinos, but
its place as the most popular game was taken, from the beginning of the 19th
century, by Roulette. Here we provide some information about these games
and the banker’s advantage in each. For more historical details, see [24].

American Roulette The idea of spinning a wheel with alternately red and
black zones and betting on whether the spin will stop on red or black goes
back many centuries, but it was only around 1800 that such a game became
popular in European casinos. Its popularity can be attributed to the precision
with which the wheel was constructed and the variety of bets it allowed. Each
time the wheel is spun, a ball falls in one of 38 pockets, which are supposed to
be equally likely. Two of the pockets are labeled ‘0’ and ‘00’ and are the house’s:
the house collects all money bet on red and black when the ball falls into one
of them. The other 36 pockets are alternately red and black and are numbered
1 through 36; the numbers permit other bets but are irrelevant to a bet on red
and black. As 18 of the 36 are red and 18 are black, the probability of a bet on
black or a bet on red winning is

18

38
≈ 0.473684211.

The house’s advantage, by definition the fraction of the money bet that it retains
on average, is

2

38
≈ 0.052631579.

Roulette with 38 pockets became and remained popular in the United States,
and it is now known as the American version of Roulette.

European Roulette In the second half of the 19th century, some casinos
reduced the house’s advantage in Roulette in order to make the game more
attractive. In this new Roulette, which became standard in Europe by the end
of the century, there are 37 pockets, 18 red, 18 black, and only one for the house,
labeled ‘0’. So the probability of winning a bet on red or a bet on black is

18

37
≈ 0.0486486486,
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and the house’s advantage is only

1

37
≈ 0.027027027.

Trente et Quarante Trente et Quarante (meaning “Thirty and Forty” in
French) is also sometimes called Trente-un (French for “thirty-one”) or Rouge
et Noir (French for “Red and Black”). It is played with 6 decks of cards —
6 × 52 = 312 cards — all shuffled together as one deck. On each round, two
hands of cards are dealt face-up. For no good reason, the two hands are called
“red” and “black”. Cards are dealt to each hand until the total of the numbers
on their faces (an ace being counted as 1 and a face card as 10) is greater than 30.
The hand with the greater total is the winner. In the case of a tie, the round is
ignored (this is a “push”), and the players retrieve the money they have put on
a color, except that when the tie is 31 to 31, the players lose half of this money
to the house. Eventually, after 20 or so rounds, there will not be enough cards
left in the deck for another round, and a new deck will be prepared.

As players can easily see, cheating by the house is practically impossible,
and “red” and “black” are equally likely on each round. The probability of a
tie, and of a 31 to 31 tie in particular, does change depending on what cards
have already been dealt, but in ways far too complicated to allow any player
to gain an advantage or to allow the house to enhance its advantage.

The game was popular not only because of its transparency but also because
the house’s advantage, which is limited to the share of the stakes it takes on 31
to 31 ties, is smaller than its advantage in any of the other 18th and 19th century
casino games. According to Ethier [15], the probabilities on each round, to nine
decimal places, are

• Red wins: 0.445200543

• Black wins: 0.445200543

• 31 to 31 tie: 0.021891370

• Push: 0.087707543

Ignoring pushes, the house takes on average

1
2 × 0.021891370

1− 0.087707543
= 0.011998000

of the money the player bets. The player would lose on average this same
fraction of the money she bets if her bets won

1

2
− 1

2
× 0.011998000 = 0.494001000

of the time and lost the rest of the time. As commentators, beginning with the
casino owner Pierre-Nicolas Huyn in 1788 [17], frequently noted, this advan-
tage for the house is far less than the advantage in other casino games.

27



The complicated way that the house’s advantage is implemented in Trente
et Quarante creates some uncertainty about how some of the betting systems
discussed in this article should be implemented. How should a 31 to 31 tie
affect the next move if you are playing the d’Alembert? Should you increase
your bet because you lost? We have not seen this question raised in the 19th
century literature, and our computer simulations suggest that the answer does
not make much difference to the issues discussed in this article.

6.5 Limits set by the casino

As we have mentioned, the limits on betting set by casinos need to be consid-
ered when we turn betting systems into betting strategies by specifying when
they will stop betting. What were typical limits during the period when the
best known betting systems were invented?

Boreux reports that the elegant casinos of the 1790s had two types of tables
for Trente et Quarante. At the lower-class table the minimum bet was 1 écu and
the maximum was 25 écu. At the upper-class table the minimum was 1 louis
and the maximum was 100 louis, but you were allowed to violate this limit to
bet double what you had lost [29].

According to Boreux, a taille in Trente et Quarante (a shuffled and cut deck
of 312 cards) can produce between 18 to 32 rounds of play, taking about half
an hour to play, and a séance consists of 2 to 4 tailles. So you might play about
25× 3 = 75 rounds in a séance or about 150 a day. Some 19th-century authors
wanted players to implement their systems over multiple days. So it might be
reasonable to run a system for several hundred rounds.

Roulette is much faster. According to Marcel Boll [6, p. 180], a single
Roulette wheel might be spun 600 times a day at Monte Carlo in the 1930s.
The speed of Roulette made it difficult to impossible to implement a compli-
cated system if you tried to play every round; authors who promoted systems
for Roulette would sometimes explain that they were writing books about the
systems rather then using them to enrich themselves because they had grown
old and found the implementation too exhausting. But you if you played only
every third round, you might be able to play a system for 200 rounds in a single
day.

In 1902, G. d’Albigny [9, pp. 15, 22–23, 31] reported that the minimum and
maximum bets at Monte Carlo were 5 francs and 6,000 francs in Roulette, 20
francs and 12,000 francs in Trente et Quarante. In 1986 [23, pp. 406–407], John
Scarne reported that the maximum color bet in Roulette in casinos all over the
world was usually 500 times the minimum.

These reports suggest that a system should not require more than a few
hundred rounds of play, with bets more than a few hundred times the mini-
mum. To catch on, a system would probably need to appear much quicker and
less risky than this. The typical gambler would not want to play for hours or
days on the promise of a small gain.

28



References

[1] Ancien croupier de Frascati (anonymous). La Californie germanique. Poulet-
Malassis, Paris, 1862. 6

[2] Jacob Bernoulli. Ars Conjectandi. Thurnisius, Basel, 1713. 21, 29

[3] Jacob Bernoulli. The Art of Conjecturing, together with Letter to a Friend on
Sets in Court Tennis. Johns Hopkins University Press, Baltimore, 2006.
Translation of [2] and commentary by Edith Sylla. 21
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