
CIMAT, Guanajuato, Mexico

5th Workshop on Game-Theoretic Probability

and Related Topics, 13-15 November 2014

�

A Prequential Approach to

Financial Risk Management

�

Mark Davis

Department of Mathematics

Imperial College London

www2.imperial.ac.uk/∼mdavis

Paper: http://arxiv.org/abs/1410.4382

1



AGENDA

• Financial risk measures: internal and external

• Weather forecasting

• Consistent prediction

• Applying the consistency test

• Quantile forecasting

• Risk measures involving mean values

• Estimating CVaR: an impossibility theorem

• An algorithm for quantile prediction; application to FTSE data

• A test for serial dependence
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Financial Risk Management

As a representative data set we will take the series displayed in Figure 1,

20 years of weekly values Sn of the FTSE100 stock index 1994-2013. Figure
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Figure 1: FTSE100 index: weekly values

1994-2013
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Figure 2: FTSE100 weekly return series.

2 shows the associated series of returns Xn = (Sn − Sn−1)/Sn−1 and demon-

strates the typical stylised features found in financial price data: apparent

non-stationarity and highly ‘bursty’ volatility. The empirical distribution has

power law tails 1/x3 on both sides.
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The problem: In risk management we’re interested in computing the con-

ditional distribution Fk of returns for the kth period given data up to today

(the end of the (k − 1)th period), or some statistic s(Fk) such as a quantile

qβ(Fk). Each time, we are predicting a different distribution, even if the model

is stationary. Consequently, no direct verification of correctness is possible.
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External vs. Internal Risk Measures (Kou, Peng & Heyde MOR 2013)

External risk measures are used for regulatory purposes and imposed on all

regulated institutions. Typical confidence level 99.5%, 99.75%.

How do we know if the calculations are correct? We don’t—but that’s

not really the point. (See Cont, Deguest & Scandolo, QF 2010) Ultimate

objective is to ensure banks have adequate capital cushion. This is analogous

to flood barrier design (but harder).

Data

F
Model

Statistic
C = s(F)s(..)

Capital
charge

D

Is this a good structure? See A. Haldane ‘The dog and the frisbee’ 2012,

Keppo, Kofman & Meng, JEDC 2010

Internal risk measures Used within banks to monitor the risks of trading

books. Typical confidence level 95%. Here it is possible to compare predic-

tions to outcomes. This talk identifies criteria for ‘success’.
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Weather Forecasting

Here’s the reliability diagram for 2820 12-hour forecasts by a single forecaster

in Chicago, 1972-1976. (Average ∼ 200 forecasts per probability value.)
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Reliability Diagram of Weather Forecast

Application to Value at Risk

Here we want to predict quantiles of the return distribution for an asset

or portfolio. This is a slightly different problem:

Weather forecasting: Same event “rain”, different forecast probabilities pn.

Risk management: Same probability p = 10%, different events “return ≥ qn”.

We have to forecast qn.
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Consistent Prediction

We observe a real-valued price series X(1), . . . , X(n) and an Rr-valued series

of other data H(1), . . . , H(n) and wish to compute some statistic relating to

the conditional distribution of X(n + 1) given {X(k), H(k), k = 1, . . . , n}. A

statistic of a distribution F is some functional of F such as a quantile or the

CVaR. Let s(F ) denote the value of this statistic for a candidate distribution

function F . For example, if s is the mean then

s(F ) =

∫

R
xF (dx), for F such that

∫

R
|x|F (dx) < ∞.

A model for the data is a discrete-time stochastic process (X̃(k), H̃(k)) de-

fined on a stochastic basis (Ω,F , (Fk),P). We always take (Ω,F , (Fk)) to be

the canonical space for an R1+r-valued process, i.e. Ω =
∏∞

k=1R
1+r
(k) (where

each R1+r
(k) is a copy of R1+r) equipped with the σ-field F , the product σ-field

generated by the Borel σ-field in each factor.
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For ω ∈ Ω we write

ω = (ω1, ω2, . . .) ≡ ((X̃(1, ω), H̃(1, ω)), (X̃(2, ω), H̃(2, ω)), . . .).

The filtration (Fk) is then the natural filtration of the process (X̃(k), H̃(k)).

With this set-up, different models amount to different choices of the proba-

bility measure P. Below we will consider families P of probability measures,

and we will use the notation P = {Pm,m ∈M}, whereM is an arbitrary in-

dex set, to identify different elements Pm of P . The expectation with respect

to Pm is denoted Em.

Lemma 1 Let Pm be any probability measure on (Ω,F , (Fk)) as defined

above. Then for each k ≥ 2 there is a conditional distribution of X̃(k) given

Fk−1, i.e. a function Fm
k : R× Ω → [0, 1] such that (i) for a.e. ω, Fk(∙, ω) is

a distribution function on R and (ii) for each x ∈ R,

Fk(x, ω) = Pm[Xk ≤ x|Fk−1] a.s. (dPm).
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Consistency

Consistency is defined for a statistic s relative to a class of models P .

Let B(P) denote the set of strictly increasing predictable processes (bn) on

(Ω, (Fk)) such that limn→∞ bn = ∞ a.s. ∀Pm ∈ P ; in this context, ‘pre-

dictable’ means that for each k, bk is Fk−1-measurable. Often, bk will actually

be deterministic.

A calibration function is a measurable function l : R2 → R such that

Em[l(X̃(k), s(Fm
k ))|Fk−1] = 0 for all Pm ∈ P .

Definition 1 A statistic s is (l, b,P)-consistent, where l is a calibration func-

tion, b ∈ B(P) and P is a set of probability measures on (Ω,F), if

(1) lim
n→∞

1

bn

n∑

k=1

l(X̃(k), s(Fm
k )) = 0 P−a.s. for all P ∈ P .
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Applying the consistency test

We observe the data sequence X(1), . . . , X(n − 1) and produce an estimate

π(n), based on some algorithm, for what we claim to be s(Fn). We evaluate

the quality of this prediction by calculating

Jn(X, π) =
1

bn

n∑

k=1

l(X(k), π(n)).

Consistency is a ‘reality check’: it says that if Xi were actually a sample

function of some process and we did use the correct predictor π(i) = s(Fi)

then the loss Jn will tend to 0 for large n, and this will be true whatever the

model generating X(i), within the class P , so a small value of Jn is evidence

that our prediction procedure is well-calibrated. The evidence is strongest

when P is a huge class of distributions and bn is the slowest-diverging sequence

that guarantees convergence in (1) for all P ∈ P .
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Quantile forecasting

Here s(F ) = qβ(F ), the β-quantile.

Possible choices for l and b are l(x, q) = 1(−∞,q](x) − β and bn = n, so we

examine convergence of

1

n

n∑

k=1

(1(X(k)≤qk
β) − β),

i.e. we examine the difference between β and the average frequency of times

the realized value X̃(k) lies below the quantile qk
β predicted at time k−1 over

the time interval 1, . . . , n.

The key point is that the criterion only depends on realized values of data

and numerical values of predictions; this is the ‘weak prequential principle’

of Prequential Statistics.
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Quantile forecasting, continued

The set of models is

(Ω,F , (Fk), (X̃(k), H̃(k),Pm), Pm ∈ P

where P is some class of measures and Fm
k (x, ω) is the conditional distribution

function of X̃k given Fk−1 under measure Pm ∈ P . Let P be the set of all

probability measures on (Ω,F), and define

P0 = {Pm ∈ P : ∀k, F m
k (x, ω) is continuous in x for almost all ω ∈ Ω}.

For risk management applications, the continuity restriction is of no signifi-

cance; no risk management model would ever predict positive probability for

specific values of future prices. So P0 is the biggest relevant subset of P.

Proposition 1 Suppose Pm ∈ P0. Then the random variables Uk = Fm
k (X̃k),

k = 1, 2, . . . are i.i.d. with uniform distribution U [0, 1].
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For β ∈ (0, 1) let qm
k denote the β’th quantile of Fm

k , i.e. qm
k = inf{x :

Fm
k (x) ≥ β}. qm

k is of course an Fk−1-measurable random variable for each

k > 0.

Theorem 1 For each Pm ∈ P0, for any sequence bn ∈ B(P),

(2)
1

bn

1

n1/2(log log n)1/2

n∑

k=1

(1(Xk≤qm
k ) − β) → 0 a.s. (Pn)

Thus the quantile statistic s(F ) = qβ is (l, b′,P0)-consistent in accordance

with Definition 1, where l(x, q) = 1(x≤q) − β and b′k = bk(k log log k)1/2.

Proof: By monotonicity of the distribution function,

(Xk ≤ qm
k ) ⇔ (Uk ≤ Fm

k (qm
k )) ⇔ (Uk ≤ β).

The result now follows from Proposition 1 and by applying the Law of the

Iterated Logarithm (LIL) to the sequence of random variables Yk = 1(Uk≤β)−

β, which are i.i.d with mean 0 and variance β(1 − β).
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Indeed, define

ζ(n) =
1

σ(2n log log n)1/2

n∑

k=1

(1(Uk≤β) − β)

where σ =
√

β(1 − β). Then the LIL asserts that, almost surely,

lim sup
n→∞

ζ(n) = 1, lim inf
n→∞

ζ(n) = −1.

The convergence in (2) follows. �

Of course, if convergence holds in (2) then it also holds if we replace the

sequence b by b′′ such that b′′n ≥ bn for all n. In particular, the conventional

relative frequency measure

(3)
1

n

n∑

k=1

(1(Xk≤qm
k ) − β)

converges under the same conditions; this also follows directly from the Strong

Law of Large Numbers (SLLN).
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Comments

• The striking thing about Theorem 1 is that consistency of quantile fore-

casting is obtained under essentially no conditions on the mechanism

generating the data.

• Theorem 1 is a ‘theoretical’ result in that (2) is a tail property, unaffected

by any initial segment of the data. Nonetheless, it is practically relevant

to compute the relative frequency (3), as we show later.

• We can supplement computation of (3) with statistical tests of the finite-

sample hypothesis that the random variables Y (1), . . . , Y (n) defined

above are i.i.d.
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Risk Measures Involving Mean Values

Risk measures such as CVar involve integration with respect to the condi-

tional distribution functions Fm
k . In this section we will consider the straight

prediction problem of estimating the conditional means

(4) μm
k =

∫

R
xFm

k (dx).

We must assume that the class of candidate models is at most

P1 =

{

Pm ∈ P : ∀k,

∫

R
|x|Fm

k (dx) < ∞

}

.

In fact, this problem is general enough to include risk measures of the form
∫

f(x)Fm
k (dx) for general functions f : we can simply define a new model

class (X̃ ′, H̃ ′) where X̃ ′(k) = f(X(k)) and H̃ ′(k) = (X(k), H(k)). Some

modification is required when f is an option-like function such as f(x) =

(x−K)+ since then f(X̃(k)) = 0 with positive probability for some measures

Pm, so these measures are no longer in the class P0 as previously defined.

16



Martingale analysis

To proceed further, we need to make use of martingale properties. If we

define

(5) Y (k) = X̃(k) − μn
k , S(n) =

n∑

k=1

Y (k)

with S(0) = 0, then S(n) is a zero-mean Pm-martingale since Em[Y (k)|Fk−1] =

0. We want to determine calibration conditions by using the SLLN for mar-

tingales. In this subject, a key role is played by the Kronecker Lemma of real

analysis.

Lemma 2 Let xn, bn be sequences of numbers such that bn > 0, bn ↑ ∞, and

let un =
∑n

k=1 xn/bn. If un → u∞ for some finite u∞ then

lim
n→∞

1

bn

n∑

k=1

xk = 0.

17



The martingale convergence theorem states that if S(n) is a zero-mean mar-

tingale on a filtered probability space and there is a constant K such that

E|S(n)| ≤ K for all n, then S(n) → S(∞) a.s. where S(∞) is a random

variable such that E|S∞| < ∞.

Now let Y (k), S(k) be as defined at (5) above, and let Z(k) be a predictable

process, i.e. Z(k) is Fk−1-measurable, such that Z(k) > 0 and Z(k) ↑ ∞

a.s. Let Y Z
k = Y (k)/Z(k) and SY (n) =

∑n
1 Y Z(k). Then SY

n is a martingale,

since

Em[Y Z(k)|Fk−1] =
1

Z(k)
Em[Y (k)|Fk−1] = 0.

If we can find Z(k) such that Em|SZ(n)| < cZ for some constant cZ then SY

converges a.s. and hence by the Kronecker lemma

1

Z(n)
S(n) =

1

Z(n)

n∑

k=1

(X̃(k) − μn
k) → 0 a.s.
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Proposition 2 Under the above conditions, the statistic s(F ) =
∫

xF (dx) is

(l, Z,P1)-consistent, according to the Definition (1), where l(x, μ) = x − μ.

This Proposition is of course useless as it stands, because no systematic way

to specify the norming process Z(k) has been provided. We can partially

resolve this problem by moving to a setting of square-integrable martingales.

If S(n) ∈ L2 we define the ‘angle-brackets’ process 〈S〉n by

〈S〉n =
n∑

1

E[Y 2(k)|Fk−1].

This is the increasing process component in the Doob decomposition of the

submartingale S2(n).

Proposition 3 If S(n) is a square-integrable martingale then S(n)/〈S〉n → 0

on the set {ω : 〈S〉∞(ω) = ∞}.

Proposition 3 shows that in the square-integrable case we can take Z = 〈S〉

in Proposition 2. However, we cannot use 〈S〉 as it stands because it does

not satisfy the weak prequential principle.
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To achieve a calculable norming sequence, we follow a line of reasoning pur-

sued by Hall and Heyde Martingale Limit Theory and its Application, relating

the predictable quadratic variation 〈S〉n to the realized quadratic variation

Qn =
n∑

k=1

(S(k) − S(k − 1))2 =
n∑

k=1

Y 2(k).

As Hall and Heyde point out, the two random variables have the same ex-

pectation, and we are interested in the ratio Qn/〈S〉n. To get the picture,

consider the case where the Y (k) are i.i.d. with variance σ2. Then 〈S〉n = σ2n

and

(6) lim
n→∞

Qn

〈S〉n
=

1

σ2
lim
n→∞

1

n

n∑

k=1

Y 2(k) = 1 a.s.

by the SLLN. In the general, martingale, case we may or may not have

convergence as in (6). We do not go into this here but simply present the

following definition.
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Definition 2 Let Pe ⊂ P be the set of probability measures Pm such that

(i) ∀k, X̃(k) ∈ L2(Pm).

(ii) limn→∞〈S〉n = ∞ a.s.Pm, where S(n) is defined at (5).

(iii) There exists εm > 0 such that Qn/〈S〉n > εm for large n, a.s. Pm.

We can now state our final result.

Theorem 2 The mean statistic s(F ) =
∫

xF (dx) is (l, Qn,Pe)-consistent,

where

l(x, μ) = x − μ.

Proof. Suppose Pm ∈ Pe. Conditions (i) and (ii) of Definition 2 imply that

S(n)/〈S〉n → 0 by Proposition 3. Using condition (iii) we have
∣
∣
∣
∣
S(n)

Qn

∣
∣
∣
∣ =

∣
∣
∣
∣
〈S〉n
Qn

∣
∣
∣
∣

∣
∣
∣
∣
S(n)

〈S〉n

∣
∣
∣
∣ ≤

1

εm

∣
∣
∣
∣
S(n)

〈S〉n

∣
∣
∣
∣ for large n.

The result follows. �
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Estimating CVaR

Let F be a distribution function on R+. Recall from (??) that the CVaR

at level β can be expressed as

CVaRβ(F ) =
1

1 − β

∫ 1

β

qτdτ.

where qτ is the τ -quantile of F . We saw that the empirical distribution of

returns for the FTSE100 data set displayed power tails with tail index 2.35

on the left side. It is not claimed that the returns are i.i.d. samples from the

same distribution, but nevertheless this fact does add credibility to the idea

of considering power-tail distributions as candidates for a model.
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An Impossibility Theorem

Proposition 4 Let 0 < β < η < 1 and F be a distribution function on R+

such that for x ≥ qη

F (x) = 1 − (1 − η)

(
x

qη

)−κ

where κ > 1. Then

(7) CVaRβ(F ) =
1

1 − β

(∫ η

β

qτdτ +
κ

κ − 1
(1 − η)qη

)

.

It will be seen in the next section that quantile estimation for financial data

is something that can be achieved convincingly for significance levels out to

95% at least. Suppose we wish to compute CVaRβ and can reliably estimate

quantiles qτ for τ ≤ η but not beyond η where the data has dried up. Then

the first term on the right of (7) and the value of qη are known, but the result

also depends on the value of κ, and CVaRβ(F ) → +∞ as κ ↓ 1. To place an

upper bound on CVaR requires a reliable estimate for the tail index κ but

by definition this is impossible to obtain.
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Various expedients

(i) If the empirical return data exhibits power tails, for example the FTSE100

data where the left (=loss) tail index is κ = 2.35, then use this value beyond

the last point where the quantiles can be accurately estimated.

(ii) Use methods based on extreme-value theory.

(iii) Extrapolation: given reliable estimates for qβ and qη and assuming one

is already in the tail regime at qβ one can back out the implied value of κ.

(iv) Cont et al. suggest modifying the definition of CVaRβ to

1

η − β

∫ η

β

qτdτ, for some η < 1.

This removes the tail problem, at the expense of introducing an arbitrary

parameter η.

(v) Kou, Peng & Heyde propose replacing CVaR by CMVaR, the conditional

median loss beyond VaR. Clearly, CMVaRβ = VaR(1+β)/2, so computation

reduces to VaR estimation.

Claim: (v) is the winning suggestion: it brings in no unjustifiable assumptions

while providing a realistic estimate of the ‘loss beyond VaR’.
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An algorithm for quantile forecasting

30 years of weekly values Sn of the FTSE100 stock index 1984-2012.
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Figure 3: FTSE100 index: weekly values

1994-2013
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Figure 4: FTSE100 weekly return series.
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Computing the quantile forecast

1. Econometrics.

– Choose a model (say, GARCH(1,1))

– Estimate parameters by ML for some window of data.

– Compute conditional 1-week ahead distribution with estimated param-

eters

– Find 10% upper quantile.

2. Data-driven algorithm

– Find the 2nd largest of the most recent 20 return values

(estmates 10% quantile).

– Use this as the forecast.

Forecast Data

Forecast
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... not bad, but slightly miscalibrated.
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Calibration, alpha=0

Remedy: take 1-week ahead forecast f̃n+1 given data up to week n as

f̃n+1 = fn + α(dn − 0.1)

where fn is the 20-week estimate as before, dn is the observed proportion of

above-threshold returns up to time n and α is a parameter.
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Result—almost perfect calibration. Lower graph shows the sequence of thesh-

olds produced by the algorithm.
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Testing the LIL
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Figure 5: Long data series, normalization n0.6.
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Figure 6: Long data series, normalization n0.5.
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Running Performance
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Figure 7: Running 50-week performance of feedback algorithm
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A test for serial dependence

Given our prediction algorithm and the data return sequence Xk we generate

a sequence a = (a0, a1, . . .) of binary r.v. ak = 1(Xk≤qm
k ). The above tests give

confidence that that a is consistent with a model in which P[ak = 1] = β. We

now want to test the “i” in i.i.d., the hypothesis being

H0 : The ak are i.i.d. with P[ak = 1] = β.

A possible set of alternatives is

Hβ,q :
a is a sample from a 2-state Markov chain

with stationary distribution P[ak = 1] = β.

Under Hβ,q the transition probabilities are

P[a0 = 1] = β

P[ak = 1|ak−1 = 0] = q

P[ak = 1|ak−1 = 1] = q′.
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The stationary distribution is β if

β = P[a1 = 1] = P[a1 = 1P[a1 = 1|a0 = 0](1 − β) + P[a1 = 1|a0 = 1]β

= q(1 − β) + q′β.

q and q′ are related, for given β, by

q′ = 1 −
1 − β

β
q,

so Hβ,q is a 1-parameter family indexed by q ∈ [0, 1] (when β ≥ 1
2). The i.i.d.

case is q = q′ = β. The log likelihood ratio LLRn
q(a) = dPβ,q/dP0 is given by

LLRn
q(a) = const + n1 log(1 − q) + n2 log(1 − qf) + (n − n1 − n2) log(q),

where f = (1 − β)/β and n1, n2 are the numbers of 00, 11 pairs respectively

in a. We denote n̄i = ni/n, i = 1, 2.
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Proposition Suppose β ≥ 1
2 . Then

(i) The maximum likelihood estimate of q is

q̂β(a) =
1

2f

(
1 − n̄2 + f(1 − n̄1) −

√
(f − c1)2 + 4f(c1 − c2)

)

where c1 = 1 − fn̄1 − n̄2, c2 = 1 − n̄1 − n̄2.

(ii) The estimator is consistent: under Hβ,q, as n → ∞

n̄1 → n∗
1 = (1 − q)(1 − β)

n̄2 → n∗
2 = β − (1 − β)q,

and q̂β(n∗
1, n

∗
2) = q.

The proof is based on the fact that Yk = (ak−1, ak) is an irreducible recurrent

4-state Markov chain.

Note: under H0 we have n∗
1 = (1 − β)2, n∗

2 = β2.
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Key results for FTSE100 data set, 1500 weeks

90% quantile

Prob Data length 250 Data length 500 Data length 1000

1% 0.7038 1.0000 0.7785 1.0000 0.8201 0.9672

5% 0.7676 1.0000 0.8103 0.9758 0.8418 0.9538

10% 0.7926 1.0000 0.8272 0.9652 0.8519 0.9450

50% 0.8643 0.9437 0.8728 0.9281 0.8823 0.9200

Table 1: Confidence intervals for estimator q̂0.9,0.

n̄1(1500) = 0.0100

n̄2(1500) = 0.8120

q̂0.9(n̄1, n̄2) = 0.8980.

Theoretical values ((1 − β)2, β2) = 0.0100, 0.8100.
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Left panel shows consistency test as before (but centred at 0, not (1 − β)).

Right panel shows q̂ estimates using data

(a0, . . . , a500), (a1, . . . , a501), . . . , (a1000, . . . , a1500)
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Figure 8: 90% threshold
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95% quantile

We repeat the tests for the 95% threshold, replacing the previous 90%. The

prediction algorithm is the same except that our predicted quantile is now

the largest of the previous 20 returns rather than the 2nd largest. Feedback

is used in the same way.

Prob Data length 250 Data length 500 Data length 1000

1% 0.6080 1.0000 0.7854 1.0000 0.8516 1.0000

5% 0.7600 1.0000 0.8398 1.0000 0.8800 1.0000

10% 0.8012 1.0000 0.8648 1.0000 0.8940 1.0000

50% 0.9133 1.0000 0.9249 1.0000 0.9308 0.9732

Table 2: Confidence intervals for estimator q̂0.95,0.95.

n̄1(1500) = 0.0027

n̄2(1500) = 0.9007

q̂0.95(n̄1, n̄2) = 0.9481.

Theoretical values ((1 − β)2, β2) = 0.0025, 0.9025.

36



Same tests again ...
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Figure 9: 95% threshold
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