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Abstract

We study the origins of the
√
dt effect in finance and SDE. In particular, we show,

in the game-theoretic framework, that market volatility is a consequence of the
absence of riskless opportunities for making money and that too high volatility is
also incompatible with such opportunities. More precisely, riskless opportunities
for making money arise whenever a traded security has fractal dimension below
or above that of the Brownian motion and its price is not almost constant
and does not become extremely large. This is a simple observation known in
the measure-theoretic mathematical finance. At the end of the article we also
consider the case of non-zero interest rate.

This version of the article was essentially written in March 2005 but remains
a working paper.
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1 Introduction

The main result of this article is that high market volatility is a consequence of
the absence of riskless opportunities for making money. Versions of this propo-
sition were proven within the standard continuous-time framework by Rogers
(1997) (see also the references therein), Delbaen and Schachermayer (1994), etc.

In §2 we prove a simple result using nonstandard analysis saying that if a
traded security is not sufficiently volatile and not too close to being a constant,
this can be used for making money without risk; in the appendix to this article
we explain how the informal language of §2 can be replaced by a formal argument
using the ultraproduct construction described in Shafer and Vovk (2001). In
the following §3 and §4 we give messier finitary forms of this result in a realistic,
discrete-time setting. Results of our preliminary empirical studies are reported
in §5.

In §6, we remove the assumption of zero interest rate. Our proof techniques
are elementary and well-known; see, e.g., Cheridito (2001, 2002). (Although the
techniques are general, the results are typically stated for very narrow classes
of processes: fractional Brownian motion with drift and exponential fractional
Brownian motion with drift in Cheridito 2001, 2002.)

In §8 we briefly discuss a modification of the Market Protocol of §2 that
allows more natural statements of the results of §2.

2 Continuous-time result in the financial proto-
col

We use the notation of Shafer and Vovk (2001). In particular, ∆fn := fn−fn−1,
while dfn := fn+1−fn. The basic framework is that of Chapter 11: the interval
T is split into an infinitely large number N of subintervals etc.

The Market Protocol
Players: Investor, Market
Protocol:
I0 := 1.
Market announces S0 ∈ R.
FOR n = 1, 2, . . . , N :

Investor announces Mn ∈ R.
Market announces Sn ∈ R.
In := In−1 +Mn∆Sn.

Additional Constraint on Market: Market must ensure that S is continu-
ous.

The definition of zero game-theoretic probability is given on pp. 340–341
of Shafer and Vovk (2001): an event E has zero game-theoretic probability
if for any K there exists a strategy that, when started with 1, does not risk
bankruptcy and finishes with capital at least K when E happens.
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We start with a result showing that too low volatility gives opportunities for
making money.

Theorem 1 For any δ > 0, the event

vexS < 2 & sup
t
|S(t)− S(0)| > δ

has game-theoretic probability zero.

The condition vexS < 2 means that S is less volatile than the Brownian motion
and supt |S(t)− S(0)| > δ means that S should not be almost constant.

Proof This proof is a simple modification of Example 3 in Shiryaev (1999),
p. 658, and a proof in Cheridito (2001, 2002). It is given in the usual style
of Shafer and Vovk (2001); in the appendix we will provide additional details.

Assume, without loss of generality, that S(0) = 0 (if this is not true, replace
S(t) by S(t) − S(0)). Consider the strategy Mn := 2CSn, where C is a large
positive constant. With our usual notation dfn := fn+1 − fn, we have

dIn = 2CSndSn = C
(
d(S2

n)− (dSn)2
)

and, therefore,

In − I0 = CS2
n − C

n−1∑
i=0

(dSi)
2 ≈ CS2

n. (1)

If this strategy starts with 1, the capital at each step n will be nonnegative.
Stopping playing at the first step when |Sn| > δ, we make sure that IN ≥ Cδ2,
which can be made arbitrarily large by taking a large C.

As the proof shows, the condition vexS < 2 of the theorem can be replaced
by the weaker varS(2) = 0.

Now we complement Theorem 1 with a result dealing with too high volatility.

Theorem 2 For any D > 0, the event

vexS > 2 & sup
t
|S(t)− S(0)| < D (2)

has game-theoretic probability zero.

Proof This proof is a simple modification of a proof in Cheridito (2001, 2002).
We again assume S(0) = 0.

Consider the strategy Mn := −2D−2Sn. Now we have

dIn = −2D−2SndSn = D−2
(
(dSn)2 − d(S2

n)
)

and, therefore,

In − I0 = D−2
n−1∑
i=0

(dSi)
2 −D−2S2

n ≥ D−2
n−1∑
i=0

(dSi)
2 − 1 (3)

before |Sn| reaches D. If this strategy starts with 1 and stops playing as soon
as Sn reaches D, the capital at each step n will be nonnegative and, if event (2)
occurs, IN ≥ D−2 varS(2) will be infinitely large.
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As before, the condition vexS > 2 can be replaced by varS(2) =∞.
If S is a stock price, it cannot become negative, which allows us to strengthen

the conclusion of Theorem 2.

Corollary 1 The event vexS > 2 has game-theoretic probability zero (provided
S ≥ 0).

Proof Let K be the constant from the definition of zero game-theoretic prob-
ability (p. 1). The required strategy is the 50/50 mixture of the following
2 strategies: the strategy of Theorem 2 corresponding to D := 2K and the
buy-and-hold strategy that recommends buying 1 share of S at the outset. If
supt |S(t) − S(0)| < 2K, the first strategy will make Investor rich; otherwise,
the second will.

3 Absolute finitary results

The protocol for this section is:

The Absolute Market Protocol
Players: Investor, Market
Protocol:
I0 := 1.
Market announces S0 ∈ R.
FOR n = 1, 2, . . . , N :

Investor announces Mn ∈ R.
Market announces Sn ∈ R.
In := In−1 +Mn∆Sn.

Now N is a usual positive integer number and there are no a priori con-
straints on Market. The following two results are the “absolute” finitary versions
of Theorems 1 and 2, respectively.

Theorem 3 Let ε and δ be two positive numbers. If Market is required to satisfy

N∑
i=1

(∆Si)
2 ≤ ε,

the game-theoretic probability of the event

max
n=1,...,N

|Sn − S0| ≥ δ (4)

is at most ε/δ2.

Proof Assume, without loss of generality, that S0 = 0 (replace Sn by Sn−S0 if
not). Take the same strategy Mn := 2CSn as in Theorem 1, but now C = 1/ε.
From (1) we obtain

In − I0 =
1

ε
S2
n −

1

ε

n−1∑
i=0

(dSi)
2 ≥ 1

ε
S2
n − 1,
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i.e., if the strategy starts with 1,

In ≥
1

ε
S2
n.

This shows that In is never negative; stopping at the step n where |Sn| ≥ δ, we
make sure that IN ≥ δ2/ε when (4) happens.

Theorem 4 Let ε and D be two positive numbers. If Market is required to
satisfy

max
n=1,...,N

|Sn − S0| ≤ D,

the upper game-theoretic probability of the event

N∑
i=1

(∆Si)
2 ≥ D2

ε
(5)

is at most ε.

Proof Assume, without loss of generality, that S0 = 0 (replace Sn by Sn − S0

if not). Take the same strategy Mn := −2D−2Sn as in Theorem 2. From (3)
we can see that In is never negative and that

IN = D−2
N∑
i=1

(∆Si)
2 ≥ 1

ε

when the event (5) happens.

4 Relative finitary result

Now we change our protocol to:

The Relative Market Protocol
Players: Investor, Market
Protocol:
I0 := 1.
Market announces S0 > 0.
FOR n = 1, 2, . . . , N :

Investor announces Mn ∈ R.
Market announces Sn > 0.
In := In−1 +Mn∆Sn.

As in the previous section, N is a standard positive integer number. Define
a nonnegative function β by

1

2
β(x) = x− ln(1 + x);
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so for small |x|, β(x) behaves as x2. The following result is the “relative” finitary
version of Theorem 1; it uses the versions

N−1∑
i=0

(d lnSi)
2

and
N−1∑
i=0

β

(
dSi

Si

)
of the 2-variation

N−1∑
i=0

(
dSi

Si

)2

of S. (We refrain from giving a similar version of Theorem 2: such a version
would be less interesting from the empirical point of view, because, as explained
in the following section, the usual expectation is that H > 1/2.)

Theorem 5 Let ε, δ and γ be three positive numbers. If Market is required to
satisfy

N−1∑
i=0

(d lnSi)
2 ≤ ε,

N−1∑
i=0

β

(
dSi

Si

)
≤ ε

and
min
n

lnSn ≥ −γ,

the game-theoretic probability of the event

max
n=1,...,N

| ln(Sn/S0)| ≥ δ (6)

is at most (1 + γ)ε/δ2.

Proof Assume, without loss of generality, that S0 = 1 (replace Sn by Sn/S0 if
not). Since the proof is now slightly more complicated than that in the previous
section, we first outline its idea. Roughly speaking, our goal will be to maintain
In close to (lnSn)2 (in the previous sections it was to maintain In close to
(Sn)2). To find a strategy that will achieve this, we notice that

d
(
ln2 Sn

)
= (2 lnSn)(d lnSn) + (d lnSn)2 (7)

= (2 lnSn) ln

(
1 +

dSn

Sn

)
+ (d lnSn)2 (8)

= (2 lnSn)
dSn

Sn
− (lnSn)β

(
dSn

Sn

)
+ (d lnSn)2. (9)

We can see that a suitable strategy is

Mn := 2C
lnSn

Sn
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for some C (chosen so that to make sure that the capital process is nonnegative;
eventually we will take C = 1/((1 + γ)ε)). Expressing 2(lnSn)(dSn)/Sn from
the equality between the extreme terms of the chain (7)–(9), we obtain for the
strategy Mn:

dIn = 2C
lnSn

Sn
dSn = Cd ln2 Sn + C lnSnβ

(
dSn

Sn

)
− C(d lnSn)2;

therefore,

In − I0 = C ln2 Sn + C

n−1∑
i=0

(lnSi)β

(
dSi

Si

)
− C

n−1∑
i=0

(d lnSi)
2 (10)

≥ C ln2 Sn − Cγε− Cε. (11)

Starting from I0 = 1, it is safe to take C := 1/((1+γ)ε) (this removes possibility
of bankruptcy), in which case (10)–(11) becomes

In ≥
1

(1 + γ)ε
ln2 Sn.

Stopping at the step n with | lnSn| ≥ δ ensures IN ≥ δ2/((1 + γ)ε) when (6)
happens.

5 Empirical studies

The empirical studies reported in this section are closely connected to the so
called R/S-analysis (see Shiryaev 1999, §4a). The results we report here assume
zero interest rate, and so are of limited interest; further empirical studies are
needed.

First we consider the absolute setting, although the usual definitions as given
in Shiryaev (1999) are “relative”. Denote

Rabs
N := max

i=1,...,N
|Sn − S0|,

(
SabsN

)2
:=

1

N

N∑
i=1

(∆Si)
2.

Suppose that we believe, for some reason, that we are going to have SabsN ≤ σ
and Rabs

N ≥ δ; therefore, δ plays the same role as in Theorem 3 and σ plays the

role of
√
ε/N . So from Theorem 3 we obtain that we will be able to multiply

our capital δ2/ε = (δ/σ)2/N -fold. For another variant of the definitions of RN

and SN (as given in Shiryaev 1999, (14) on p. 371; see below) one usually has

RN

SN
∼ cNH

with H considerably larger than 1/2. If our guesses δ and σ are not too far off,
we can hope to increase our initial capital by a factor of order N2H−1.
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In the “relative” setup, define

Rrel
N := max

n=1,...,N

∣∣∣∣ln Sn

S0

∣∣∣∣ , (
SabsN

)2
:=

1

N

(
N−1∑
i=0

β

(
dSi

Si

) ∨ N−1∑
i=0

(d lnSi)
2

)
.

If we believe that we are going to have SrelN ≤ σ and Rrel
N ≥ δ, we obtain from

Theorem 5 that we will be able to multiply our capital by a factor of

δ2

(1 + γ)ε
=

δ2

(1 + γ)σ2N

(where ε := σ2N); if one has
RN

SN
∼ cNH

and our guesses δ and σ are not too far off, we can again hope to increase our
initial capital by a factor of order

N2H−1. (12)

Some experimental results are given in Shiryaev (1999, §4.4), but we cannot
use them directly, since the standard definitions of R/S analysis are different
from ours (the main difference being that the standard definitions are centered).
Those results, however, suggest that typically H > 0.5, which was why we
concentrate on this case in our discrete-time analysis and empirical studies.

In our experiments we consider, instead of Rabs
N and Rrel

N , |SN − S0| and
| ln(SN/S0)|, respectively, the rationale being that security prices typically in-
crease. This frees us from the need to guess the value of δ in advance. Our
results are summarized in Tables 1 and 2.

In Table 1 we list the 19 securities for which we conducted experiments. The
number N is the number of trading periods (days, month, or years).

The numbers given in Table 2 are defined as follows:

abs factor :=
(SN − S0)2∑N−1

i=0 (dSi)2

and

rel factor :=

(
ln SN

S0

)2
(1−min)

(∑N−1
i=0 (d lnSi)2

∨ ∑N−1
i=0 β

(
dSi

Si

)) ,
where

min := min
n

ln
Sn

S0
.

To judge the magnitude of abs factor and rel factor we also give the factor by
which the value of the security increases (the column “security”) and the factor
by which the value of an index (S&P500) increases (the column “index”) over
the same time period.
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Security and frequency Code Time Period N

Microsoft stock daily msft d 13/03/1986–21/09/2001 3672

IBM stock daily ibm d 02/01/1962–21/09/2000 9749

S&P500 daily spc d 04/01/1960–21/09/2000 10, 254

Microsoft stock monthly msft m March 1986–June 2001 184

IBM stock monthly ibm m January 1962–June 2001 474

General Electric stock monthly ge m January 1962–June 2001 474

Boeing stock monthly ba m January 1970–June 2001 378

Du Pont (E.I.) de Nemours stock monthly dd m January 1970–June 2001 378

Consolidated Edison stock monthly ed m January 1970–June 2001 378

Eastman Kodak stock monthly ek m January 1970–June 2001 378

General Motors stock monthly gm m January 1970–June 2001 378

Procter and Gamble stock monthly pg m January 1970–June 2001 378

Sears/Roebuck stock monthly s m January 1970–June 2001 378

AT&T stock monthly t m January 1970–June 2001 378

Texaco stock monthly tx m January 1970–June 2001 378

US T-bill monthly us m January 1871–June 2001 1566

S&P500 Total Returns monthly sp m January 1871–June 2001 1566

US T-bill yearly us a 1871–2000 130

S&P500 Total Returns yearly sp a 1871–2001 130

Table 1: The 19 securities used in our experiments. Dates are given in the
format dd/mm/yyyy.

As we already mentioned, our experiments implicitly assume zero interest
rate, but the results they give are roughly of the same order of magnitude as
those implied by the table on p. 376 of Shiryaev (1999). Line 1 of that table
can be interpreted (ignoring the facts that centering is not the same thing as
discounting and that DJIA cannot be reproduced by a trading strategy) as
saying that our initial capital can be increased by a factor of roughly

12, 5002×0.59−1 ≈ 5.46

in 12,500 days since 1888.

6 Non-zero interest rate

Our protocols implicitly assume that the interest rate is zero. In this section we
remove this restriction. Our protocol now involves not only security S but also
another security B (e.g., a bank account). Their prices are assumed positive.

The Market Protocol
Players: Investor, Market
Protocol:
I0 := 1.
Market announces S0 > 0 and B0 > 0.
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code abs factor rel factor index security min

msft d 1.32 13.8 6.13 330 −0.0736

ibm d 2.62 1.94 20.8 16.0 −0.626

spc d 8.25 10.7 24.2 24.2 −0.138

msft m 0.930 12.6 7.59 382 0

ibm m 2.08 2.22 69.4 15.8 −0.469

ge m 4.57 6.99 69.4 63.4 −0.232

ba m 2.35 3.25 43.5 75.5 −0.620

dd m 1.66 6.72 43.5 33.0 0

ed m 4.21 3.76 43.5 58.0 −1.19

ek m 0.638 0.994 43.5 5.06 −0.441

gm m 1.41 2.24 43.5 13.8 −0.462

pg m 1.20 4.88 43.5 18.6 −0.166

s m 0.0331 0.0223 43.5 1.37 −0.723

t m 0.0293 0.0159 43.5 0.702 −1.13

tx m 4.66 7.97 43.5 36.7 0

us m 3.87 1081 91600 282 0

sp m 6.99 32.9 91, 600 91, 600 −0.0877

us a 32.2 93 87600 261 0

sp a 6.57 23.9 87, 600 87, 600 −0.00663

Table 2: Empirical results related to Theorems 3 and 5.

FOR n = 1, 2, . . . , N :
Investor announces Mn ∈ R.
Market announces Sn > 0 and Bn > 0.
In := (In−1 −MnSn−1) Bn

Bn−1
+MnSn.

Additional Constraint on Market: Market must ensure that S and B are
continuous.

(Cf. the protocol and its analysis on p. 296 of Shafer and Vovk 2001.) Intuitively,
at step n Investor buys Mn units of S and invests the remaining money in B,
which can be a money market account, a bond, or any other security with
nonnegative prices. The protocol of §2 corresponds to a constant Bn.

Re-expressing Investor’s capital and the price of S in the numéraire Bn, we
obtain

I†n := In/Bn, S†n := Sn/Bn.

It is easy to see that

I†n := I†n−1 −MnS
†
n−1 +MnS

†
n,

which is exactly the expression that we had in §2, only with the daggers added.
Therefore, we can restate all results of §2 for the current protocol. For example,
Theorem 8 implies:
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Theorem 6 The event

vex(S/B) = 2 or S/B ≈ const

is full.

We have an interesting all-or-nothing phenomenon: either two securities are
proportional or their ratio behaves stochastically.

7 Continuous-time result in the drift-SDE pro-
tocol

In this section we consider a slightly more general protocol (see Chapter 14 of
Shafer and Vovk 2001):

The Drift-SDE Protocol
Players: Forecaster, Skeptic, Reality
Protocol:
I0 := 1.
Reality announces S0 ∈ R; T0 := S0.
FOR n = 1, 2, . . . , N :

Forecaster announces mn ∈ R; Tn := Tn−1 +mn.
Skeptic announces Mn ∈ R.
Reality announces Sn ∈ R; xn := ∆Sn.
In := In−1 +Mn(xn −mn).

Additional Constraint on Market: Market must ensure that S and T are
continuous.

The main differences from the Market Protocol are that: Market becomes
Reality; Investor becomes Skeptic; a new player, Forecaster, is introduced, who
announces at each trial his expectation of the increment xn to be chosen by
Reality (the Market Protocol corresponds to the case where mn is always 0).
The definition of game-theoretic upper probability is unchanged.

In Chapter 14 of Shafer and Vovk (2001) we describe Diffusion Protocol 1,
a game-theoretic counterpart of the standard measure-theoretic SDE

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dW (t);

this equation is modeled by Forecaster choosing the moves

mn := µ(Sn−1, ndt)dt (13)

(the drift move) and
vn := σ2(Sn−1, ndt)dt

(the volatility move). Already Diffusion Protocol 1 provides a flexible alterna-
tive to the usual measure-theoretic approach to SDE; we believe that it would
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be very beneficial to translate the standard theory of SDE to the game-theoretic
framework liberating measure-theoretic results of unnecessary assumptions. But
we can also do more radical things considering much weaker protocols than
Diffusion Protocol 1. Diffusion Protocol 2 in Shafer and Vovk (2001) drops
Forecaster’s drift move altogether; it turns out (Shafer and Vovk 2001, Theo-
rem 14.1) that the Black-Scholes formula can be proven in Diffusion Protocol 2.
(It is well known that in the measure-theoretic framework the Black-Scholes for-
mula does not depend on drift, but still there is no way to drop the assumption
of existence of drift.) In this section we relax Diffusion Protocol 1 in a different
way: now we drop Forecaster’s volatility move. We will see that this will not
prevent us from proving the

√
dt effect.

First we motivate the conditions of our theorem. According to (13), mn

has the order of magnitude dt; in the game-theoretic framework we also expect
that the drift process T (t) will be much more stable than the process S(t) itself.
Therefore, one of our conditions will be that

∑
nm

2
n is infinitely small.

Theorem 7 For any δ > 0 and D > 0, the event∑N
n=1m

2
n ≈ 0

δ < supt |S(t)− T (t)| < D

}
=⇒

N∑
n=1

x2n is appreciable

has lower game-theoretic probability one.

Proof Set x′n := xn −mn. It is easy to see from the arguments of §2 that the
event ∑N

n=1m
2
n ≈ 0

δ < supt |S(t)− T (t)| < D

}
=⇒

N∑
n=1

(x′n)2 is appreciable

has lower game-theoretic probability one (even if the condition
∑N

n=1m
2
n ≈ 0 is

dropped). The fact that ∑N
n=1m

2
n ≈ 0

δ < supt |S(t)− T (t)| < D

}
=⇒

N∑
n=1

x2n is limited

has lower game-theoretic probability one now follows from the closeness of L2

under addition; more specifically, from

x2n = (mn + x′n)2 ≤ 2
(
m2

n + (x′n)2
)
.

Therefore, we only need to prove that∑N
n=1m

2
n ≈ 0

δ < supt |S(t)− T (t)| < D

}
=⇒

N∑
n=1

x2n is not infinitesimal

has lower game-theoretic probability one. In other words, our goal is to prove
that the event

N∑
n=1

m2
n ≈ 0 & δ < sup

t
|S(t)− T (t)| < D &

N∑
n=1

x2n ≈ 0 (14)
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has zero upper game-theoretic probability.
According to (1), we have, for some strategy S1 for Skeptic,

IS1

N − I
S1
0 = C(SN − TN )2 − C

N∑
i=1

(x′i)
2.

Since
x2i = (x′i +mi)

2 = (x′i)
2 + 2x′imi +m2

i ,

we can rewrite this equality as

IS1

N − I
S1
0 = C(SN − TN )2 − C

N∑
i=1

x2i + C

N∑
i=1

m2
i + IS2

N − I
S2
0 ,

where S2 is Skeptic’s strategy that recommends move 2Cmi at trial i. Therefore,
there is Skeptic’s strategy that ensures

IN − I0 = C(SN − TN )2 − C
N∑
i=1

x2i + C

N∑
i=1

m2
i ,

and we can take I0 to be 1. On the event (14) this strategy (if stopped at the
first moment that |S(t)− T (t)| > δ) will attain at least a capital of Cδ2, which
can be made as large as we wish by choosing a large C.

8 A modified Market Protocol

To state Theorems 1 and 2 in a nicer way (avoiding the ε and D), we change
the Market Protocol in the following way. The two parameters of the Market
Protocol were T , the time horizon, and N , the infinite number of subintervals
into which the interval [0, T ] was split. Now we allow T to be an infinitely large
positive number (still requiring dt := T/N to be infinitesimal) and add another
parameter, an infinitely small positive number ε. (Of course, T can stay limited
if we wish.) The Additional Constraint on Market is now changed to “Market
must ensure that sup |∆S| ≤ ε”. The upper probability P in this protocol is
defined by the formula

P (E) := inf

{
IS(2) | inf

0≤t≤T
IS(t) ≥ 0 everywhere, IS(T ) ≥ 1 inside E

}
,

where S ranges over (internal) strategies; the expressions such as “almost cer-
tain” refer to this upper (and the corresponding lower) probability. Remember
that a hyperreal number t is appreciable if a < |t| < b for some positive real a
and b (i.e., if it is neither unlimited nor infinitesimal).

Theorem 8 It is almost certain that

sup
t
|S(t)− S(0)| is appreciable =⇒ vexS = 2.
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More precisely,

vexS < 2 =⇒ sup
t
|S(t)− S(0)| is infinitesimal (15)

and
vexS > 2 =⇒ sup

t
|S(t)− S(0)| is unlimited. (16)

Proof Of course, the proof is a modification of the proofs of Theorems 1 (for
(15)) and 2 (for (16)); we again assume S(0) = 0.

First we prove (15). As before, we consider the strategies M
(C)
n := 2CSn

starting from the initial capital 1, with the only difference that the strategy
stops playing (i.e., starts choosing the move 0) as soon as C

∑n−1
i=0 (dSi)

2 reaches
the value 1 − Cε2 (in particular, the strategy never plays if Cε2 ≥ 1; this
stopping rule ensures that the strategy never goes bankrupt) or |Sn| > C−1/2

(this condition replaces |Sn| > δ), whichever happens earlier. Now we can
combine these strategies into

Mn :=

∞∑
m=1

2−mM (2m)
n

(we do not have any problems of convergence since for each standard ε > 0 only

finitely many strategies M
(2m)
n will ever play). It is clear that this strategy will

ensure an unlimited final capital IN .

It remains to prove (16). Consider the strategies M
(D)
n := −2D−1/2Sn

starting from the initial capital 1, with the only difference that the strategy
stops playing as soon as D−2S2

n reaches the value 1−D−2(2Snε+ ε2). This way
we make sure that the strategy never goes bankrupt. Combining, as before, the

strategies M
(D)
n into

Mn :=

∞∑
m=1

2−mM (2m)
n

(the convergence follows from
∑∞

m=1 2−3m <∞), we can see that the combined
strategy will ensure an unlimited final capital IN .
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A Continuous games

This appendix contains a partial account of the concepts from nonstandard anal-
ysis used in this article. (It was intended as an improvement over Appendix 11.5
of Shafer and Vovk (2001).)

The continuous games that we consider in the main part of the article are
ultraproducts of discrete games. We will first explain informally how such ultra-
products are formed. For a formal exposition of the concept of an ultraproduct,
the reader may consult Eklof (1977) or the classical article by Jerzy  Loś (1955).

In general, an ultraproduct is formed from a sequence O1,O2, . . . of similar
mathematical structures, perhaps identical or perhaps increasing in size. We
remain informal by not saying what we mean by “similar”, but the idea is that
certain statements have a meaning in each of the On. A statement that two
objects are related in a certain way, for example, might be interpreted in On as
Rn(xn, yn), where xn and yn are objects in On and Rn is a binary relation in
On. Such a statement should also have a reference R(x, y) in the ultraproduct.
Intuitively,

• R is the sequence R1, R2, . . . ,

• x is the sequence x1, x2, . . . ,

• y is the sequence y1, y2, . . . , and
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• R(x, y) holds if Rn(xn, yn) holds for most n.

To make “most” precise, we choose a nontrivial ultrafilter in N, the set of natural
numbers (positive integers). A nontrivial ultrafilter U in N is a set of subsets of
N that has, inter alia, the property that whenever we partition N into two sets,
exactly one of the two sets is in U . We say a relation holds for most n if the set
of n for which it holds is in U .

To strengthen this explanation, we now review the concept of an ultrafilter
and provide two examples of an ultraproduct: (i) the hyperreals, and (ii) a
simple continuous game.

A.1 Ultrafilters

An ultrafilter in N is a family U of subsets of N such that

1. N ∈ U and ∅ /∈ U ,

2. if A ∈ U and A ⊆ B ⊆ N, then B ∈ U ,

3. if A ∈ U and B ∈ U , then A ∩B ∈ U , and

4. if A ⊆ N, then either A ∈ U or N \A ∈ U .

(The first three properties define a filter.) An ultrafilter U is nontrivial if it does
not contain a set consisting of a single integer; this implies that all the sets in
U are infinite. It follows from the axiom of choice that a nontrivial ultrafilter
exists. We fix a nontrivial ultrafilter U .

We say that a property of natural numbers holds for most natural numbers
(or for most k, as we will say for brevity) if the set of natural numbers for which
it holds is in U ; Condition 2 of the definition justifies this usage. It follows
from Condition 4 that for any property A, either A holds for most k or else the
negation of A holds for most k. It follows from Conditions 1 and 3 that A and
its negation cannot both hold for most k.

A.2 The hyperreals

As a first example of an ultraproduct, we construct the hyperreals, as they are
usually constructed in nonstandard analysis Goldblatt (1998). In this case, the
objects On are all identical—each is a copy of the real numbers, together with
the usual operations and relations associated with them.

As a first approximation, a hyperreal number a is a sequence
[
a(1)a(2) . . .

]
of real numbers. Sometimes we abbreviate

[
a(1)a(2) . . .

]
to
[
a(k)

]
. Operations

(addition, multiplication, etc.) over hyperreals are defined term by term. For
example,[

a(1)a(2) . . .
]

+
[
b(1)b(2) . . .

]
:=
[(
a(1) + b(1)

)(
a(2) + b(2)

)
. . .
]
.

Relations (equals, greater than, etc.) are extended to the hyperreals by voting.
For example, [a(1)a(2) . . . ] ≤ [b(1)b(2) . . . ] if a(k) ≤ b(k) for most k. For all
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a, b ∈ ∗R one and only one of the following three possibilities holds: a < b,
a = b, or a > b.

Perhaps we should dwell for a moment on the fact that a hyperreal number
a =

[
a(1)a(2) . . .

]
is always below, equal to, or above another hyperreal number

b =
[
b(1)b(2) . . .

]
: a < b, a = b, or a > b. Obviously some of the a(k) can be

above b(k), some equal to b(k), and some below b(k). But the set of k satisfying
one these three conditions is in U and outvotes the other two.

We do not distinguish hyperreals a and b such that a = b. Technically,
this means that a hyperreal is an equivalence class of sequences rather than an
individual sequence: [a(1)a(2) . . . ] is the equivalence class containing a(1)a(2) . . . .

We embed the real numbers in the hyperreals by identifying each real number
a with [a, a, . . . ]. For each A ⊆ R we denote by ∗A the set of all hyperreals [a(k)]
with a(k) ∈ A for all k. We call ∗N the hypernaturals.

We say that a ∈ ∗R is infinitesimal if |a| < ε for each real ε > 0. The only
real number that qualifies as an infinitesimal by this definition is 0. We say that
a ∈ ∗R is infinitely large if a > C for each positive integer C, and we say that
a ∈ ∗R is finite if a < C for some positive integer C.

We write a ≈ b when a − b is infinitesimal. For every hyperreal number
a ∈ ∗R there exists a unique standard number st(a) (its standard part) such
that a ≈ b.

The representation of the hyperreals as equivalence classes of sequences with
respect to a nontrivial ultrafilter is constructive only in a relative sense, because
the proof that a nontrivial ultrafilter exists is nonconstructive; no one knows
how to exhibit one. However, the representation provides an intuition that
helps us think about hyperreals. For example, an infinite positive integer is
represented by a sequence of positive integers that increases without bound,
such as [1, 2, 4, . . . ], and the faster it grows the larger it is.

A.3 An ultraproduct of games

Now we construct a continuous game, of the type used in this article.
In this construction, the following protocol, where n is a natural number:

Protocol:
I0 := 1.
Market announces S0 ∈ R.
FOR n = 1, 2, . . . , N :

Investor announces Mn ∈ R.
Market announces Sn ∈ R.
In := In−1 +Mn∆Sn.

Fix a positive real number T and an infinitely large positive integer N ; let

N = [N (k)] = [N (1), N (2), . . . ].

For each natural number k, set

T(k) := {nT/N (k) |n = 0, 1, . . . , N (k)}.

16



To each k corresponds a “finitary framework” (which we will call the k-finitary
framework), where the time interval is the finite set T(k) rather than the infinite
set T. The “limit” (formally, ultraproduct) of these finitary frameworks will be
the infinitary framework based on T; as in the previous subsection, this “limit”
is defined as follows:

• An object in the infinitary framework, such as strategy, should be defined
as a family of finitary objects: for every k, an object in the k-finitary
framework should be defined (cf. the definition of hyperreals in the previ-
ous subsection).

• Functionals defined on finitary objects are extended to infinitary objects
term-wise, analogously to the previous subsection. (By “functionals” we
mean functions of objects of complex nature, such as paths or strategies.)

• Relations (in particular, properties) are defined by voting (again as in the
previous subsection).

(In nonstandard analysis such limiting infinitary structures are called hyperfi-
nite.)

A.4 Details of the proof of Theorem 1

Let us show more formally why In is nonnegative and why IN ≥ Cδ2.
According to the first equality in (1), in every finitary framework we have

In − 1 ≥ −C
N−1∑
i=0

(dSi)
2;

since the value on the right-hand side is infinitesimal (and, therefore, smaller
than 1 in absolute value), minn In is positive.

To see that IN ≥ Cδ2, define in each finitary framework the stopping time

n := min {i | |Si| > δ} .

Again using the first equality in (1) we obtain that in each finitary framework

IN − 1 = In − 1 = CS2
n − C

n−1∑
i=0

(dSi)
2 > Cδ2 − C

N−1∑
i=0

(dSi)
2;

it remains to remember that the last subtrahend is infinitely small and, there-
fore, smaller than 1.
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