A combinatorial prediction market for the U.S. Elections

Miroslav Dudík

Thanks: S Lahaie, D Pennock, D Rothschild, D Osherson, A Wang, C Herget
Mitt Romney’s road to presidency this fall looks narrow on electoral map

By Chris Cillizza, April 29, 2012

It’s no secret that former Massachusetts governor Mitt Romney has a narrow path to win the presidency this fall. Nowhere is that reality more apparent than when examining the electoral map on which Romney and President Obama will battle in November.

A detailed analysis of Romney’s various paths to the 270 electoral votes he would need to claim the presidency suggests he has a ceiling of 269-votes with no path to victory without Ohio, which is currently the only state that could potentially shift the election’s outcome.

What are the Must-Win States for Romney?

Rasmussen Reports President Scott Rasmussen on the Presidential election.
Ohio: Romney 49%, Obama 49% (Romney Must Win VA, FL, And Either OH/WI)

Why Romney is losing must-win Ohio
By Peter Hamby, CNN Political Reporter
updated 5:15 PM EDT, Wed September 26, 2012

Romney, Obama hit must-win states
One day before Election Day campaigns see

Mitt Romney’s road to presidency this fall looks narrow on electoral map
By Chris Cillizza, April 29, 2012

Romney treating Ohio as a must-win state
By Chris Moody, Yahoo! News | The Ticket – Tue, Oct 16, 2012
A new estimate from the Federal Election Commission puts total spending for the 2012 election at more than $7 billion -- $1 billion more than previously thought.

New FEC Chair Ellen Weintraub unveiled the latest estimate of the 2012 campaign's record-shattering cost at the agency’s first open meeting of 2013, one that saw the departure of Cynthia Bauerly, one of the three Democratic commissioners. Though campaign spending was expected to break records after the Supreme Court's 2010 Citizens United decision that opened the door for unlimited contributions, the latest FEC estimate exceeds earlier expectations.
Polling

accurate, but costly

limited range of questions

limited timeliness
Polling

accurate, but costly
limited range of questions
limited timeliness

Prediction markets

accurate and cheap (after fixed cost)
broad range of questions
good timeliness
Outline

Prediction markets: Setting and challenges

Addressing the challenges: constraint generation

Field experiment: U.S. Elections 2012
Security

= proposition which becomes true or false at some point in future

“Romney will win Florida in Elections 2012”
Security

= proposition which becomes true or false at some point in future

“Romney will win Florida in Elections 2012”

Traders buy shares for some price: $0.45 per share

For each share of a security receive:

$1 if true

$0 if false
Market implementation: (automated) market maker

- Market maker sets prices
- If more shares bought, price increases
- The price equals the consensus probability of the event
Combinatorial securities: more information

payoff is a function of common variables

e.g., 50 states elect Obama or Romney
Combinatorial securities:
more information

Obama to lose FL, but win election

Obama to win >8 of 10 Northeastern states
Industry standard: ignore relationships

Treat them as independent markets:

- Las Vegas: sports betting
- Kentucky: horse racing
- Wall Street: stock options
- Betfair: political betting
Industry standard: ignore relationships

Treat them as independent markets:

- Las Vegas: sports betting
- Kentucky: horse racing
- Wall Street: stock options
- Betfair: political betting

Problem:

arbitrage opportunities
Arbitrage

trading with guaranteed profits
Arbitrage

trading with guaranteed profits

receive $1 if true
Arbitrage

trading with guaranteed profits

price $0.40

price $0.50
Arbitrage

trading with guaranteed profits possible if prices *incoherent*

prices cannot be realized as probabilities
Arbitrage

trading with guaranteed profits possible if prices \textit{incoherent}

prices cannot be realized as probabilities

Pricing without arbitrage: \#P-hard

Industry standard = Ignore arbitrage
Arbitrage trading with guaranteed profits possible if prices *incoherent*. Prices cannot be realized as probabilities.

Pricing without arbitrage: #P-hard

Industry standard = Ignore arbitrage

- Traders rewarded for computation instead of information
- Poor information sharing
Our approach: partial arbitrage removal

Separate *pricing* (must be fast) and *information propagation*

- *fast pricing in independent markets* for tractably small groups of securities
- *in parallel*: constraint generation to *find* and *remove arbitrage*

Embedded in convex optimization (with many nice properties).
Cost-based pricing
(Chen and Pennock 2007)

Setup:

- n securities
- $C: \mathbb{R}^n \to \mathbb{R}$ convex cost function
- $q \in \mathbb{R}^n$ market state = #shares sold
Cost-based pricing
(Chen and Pennock 2007)

Setup:

n securities

$C: \mathbb{R}^n \rightarrow \mathbb{R}$ convex cost function

$q \in \mathbb{R}^n$ market state = #shares sold

$q = (100, 400)$
Cost-based pricing
(Chen and Pennock 2007)

Setup:

\(n \) securities

\(C : \mathbb{R}^n \to \mathbb{R} \) convex cost function

\(q \in \mathbb{R}^n \) market state = #shares sold

\(q = (100, 400) \)

Trading:

\(r \in \mathbb{R}^n \) shares bought by a trader

cost: \(C(q + r) - C(q) \)
Cost-based pricing
(Chen and Pennock 2007)

Setup:

\(n \) securities

\(C : \mathbb{R}^n \to \mathbb{R} \) convex cost function

\(q \in \mathbb{R}^n \) market state = #shares sold

Trading:

\(r \in \mathbb{R}^n \) shares bought by a trader

Cost: \(C(q + r) - C(q) \)

\[q = (100, 400) \]

\[r = (0, 2) \]
Cost-based pricing
(Chen and Pennock 2007)

Setup:

\(n \) securities

\(C : \mathbb{R}^n \to \mathbb{R} \) convex cost function

\(q \in \mathbb{R}^n \) market state = #shares sold

Trading:

\(r \in \mathbb{R}^n \) shares bought by a trader

cost: \(C(q + r) - C(q) \)

state updated: \(q' \leftarrow q + r \)

\[
q = (100, 400)
\]

\[
r = (0, 2)
\]

\[
q' = (100, 402)
\]
Cost-based pricing
(Chen and Pennock 2007)

Setup:

\(n \) securities

\(C : \mathbb{R}^n \rightarrow \mathbb{R} \) convex cost function

\(q \in \mathbb{R}^n \) market state = #shares sold

Trading:

\(r \in \mathbb{R}^n \) shares bought by a trader

cost: \(C(q + r) - C(q) \)

state updated: \(q' \leftarrow q + r \)

instantaneous prices: \(\nabla C(q) \)

\[q = (100, 400) \]

\[r = (0, 2) \]

\[q' = (100, 402) \]

\[\nabla C(q) = (0.70, 0.75) \]
Cost-based pricing
(Chen and Pennock 2007)

Setup:

- n securities
- $C: \mathbb{R}^n \to \mathbb{R}$ convex cost function
- $q \in \mathbb{R}^n$ market state = #shares sold

Trading:

- $r \in \mathbb{R}^n$ shares bought by a trader
- cost: $C(q + r) - C(q)$
- state updated: $q' \leftarrow q + r$
- instantaneous prices: $\nabla C(q)$

$q = (100, 400)$

$r = (0, 2)$

$q' = (100, 402)$

$\nabla C(q) = (0.70, 0.75)$
Can we just use existing approaches from graphical models?

MCMC—randomized, slow convergence
mean field—non-convex
belief propagation—lack of convergence
Can we just use existing approaches from graphical models?

MCMC—randomized, slow convergence

mean field—non-convex

belief propagation—lack of convergence

Problematic for pricing:

- poor convergence ➔ volatility
- non-determinism ➔ distorted incentives and user experience
Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

\[\text{priced} \frac{e^{q_1}}{e^{q_1} + e^{q_2}} \]

number of shares bought so far

\[\text{priced} \frac{e^{q_2}}{e^{q_1} + e^{q_2}} \]
Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

\[
\text{FL priced } \frac{e^{q_1}}{e^{q_1} + e^{q_2}} \quad \text{FL priced } \frac{e^{q_2}}{e^{q_1} + e^{q_2}}
\]
Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

\[
\text{FL priced } \frac{e^{q_1}}{e^{q_1} + e^{q_2}} \quad \text{and} \quad \text{FL priced } \frac{e^{q_2}}{e^{q_1} + e^{q_2}}
\]

detect incoherence between groups

act as an arbitrageur to restore coherence
Our approach

implement a coherent pricing scheme on small groups of securities; e.g.,

\[
\text{priced } \frac{e^{q_1}}{e^{q_1} + e^{q_2}}
\]

detect incoherence *between groups*

act as an arbitrageur to restore coherence

caveat:

- difficult to detect incoherence in general
- we detect only a subset of violations
For U.S. Elections:

conjunction market

create 50 states (groups of size 2)
create all pairs of states (groups of size 4)
for conjunctions of 3 or more,
group with opposite disjunction:

\[A \wedge B \wedge C \quad \text{with} \quad \bar{A} \vee \bar{B} \vee \bar{C} \]
(groups of size 2)
For U.S. Elections:

conjunction market

create 50 states (groups of size 2)
create all pairs of states (groups of size 4)
for conjunctions of 3 or more, group with opposite disjunction:

\[A \land B \land C \quad \text{with} \quad \bar{A} \lor \bar{B} \lor \bar{C} \quad \text{(groups of size 2)} \]

each group is independent market:
fast pricing

in parallel:
generate, find, and fix constraints
(via coordinate descent)
Local coherence

Pairs:
\[P[A \land B] + P[A \land \bar{B}] = P[A] \]

Larger conjunctions:
\[P[A_1 \land A_2 \land \cdots \land A_m] \leq P[A_i] \]
Clique constraints

For a disjunction $A_1 \lor \cdots \lor A_m$, pick a subset $A_{i_1} \lor \cdots \lor A_{i_k}$

$$P[A_1 \lor \cdots \lor A_m] \geq P[A_{i_1} \lor \cdots \lor A_{i_k}]$$
Clique constraints

For a disjunction $A_1 \lor \cdots \lor A_m$, pick a subset $A_{i_1} \lor \cdots \lor A_{i_k}$

\[
P[A_1 \lor \cdots \lor A_m] \geq P[A_{i_1} \lor \cdots \lor A_{i_k}]
\geq \sum_{j=1}^{k} P[A_{i_j}] - \sum_{1 \leq j < l \leq k} P[A_{i_j} \land A_{i_l}]
\]
Clique constraints

For a disjunction $A_1 \lor \cdots \lor A_m$, pick a subset $A_{i_1} \lor \cdots \lor A_{i_k}$

$$P[A_1 \lor \cdots \lor A_m] \geq P[A_{i_1} \lor \cdots \lor A_{i_k}] \geq \sum_{j=1}^{k} P[A_{i_j}] - \sum_{1 \leq j < l \leq k} P[A_{i_j} \land A_{i_l}]$$

#clique constraints exponential
→ find only the tightest one!

(approximate submodular maximization via Feige et al. 2007)
Tree constraints
(Galambos and Simonelli 1996)

For a disjunction $A_1 \lor \cdots \lor A_m$,

$$P[A_1 \lor \cdots \lor A_m] \leq \sum_{i=1}^{m} P[A_i]$$
Tree constraints
(Galambos and Simonelli 1996)

For a disjunction $A_1 \lor \cdots \lor A_m$,

$$P[A_1 \lor \cdots \lor A_m] \leq \sum_{i=1}^{m} P[A_i] - \sum_{(i,j) \in T} P[A_i \land A_j]$$

where T is a spanning tree on nodes 1, ..., m
Does it work?

Tested using a survey of Election 2008:
singletons, pairs, triples

Small data set—compare with exact:
10 states, 30k trades

Large data set—compare with independent:
50 states, 300k trades
Small data set:
10 states

- more accurate
- sensitivity parameter

- Independent
- LMSR
- Local
- Clique
- Tree
- Clique, Tree
Small data set:
10 states

- log likelihood
- sensitivity parameter

Graph shows the behavior of different models (Independent, LMSR, Local, Clique, Tree, Clique, Tree) across varying sensitivity parameters.
Large data set:
50 states, 300k trades
No really, does it work?
WiseQ Game
(launched September 16, 2012)
WiseQ Game - Elections 2012 (Beta)

MAKE A PREDICTION

Make a prediction on:
- President - By State
- President
- President - By State
- Senate - Majority
- Senate - By State
- House - Majority
- Governor - By State
- President - 2 States
- President - 1 of 2 States
- President - 2 States Same
- President - State and National
- President - 2 States and National
- State - Multiple Elections
- President - Group of States
- President - States in Region
- President - States by Letter
- President - Geographical Path
- President - Electoral Votes
- October Jobs
- October Jobs - President

Click on the map to see the latest state-by-state predictions.
Click here to see details of prediction rules.

CURRENT ODDS
Click a state for current odds.

YOUR POINTS
EXPECTED RETURN 627.1
AVAILABLE 627.1
WISEQ SCORE 45.85

Welcome,
Your profile name!
Logout
WiseQ by numbers

437 active users
3,137 trades
514 distinct bundles traded

10^{33} possible outcomes
44.5 million possible bundles allowed by our menu

17,222 securities in 2,840 small markets
20,983 coherence constraints
Did market absorb information from users?
Did market absorb information from users?
Did users place combinatorial bets?
Did users place combinatorial bets?
Did users place combinatorial bets?

- Presidential—singleton: 400 unique users
- Senate, House—singleton: 0 unique users

unique users betting in a given category
Did users place combinatorial bets?

- Presidential—singleton
- Senate, House—singleton
- Presidential—combinatorial
Did users place combinatorial bets?

Presidential—singleton
Senate, House—singleton
Presidential—combinatorial
Electoral votes
Governor
Economic indicators
Additional combinatorial

unique users betting in a given category
Numerical predictions: electoral votes
Numerical predictions: electoral votes

Numerical predictions: electoral votes

init predicts (20-Sep-2012)

predicted outcome (4-Oct-2012)

actual outcome (6-Nov-2012)
Numerical predictions: job numbers

- Actual outcome: (5-Oct-2012)
- Prediction: (4-Oct-2012)
- Initialization: (20-Sep-2012)

Job Numbers for September 2012
Summary

independent markets + constraints: *tractable* and *accurate*

combinatorial markets can succeed with *moderate numbers of users*
even on *huge outcome spaces*

meaningful forecasts for *challenging, but relevant* outcomes:
combinatorial and *numerical*