
Experiments with the K29 algorithm

Vladimir Vovk

$25

$0Peter

Peter

Paul

Paul

$50

$0

$100

The Game-Theoretic Probability and Finance Project

Working Paper #9 (draft)

October 3, 2004

Project web site:
http://www.probabilityandfinance.com

Abstract

The K29 algorithm for probability forecasting (proposed in [6]) is studied em-
pirically on a popular benchmark data set.

Contents

1 Algorithm 1

2 Experimental results 1

3 Is using own past forecasts useful? 3

References 4

1 Algorithm

We are interested in the following game of probability forecasting between two
players, Forecaster and Reality:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

On each round, Forecaster’s goal is to predict Reality’s move yn chosen from
the label space, always taken to be {0, 1} in this paper. His move, the probability
forecast pn, is interpreted as the probability he attaches to the event yn = 1. At
the beginning of each round, Reality releases some information to Forecaster;
this piece of information, the object xn, is chosen from an object space X.

The K29 algorithm, proposed in [6], is the following strategy for Forecaster.
Let K : ([0, 1] × X)2 → R be a Mercer kernel. After seeing the object xn on
round n Forecaster outputs an arbitrary root p = pn of the equation Sn(p) = 0,
where

Sn(p) =
n−1∑

i=1

K((p, xn), (pi, xi))(yi − pi);

if this equation has no roots (in which case Sn never changes sign),

pn := (sign(Sn) + 1)/2. (1)

A natural way to build a Mercer kernel on ([0, 1]×X)2 from Mercer kernels
on [0, 1]2 and X2 is to use the operation of tensor product (see, e.g., [5, 4]). The
kernel on [0, 1]2 arrived at in [6] was

K(p, pi) = exp
(
− (p− pi)2

4σ2

)
; (2)

it is known in machine learning as the Gaussian kernel (in more familiar param-
eterizations, however, 4σ2 is replaced by 2σ2 or c). As kernels on X2 we will
take the polynomial kernels

K(xn, xi) = (xn · xi)d, (3)

where d is a positive integer.

2 Experimental results

In this draft we report results of experiments with the data set known as The
Insurance Benchmark (TIC), or CoIL 2000, data set; it is available from the
UCI KDD repository [3]. This data set consist of 5822 training examples and
4000 test examples; we merged these into one data sequence of 9822 examples,

1

Degree 1 2 3 4 5
Overall MSE 0.10885 0.10840 0.10850 0.10862 0.10902
Training MSE 0.10968 0.10915 0.10943 0.10976 0.11041
Test MSE 0.10763 0.10731 0.10713 0.10697 0.10699
Degree 6 7 8 9 10
Overall MSE 0.10965 0.11055 0.11173 0.11331 0.11530
Training MSE 0.11131 0.11248 0.11389 0.11561 0.11790
Test MSE 0.10725 0.10773 0.10859 0.10996 0.11153

Table 1: MSE for K29 on the TIC data set

first training and then test examples. Each example consists of 85 attributes
and a binary label. Table 1 shows the performance of the K29 algorithm on the
(merged) TIC data set for K the tensor product

K((p, xn), (pi, xi)) := K(p, pi)K(xn, xi)

of (2) and (3). We used the value 0.1 for the parameter σ in (2) (as can be seen
from the derivation in [6], σ can be interpreted as the accuracy in the estimation
of pn ∈ [0, 1] we are aiming for, so σ = 0.1 is a natural first guess) and we used
the values given in the first row of Table 1 for the parameter d (which we call
the degree of the polynomial kernel) in (3). Since the attributes of the TIC
data set are discrete and often nominal (i.e., their numerical values serve only
as labels and do not measure anything), each attribute taking, say, m values
was replaced by m binary attributes all of which but one were zero; in other
words, we used, instead of (3),

K(xn, xi) =




85∑

j=1

Ixn,j=xi,j




d

,

where IE is defined as 1 if E holds and 0 otherwise. For each d the second row
of Table 1 gives the value of the mean squared error (MSE, also known as the
Brier score [1]) 2

N

∑N
n=1(yn − pn)2, where N = 9822 is the size of the data set;

the third and fourth rows give the analogous doubled averages over the training
examples and the test examples, respectively.

To compare K29 to other algorithms, in Table 2 we reproduce some results
of [8] (their Table 2). The results of [8] use the same attributes as the winning
entry of the CoIL 2000 challenge (which might give some bias, since there were
quite a few, 43, submitted entries; see [2]). “SVM” is the linear kernel SVM
with C = 1, as implemented in the SvmFu package. “Sigmoid” and “PAV” are
two calibration methods.

Additional results are given in [7] (Table 4), whose best MSE on the test set
is 0.10742 (for the binned naive Bayes with a suitably chosen bin width); other
interesting figures in that table are: the MSE over the test set is 0.11900 for the
trivial “all zero” algorithm and 0.11192 for the almost as trivial “all base rate”
algorithm.

2

Method Training MSE Test MSE
NB 0.12845 0.13551
Sigmoid NB 0.10536 0.10905
PAV naive Bayes 0.10315 0.10818
SVM 0.11942 0.11889
Sigmoid SVM 0.11080 0.11122
PAV SVM 0.10974 0.11200

Table 2: MSE for various off-line algorithms on the TIC data set (the last
column is important)

Degree 1 2 3 4 5
Test MSE 0.11033 0.10884 0.10752 0.10688 0.10668
Degree 6 7 8 9 10
Test MSE 0.10680 0.10715 0.10775 0.10862 0.10992

Table 3: MSE over the test set for K29 run in the off-line fashion on the TIC
data set

The results of Table 1 (even the fourth row) and Table 2 (and similar results
in [7]) are not directly comparable, since the K29 algorithm continues learning
even after reaching the test examples. Table 3 gives the MSE over the test
set for the “off-line K29” algorithm: the prediction pn for each test example
(xn, yn) is computed as the 5823th prediction by the K29 algorithm fed with
the 5822 training examples and then with xn. Now the results in Table 2 (the
“Test MSE” column) and Table 3 can be compared; K29 performs better than
the other algorithms for a range of d (surprisingly, and perhaps accidentally, the
test MSE improves when K29 is run off-line rather than on-line).

3 Is using own past forecasts useful?

A strange feature of the K29 algorithm is that when computing pn, Forecaster
uses his own forecasts pi, i < n. One might suspect that Forecaster needs his
own past forecasts to cover up his confusion by making the sequence p1, . . . , pn

look consistent; otherwise, knowing Reality’s moves would have been sufficient.
One explanation is that K29 was derived with no assumptions whatsoever

about how Reality chooses her moves; in particular, it is not assumed that she
is oblivious (i.e., does not pay attention to Forecaster’s moves). If Reality is not
oblivious, the dependence of pn on pi, i < n, is not surprising.

However, in the usual forecasting problems (such as the experiments with
the TIC data set described in the previous section) Reality is oblivious, and
so one might expect that eliminating dependence on pi in the K29 algorithm
will not impair its performance. In view of the interpretation of kernels as
measuring similarity in the feature space ([4], §1.1), the K29 choice of pn can

3

Degree 1 2 3 4 5
Overall MSE 0.11204 0.11179 0.11155 0.11131 0.11105
Training MSE 0.11228 0.11203 0.11179 0.11154 0.11128
Test MSE 0.11169 0.11145 0.11121 0.11096 0.11071
Degree 6 7 8 9 10
Overall MSE 0.11078 0.11051 0.11024 0.11002 0.10990
Training MSE 0.11102 0.11076 0.11054 0.11040 0.11043
Test MSE 0.11043 0.11013 0.10981 0.10946 0.10912
Degree 11 12 13 14 15
Overall MSE 0.10995 0.11032 0.11108 0.11232 0.11405
Training MSE 0.11075 0.11150 0.11281 0.11475 0.11727
Test MSE 0.10879 0.10859 0.10856 0.10880 0.10937

Table 4: MSE for the pure object K29 algorithm (run on-line) on the TIC data
set

be interpreted as choosing the average of yi over observed instances close to the
current instance. In the K29 algorithm, “instance” is understood as the pair
(object,probability) and for the current example we use a postulated probability.
If we ignore the probability part of the instances and replace pi with p, we
obtain the following modification of the K29 algorithm, which we will call the
pure object K29 algorithm. Let K : X2 → R be a Mercer kernel. After seeing
the object xn on round n Forecaster outputs any root p = pn of the equation
Sn(p) = 0, where

Sn(p) =
n−1∑

i=1

K(xn, xi)(yi − p); (4)

if there is no root, define pn by (1). Table 4 shows, however, that the pure
object K29 algorithm does nor work as well as the original K29 algorithm.

A less radical change to the K29 algorithm is to use (yi − pi) instead of
(yi− p) in (4); the results for this variant are shown in Table 5. It appears that
using own past forecasts is useful even with an oblivious Reality.

Acknowledgments

I am grateful to David Lindsay, who reproduced some of the experiments de-
scribed in this paper. This work was partially supported by BBSRC (grant
111/BIO14428), EPSRC (grant GR/R46670/01), MRC (grant S505/65), and
European Commission (grant IST-1999-10226).

References

[1] Glenn W. Brier. Verification of forecasts expressed in terms of probability.
Monthly Weather Review, 78:1–3, 1950.

4

Degree 1 2 3 4 5
Overall MSE 0.11204 0.11179 0.11154 0.11129 0.11103
Training MSE 0.11227 0.11203 0.11178 0.11153 0.11127
Test MSE 0.11169 0.11145 0.11120 0.11095 0.11069
Degree 6 7 8 9 10
Overall MSE 0.11075 0.11047 0.11019 0.11053 0.11052
Training MSE 0.11099 0.11073 0.11049 0.11130 0.11153
Test MSE 0.11040 0.11010 0.10976 0.10941 0.10905
Degree 11 12 13 14 15
Overall MSE 0.11058 0.11107 0.11217 0.11371 0.11552
Training MSE 0.11182 0.11275 0.11425 0.11610 0.11842
Test MSE 0.10877 0.10863 0.10915 0.11025 0.11131

Table 5: MSE for the variant K29 algorithm (run on-line) on the TIC data set

[2] Charles Elkan. Magical thinking in data mining: Lessons from CoIL chal-
lenge 2000. In Proceedings of the Seventh International Conference on
Knowledge Discovery and Data Mining (KDD’2001), pages 426–431. ACM
Press, 2001.

[3] Seth Hettich and Steven D. Bay. The UCI KDD Archive. University of
California, Department of Information and Computer Science, Irvine, CA,
1999, http://kdd.ics.uci.edu.

[4] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[5] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[6] Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecast-
ing, The Game-Theoretic Probability and Finance project, http://proba
bilityandfinance.com, Working Paper #8, September 2004.

[7] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability esti-
mates from decision trees and naive Bayesian classifiers. In Carla E. Brodley
and Andrea P. Danyluk, editors, Proceedings of the Eighteenth International
Conference on Machine Learning, pages 609–616, San Francisco, CA, 2001.
Morgan Kaufmann.

[8] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into ac-
curate multiclass probability estimates. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 694–699. ACM Press, 2002.

5

