
3
The Bounded Strong Law of

Large Numbers

In this chapter, we formulate and prove the simplest forms of the game-theoretic
strong law of large numbers.

In its very simplest form, the strong law of large numbers is concerned with a
sequence of events, each with the same two possible outcomes, which we may call
heads and tails. The law says that as one proceeds in the sequence, the proportion of
heads converges to one-half almost surely. In symbols:

lim
n→∞

yn

n
=

1
2

(3.1)

almost surely, whereyn is the number of heads among the firstn events. A framework
for mathematical probability must provide a precise mathematical context for this
statement, including a mathematical definition of the termalmost surely.

In the measure-theoretic framework, the mathematical context is provided by
adopting a certain probability measure for the infinite sequence of events: heads has
probability one-half each time, and the events are independent. The termalmost surely
means except on a set of measure zero. This makes our claim about convergence
into the precise statement known as Borel’s strong law: the sequences of outcomes
for which the convergence to one-half fails have measure zero under the specified
probability measure.

The game between Skeptic and Reality that we study in this chapter makes the
claim about convergence precise in a different way. No probability measure is given,
but before each event, Skeptic is allowed to bet as much as he wants on heads or on
tails, at even odds. The meaning ofalmost surelyis this: an event happens almost
surely if Skeptic has a strategy for betting that does not risk bankruptcy and allows
him to become infinitely rich if the event does not happen. This is all we need: the
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statement that the proportion of heads converges to one-half almost surely is now a
precise statement in game theory, which we prove in this chapter.

The preceding paragraph does not mention our fundamental interpretative hypoth-
esis, which says that Skeptic cannot become infinitely rich without risking bankruptcy.
As we explained in Chapter 1, this hypothesis stands outside the mathematical theory.
It has nothing to do with the mathematical meaning of the strong law of large numbers
or with its proof. It comes into play only when we use the theorem. If we adopt the
hypothesis for a particular sequence of events, then the statement “the proportion of
these events that happen will converge to one-half almost surely” acquires a useful
meaning: we think the convergence will happen. If we do not adopt the hypothesis
for the particular sequence, then the statement does not have this meaning.

The game-theoretic formulation is more constructive than the measure-theoretic
formulation. We construct a computable strategy for Skeptic that is sure to keep
him from becoming bankrupt and allows him to become infinitely rich if the con-
vergence of the proportion of heads to one-half fails. Moreover, our formulation is
categorical—it is a statement about all sequences, not merely about sequences outside
a set of measure zero. Every sequence either results in an infinite gain for Skeptic or
else has a proportion of heads converging to one-half.

The game-theoretic formulation has a further unfamiliar and very interesting facet.
In the folk picture of stochastic reality, outcomes are determined independently of
how any observer bets. In the game between Skeptic and Reality, in contrast, Reality
is allowed to take Skeptic’s bets into account in deciding on outcomes. Yet this
does not prevent Skeptic from constructing a winning strategy. No matter how
diabolically Reality behaves, she cannot violate the required convergence without
yielding an infinite gain to Skeptic.

We do not propose to replace stochastic reality with a rational, diabolical reality.
We propose, rather, to eliminate altogether from the general theory of probability any
particular assumption about how outcomes are determined. It is consistent with our
framework to suppose that Reality is nothing more than the actual outcomes of the
events—that Reality has no strategy, that there is no sense in the question of how she
would have made the second event come out had the first event come out differently
or had Skeptic bet differently. By lingering over this supposition, we underline the
concreteness of the strong law of large numbers; it concerns only our beliefs about a
single sequence of actual outcomes. But it is equally consistent with our framework
to imagine an active, strategic Reality. This diversity of possible suppositions hints
at the breadth of possible applications of probability, a breadth not yet, perhaps, fully
explored.

We formalize our game of heads and tails in§3.1. Then, in§3.2, we generalize
it to a game in which Reality decides on values for a bounded sequence of centered
variablesx1, x2, . . . . The strong law for this game says that the average of the first
N of the xn will converge to zero asN increases. In order to explain this in the
measure-theoretic framework, we postulate a complete probability distribution for all
the variables (this amounts to a specification of prices for all measurable functions of
the variables), and then we conclude that the convergence will occur except on a set of
measure zero, provided the conditional expectation (given the information available



This is the third chapter ofProbability and Finance: It’s Only a Game!, by Glenn Shafer and Vladimir Vovk.
Copyright c©2001 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.63

before timen) of eachxn is zero. Our game-theoretic formulation dispenses not
only with the use of measure zero but also with the complete probability distribution.
We assume only that eachxn is offered to Skeptic at the price of zero just before
it is announced by Reality. Skeptic may buy thexn in any positive or negative
amounts, but nonlinear functions of thexn need not be priced. This formulation
is more widely—or at least more honestly—applicable than the measure-theoretic
formulation.

In §3.3, we generalize to the case where the successive variables have prices
not necessarily equal to zero. In this case, the strong law says that the average
difference between the variables and their prices converges to zero almost surely. The
mathematical content of this generalization is slight (we continue to assume a uniform
bound for the variables and their prices), but the generalization is philosophically
interesting, because we must now discuss how the prices are set, a question that
is very important for meaning and application. The diversity of interpretations of
probability can be attributed to the variety of ways in which prices can be set.

In §3.4, we briefly discuss the generalization from two-sided prices—prices at
which Skeptic is allowed both to buy and sell—to one-sided prices, at which he is
allowed only to buy or only to sell. If Skeptic is only allowed, for example, to buy
at given prices, and not to sell, then our belief that he cannot become infinitely rich
implies only that the long-term average difference between the variables and their
prices will almost surely not exceed zero.

In an appendix,§3.5, we comment on the computability of the strategies we
construct and on the desirability of detailed investigation of their computational
properties.

The main results of this chapter are special cases of more general results we
establish in Chapter 4, where we allow Reality’s moves, the variablesxn, to be
unbounded. For most readers, however, this chapter will be a better introduction to
the basic ideas of the game-theoretic framework than Chapter 4, because it presents
these ideas without the additional complications that arise in the unbounded case.

3.1 THE FAIR-COIN GAME

Now we formalize our game of heads and tails. We call it thefair-coin game, but
not too much meaning should be read into this name. The outcomes need not be
determined by tossing a coin, and even if they are, there is no need for the coin to
have any property that might be called fairness. All that is required is that Skeptic be
allowed to bet at even odds on heads or on tails, as he pleases.

Skeptic begins with some initial capital, say$1. He bets by buying some number,
sayM , of tickets in favor of heads;M may be any real number—positive, zero, or
negative. Each ticket, which sells for$0, pays the bearer$1 if Reality chooses heads,
and requires the bearer to forfeit$1 if Reality chooses tails. So buyingM tickets
means agreeing to pay$M if Reality chooses tails in order to gain$M if Reality
chooses heads; ifM is negative, then this is really a bet in favor of tails. If we code
tails as−1 and heads as1, then the protocol for the game can be described as follows:
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K0 = 1.
FORn = 1, 2, . . .:

Skeptic announcesMn ∈ R.
Reality announcesxn ∈ {−1, 1}.
Kn := Kn−1 + Mnxn.

The quantityKn is Skeptic’s capital just after the bet on thenth toss is settled.
Skeptic wins the game if (1) his capitalKn is never negative, and (2) either

lim
n→∞

1
n

n∑

i=1

xi = 0 (3.2)

or
lim

n→∞
Kn = ∞ (3.3)

holds. Otherwise Reality wins.
Equation (3.2) says that the proportion of heads in the firstn tosses converges to

one-half. It is equivalent to (3.1), because
∑n

i=1 xi = 2yn−n. We use (3.2) instead
of (3.1) only because it is suitable for the more general bounded forecasting game
that we consider in the next section.

The rule for determining the winner, given by (3.2) and (3.2), completes our
specification of thefair-coin game. It is a two-person, zero-sum, perfect-information
game. Zero-sum because Skeptic wins if and only if Reality loses. (Since a win
is conventionally scored as a1 and a loss as−1, the two players’ scores sum to
zero.) Perfect-information because each player knows all the previous moves when
he makes his own next move. Here is the strong law of large numbers for this game:

Proposition 3.1 Skeptic has a winning strategy in the fair-coin game.

This means the convergence (3.2) occurs almost surely, in the game-theoretic sense
of this term explained on p. 17 and p. 61. Skeptic has a strategy that forces Reality
to arrange the convergence if she is to keep him from becoming infinitely rich. To
the extent that we believe that Skeptic cannot become infinitely rich, we should also
believe that the convergence will happen. If we adopt the fundamental interpretative
hypothesis, then we may simply assert that the convergence will occur.

Some readers might prefer to allow Skeptic to borrow money. Skeptic does not
need any such concession, however; he has a winning strategy even if he is not
allowed to borrow. Moreover, allowing Skeptic to borrow would not really change
the picture so long as there were a limit to his borrowing; allowing him to borrow
up to$β would have the same effect on our reasoning as changing his initial capital
from $1 to $(1 + β), and so long as his initial capital is positive, its value makes no
difference in our reasoning.

We will prove a generalization of Proposition 3.1 in§3.2. Our proof is constructive;
we spell out Skeptic’s strategy explicitly. The strategy can be described roughly as
follows: If Skeptic establishes an account for betting on heads, and if at each step
he bets a fixed proportionε of the money then in the account on heads, then Reality
can keep the account from getting indefinitely large only by eventually holding the
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average1
n

∑n
i=1 xi at or belowε. So Skeptic can force Reality to hold the average

asymptotically at zero or less by splitting a portion of his capital into an infinite number
of accounts for betting on heads, including accounts withε that come arbitrarily close
to zero. By also setting up similar accounts for betting on tails, Skeptic can force
Reality to make the average converge exactly to zero.

The rule for determining the winner in our game will seem simpler if we break out
the two players’collateral dutiesso as to emphasize the main question, whether (3.2)
holds. The collateral duty of Skeptic is to make sure that his capitalKn is never
negative. The collateral duty of Reality is to make sure thatKn does not tend to
infinity. If a player fails to perform his or her collateral duties, he or she loses the
game. (More precisely, the first player to fail loses. If Skeptic and Reality both
fail, then Skeptic loses and Reality wins, because Skeptic’s failure happens at some
particular trial, while Reality’s failure happens later, at the end of the infinite sequence
of trials.) If both players perform their collateral duties, Skeptic wins if and only
if (3.2) is satisfied.

Equation (3.2) is a particular event—a particular property of Reality’s moves. We
can define a whole gamut of analogous games with the same protocol and the same
collateral duties but with other events in the place of (3.2). In this more general
context, we say that a strategyforcesan eventE if it is a winning strategy for Skeptic
in the game in whichE replaces (3.2) as Skeptic’s main goal. We say that Skeptic
can forceE if he has a strategy that forcesE—that is, if E happens almost surely.
As we will see in later chapters, Skeptic can force many events.

3.2 FORECASTING A BOUNDED VARIABLE

Suppose now that instead of being required to choose heads or tails (1 or−1) on each
trial, Reality is allowed to choose any real numberx between−1 and1. This number
becomes the payoff (positive, negative, or zero) in dollars for a ticket Skeptic can
buy for $0 before the trial. Skeptic is again allowed to buy any numberM of such
tickets; when he buys a positive number, he is betting Reality will choosex positive;
when he buys a negative number, he is betting Reality will choosex negative.

Our new game generalizes the fair-coin game only in that Reality chooses from
the closed interval[−1, 1] rather than from the two-element set{−1, 1}:

Bounded Forecasting Game with Forecasts Set to Zero
Players: Skeptic, Reality
Protocol:

K0 = 1.
FORn = 1, 2, . . .:

Skeptic announcesMn ∈ R.
Reality announcesxn ∈ [−1, 1].
Kn := Kn−1 + Mnxn.

Winner: Skeptic wins ifKn is never negative and either (3.2) or (3.3) holds. Other-
wise Reality wins.
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Why do we call this aforecastinggame? Who is forecasting what? The answer is
that we have forecast Reality’s movexn, and the forecast is zero. This forecast has an
economic meaning: Skeptic can buyxn for zero. In§3.3, we generalize by allowing
forecasts different from zero, made in the course of the game. These forecasts will
also serve as prices for Skeptic.

Because the generalization from the fair-coin game to the bounded forecasting
game with forecasts at zero involves only an enlargement of Reality’s move space,
the reformulation in terms of collateral duties and the concept of forcing developed
in the preceding section apply here as well. We refrain from repeating the definitions.

The game-theoretic strong law of large numbers says that Skeptic can always win
this game; if Reality is committed to avoiding making him infinitely rich, then he can
force her to make the average of thex1, x2, . . . converge to zero.

Proposition 3.2 Skeptic has a winning strategy in the bounded forecasting game
with forecasts set to zero.

Because Proposition 3.2 generalizes Proposition 3.1, our proof of it will establish
Proposition 3.1 as well.

The proof of Proposition 3.2 will be facilitated by some additional terminology
and notation.

As we explained in§1.2, a complete sequence of moves by World is called apath,
and the set of all paths is called thesample spaceand designated byΩ. In the game at
hand, the bounded forecasting game with forecasts set to zero, World consists of the
single player Reality, Reality’s moves always come from the interval[−1, 1], and the
game continues indefinitely. SoΩ is the infinite Cartesian product[−1, 1]∞. Each
path is an infinite sequencex1, x2, . . . of numbers in[−1, 1].

As we said in§1.2, any function on the sample space is avariable. Here this means
that any function of thex1, x2, . . . is a variable. In particular, thexn themselves are
variables.

A situation is a finite sequence of moves by Reality. For example,x1x2 is the
situation after Reality has chosenx1 as her first move andx2 as her second move.
We writeΩ3 for the set of all situations. In the game at hand,Ω3 is the set of all
finite sequences of numbers from[−1, 1], including the sequence of length zero, the
initial situation, which we designate by2.

We say that the situations precedesthe situationt if t, as a sequence, containss as
an initial segment—says = x1x2 . . . xm andt = x1x2 . . . xm . . . xn. We writes v t
whens precedest. If s is a situation andx ∈ [−1, 1], we writesx for the situation
obtained by concatenatings with x; thus if s = x1 . . . xn, thensx = x1 . . . xnx. If
s andt are situations and neither precedes the other, then we say they aredivergent.
We write |s| for the length ofs; thus |x1x2 . . . xn| = n. If ξ is a path for Reality,
sayξ = x1x2 . . ., we writeξn for the situationx1x2 . . . xn. We say thats beginsξ
whenevers is a situation,ξ is a path, ands = ξn for somen.

We call a real-valued function onΩ3 aprocess. Any processP can be interpreted
as astrategyfor Skeptic; for each situations, we interpretP(s) as the number of
tickets Skeptic is to buy in situations. This definition of strategy puts no constraints
on Skeptic. In particular, his initial capital does not constrain him; he is allowed to
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borrow money indefinitely. In the games in this chapter, however, a strategy that may
require borrowing money cannot be a winning strategy for Skeptic. In these games,
Skeptic loses if his capital becomes negative. If he adopts a strategy that would result
in a negative capital in any situation, Reality can defeat him by choosing a path that
goes through that situation.

In our game, Skeptic begins with the initial capital 1, but we can also consider
the capital process that would result from his beginning with any given capitalK0,
positive, negative, or zero, and following a particular strategyP. As in§1.2, we write
KP for his capital process when he begins with zero:KP(2) = 0 and

KP(x1x2 . . . xn) := KP(x1x2 . . . xn−1) + P(x1x2 . . . xn−1)xn. (3.4)

When he uses theP with any other initial capitalα, his capital follows the process
α + KP . We call a process amartingaleif it is of the formα +KP—that is, if it is
the capital process for some strategy and some initial capital.1

The capital processes that begin with zero form a linear space, forβKP = KβP

andKP1 +KP2 = KP1+P2 . It follows that the set of all capital processes (the set of
all martingales) is also a linear space.

If α1 andα2 are nonnegative numbers that add to one, andP1 andP2 are strategies,
then the martingale that results from using the strategyα1P1 + α2P2 starting with
capital 1 is given by the same convex combination of the martingales that result from
using the respective strategies starting with capital 1:

1 +Kα1P1+α2P2 = α1(1 +KP1) + α2(1 +KP2). (3.5)

We can implement the convex combination in (3.5) by dividing the initial capital 1
between two accounts, puttingα1 in one andα2 in the other, and then applying the
strategyαkPk (which is simplyPk scaled down to the initial capitalαk) to thekth
account.

We will also find occasion to form infinite convex combinations of strategies. If
P1,P2, . . . are strategies,α1, α2, . . . are nonnegative real numbers adding to one,
and the sum

∑∞
k=1 αkPk converges, then the sum

∑∞
k=1 αkKPk will also converge

(by induction on (3.4)), and1 +
∑∞

k=1 αkKPk will be the martingale the strategy∑∞
k=1 αkPk produces when it starts with initial capital1. The strategy

∑∞
k=1 αkPk

starting with 1 is implemented by dividing the initial capital of1 among a countably
infinite number of accounts, withαk in thekth account, and applyingαkPk to the
kth account.

Recall that aneventis a subset of the sample space. We say that a strategyP for
Skepticforcesan eventE if

KP(t) ≥ −1 (3.6)

for everyt in Ω3 and
lim

n→∞
KP(ξn) = ∞ (3.7)

1As we explained in§2.4 (p. 53), we use the word “martingale” in this way only in symmetric probability
protocols. The protocol we are studying now is symmetric: Skeptic can buyxn-tickets in negative as well
as in positive amounts.
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for every pathξ not inE. This agrees with the definition given in§3.1; condition (3.6)
says that Skeptic does not risk bankruptcy using the strategy starting with the capital 1,
no matter what Reality does. We say that Skepticcan forceE if he has a strategy
that forcesE; this is the same as saying that there exists a nonnegative martingale
starting at 1 that becomes infinite on every path not inE.

We say thatP weakly forcesE if (3.6) holds and every pathξ not inE satisfies

sup
n
KP(ξn) = ∞. (3.8)

By these definitions, any strategyP for which (3.6) holds weakly forces
supnKP(ξn) < ∞. We say that Skepticcan weakly forceE if he has a strat-
egy that weakly forcesE; this is the same as saying that there exists a nonnegative
martingale starting at 1 that is unbounded on every path not inE.

The following lemma shows that the concepts of forcing and weak forcing are
nearly equivalent.

Lemma 3.1 If Skeptic can weakly forceE, then he can forceE.

Proof SupposeP is a strategy that weakly forcesE. For anyC > 0, define a new strategy
P(C) by

P(C)(s) :=

� P(s) if KP(t) < C for all t v s
0 otherwise.

This strategy mimicsP except that it quits betting as soon as Skeptic’s capital reachesC.
Define a strategyQ by

Q :=

∞X

k=1

2−kP(2k).

Thenlimn→∞KQ(ξn) = ∞ for everyξ for which supnKP(ξn) = ∞. SinceKP ≥ −1,
KQ ≥ −1. SincesupnKP(ξn) = ∞ for everyξ not inE, limn→∞KQ(ξn) = ∞ for every
ξ not inE. SoQ forcesE.

Proving Proposition 3.2 means showing Skeptic can force (3.2), and according to
Lemma 3.1, it suffices to show he can weakly force (3.2). The next two lemmas will
make this easy.

Lemma 3.2 If Skeptic can weakly force each of a sequenceE1, E2, . . . of events,
then he can weakly force

⋂∞
k=1 Ek.

Proof LetPk be a strategy that weakly forcesEk. The capital process1+KPk is nonnegative,
and in our game this implies that it can at most double on each step:

1 +KPk (x1 . . . xn) ≤ 2n.

Since|Pk| ≤ 1 +KPk (see (3.4)), we can also say that

|Pk(x1 . . . xn)| ≤ 2n

for all k, which implies that a strategyQ can be defined by

Q :=

∞X

k=1

2−kPk.
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SincePk weakly forcesEk,Q also weakly forcesEk. SoQ weakly forces
T∞

k=1Ek.

Lemma 3.3 Supposeε > 0. Then Skeptic can weakly force

lim sup
n→∞

1
n

n∑

i=1

xi ≤ ε (3.9)

and

lim inf
n→∞

1
n

n∑

i=1

xi ≥ −ε. (3.10)

Proof We may suppose thatε < 1/2. The game specifies that the initial capital is 1. Let
P be the strategy that always buysεα tickets, whereα is the current capital. Since Reality’s
movex is never less than−1, this strategy loses at most the fractionε of the current capital,
and hence the capital process1 +KP is nonnegative. It is given by1 +KP(2) = 1 and

1 +KP(x1 . . . xn) = (1 +KP(x1 . . . xn−1))(1 + εxn) =

nY
i=1

(1 + εxi) .

Let ξ = x1x2 . . . be a path such thatsupnKP(x1 . . . xn) < ∞. Then there exists a constant
Cξ > 0 such that

nY
i=1

(1 + εxi) ≤ Cξ

for all n. This implies that
nX

i=1

ln (1 + εxi) ≤ Dξ

for all n for someDξ. Sinceln(1 + t) ≥ t− t2 whenevert ≥ − 1
2
, ξ also satisfies

ε

nX
i=1

xi − ε2
nX

i=1

x2
i ≤ Dξ,

ε

nX
i=1

xi − ε2n ≤ Dξ,

ε

nX
i=1

xi ≤ Dξ + ε2n,

or
1

n

nX
i=1

xi ≤ Dξ

εn
+ ε

for all n and hence satisfies (3.9). ThusP weakly forces (3.9). The same argument, with−ε
in place ofε, establishes that Skeptic can weakly force (3.10).

In order to complete the proof that Skeptic can weakly force (3.2), we now simply
consider the events (3.9) and (3.10) forε = 2−k, wherek ranges over all natural
numbers; this defines a countable number of events Skeptic can weakly force, and
their intersection, which he can also weakly force (by Lemma 3.2), is (3.2).
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3.3 WHO SETS THE PRICES?

We have formulated the bounded forecasting game in the simplest possible way. The
variablesx1, x2, . . . are all between−1 and1, and they all have the same price: zero.
But our proof applies equally well when each variable has a different price, sayxn

has the pricemn, provided only that bothxn andmn are uniformly bounded. (In
fact, it is enough that the net payoffs of the tickets, the differencesxn − mn, be
uniformly bounded.) Of course, we must then replace (3.2) by

lim
n→∞

1
n

n∑

i=1

(xi −mi) = 0. (3.11)

The pricemn can be chosen in whatever manner we please; we require only that it
be announced before Skeptic places his betMn.

As we explained in§1.1, the idea that prices can be set freely can be expressed
within our framework by introducing a third player, Forecaster, who sets them. The
game then takes the following form:

Bounded Forecasting Game
Parameter: C > 0
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FORn = 1, 2, . . .:

Forecaster announcesmn ∈ [−C,C].
Skeptic announcesMn ∈ R.
Reality announcesxn ∈ [−C,C].
Kn := Kn−1 + Mn(xn −mn).

Winner: Skeptic wins ifKn is never negative and either (3.11) or (3.3) holds.
Otherwise Reality wins.

Since Forecaster can always choose themn to be zero, and since the boundC can
be1, this game generalizes the game of the preceding section. And Proposition 3.2
generalizes as well:

Proposition 3.3 Skeptic has a winning strategy in the bounded forecasting game.

The proof of Proposition 3.2 generalizes immediately to a proof of Proposition 3.3.
Alternatively, any winning strategy in the game with zero prices can be adapted in an
obvious way to produce a winning strategy in the game with arbitrary prices.

We can recover Proposition 3.2 from Proposition 3.3 by settingC equal to1
and requiring Forecaster to set eachmn equal to zero. Imposing this constraint
on Forecaster changes the game (because his move is entirely determined, he is no
longer really in the game!), but this change obviously does not impair the validity
of the proposition. A strategy for Skeptic that wins when his opponents, Forecaster
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and Reality, have complete freedom of action will obviously still win when they are
constrained, partially or completely.

We introduce Forecaster, with his complete freedom of action, in order to empha-
size that how themn are selected is quite immaterial to the reasoning by which we
establish the strong law of large numbers. No matter how prices are set, Skeptic has
a winning strategy. This is not to say that how prices are set is unimportant to users
of the law of large numbers. On the contrary, the practical significance of the law
depends both on how the pricesmn are determined and on how the outcomesxn are
determined. And they can be determined in a variety of ways. In physics, themn

are furnished by theory, while thexn are furnished by reality. In finance, bothmn

andxn are determined by a market; in many cases,mn is the price of a stock at the
beginning of dayn, andxn is its price at the end of dayn.

It is possible for the pricemn to be set by a market even thoughxn is determined
outside the market. This happens, for example, in the Iowa Electronic Markets,
which generate prices for events such as the outcomes of elections. Suppose the Iowa
Electronic Markets continue to organize trading in contracts for the outcomes of U.S.
presidential elections into the indefinite future: each November 1 before such an
election, it determines a price for a contract that pays$1 if the Democratic candidate
wins. Then the game-theoretic strong law of large numbers tells us that either we can
become infinitely rich without risking more than$1 or else the market is calibrated,
in the sense that the long-term average price of the contract approaches the long-term
relative frequency with which the Democratic candidates win. Of course, this is a
very idealized statement; we are assuming that the system that pits Democrats against
Republicans will go on forever, that money is infinitely divisible, and that we can
neglect transaction costs and bid-ask spreads. But in Chapter 6 we will prove a
finitary game-theoretic law of large numbers, and the other idealizing assumptions
can also be relaxed.

When we say thatmn is the price forxn when Skeptic makes his moveMn,
our manner of speaking is consistent with the general definition of price given in
Chapter 1 (p. 14). Because it is determined by the pathx1, x2, . . ., we are entitled
to call xn a variable, and because Skeptic can buy it exactly formn, we have
Et xn = Et xn = mn in the situationt where Forecaster has just announcedmn.

In measure-theoretic probability, the strong law for a sequencex1, x2, . . . of
variables is formulated beginning with the assumption that the variables have a joint
probability distribution, and the pricemn is the conditional expected value ofxn given
x1, . . . , xn−1; the conclusion is that (3.11) holds almost surely. We will leave for
Chapter 8 the formal derivation of this measure-theoretic result from Proposition 3.3,
but it is intuitively obvious that our game-theoretic formulation is more powerful, in
the sense that it arrives at the same conclusion (Equation (3.11) holds almost surely)
with fewer assumptions. Postulating a joint probability distribution forx1, x2, . . .
amounts to assuming that for alln, every measurable function ofxn (and even of
xn, xn+1, . . .) is priced conditional on the outcomesx1, . . . , xn−1. But the game-
theoretic formulation assumes only that a price forxn itself is given in light of
x1, . . . , xn−1. In the simplest case, where eachxn has only two possible values,
heads or tails, there is no difference between pricing thexn and pricing all measurable
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functions of it. But when eachxn can be chosen from a large range of values, the
difference is immense, and consequently the game-theoretic result is much more
powerful than the measure-theoretic result.

As we pointed out earlier, Proposition 3.3 continues to be true when the bounded
forecasting game is modified by a restriction, partial or complete, on the freedom
of action of Skeptic’s opponents. When we constrain Forecaster by setting the
mn equal to a common valuem at the beginning of the game, we obtain a game-
theoretic generalization of the measure-theoretic strong law for the case where the
x1, x2, . . . are independent random variables with a common meanm. If we then
constrain Reality to choosexn from the set{0, 1}, we obtain the game-theoretic
result corresponding to the measure-theoretic strong law for a possibly biased coin;
if 1 represents heads and0 represents tails, thenm corresponds to the probability
of heads on each toss, and (3.11) says that1

n

∑n
i=1 xi, the proportion of heads in

the firstn tosses, converges tom. If m = 1/2, then we are back to the fair-coin
game with which we began the chapter, except that we are using0 rather than−1 to
represent heads.

3.4 ASYMMETRIC BOUNDED FORECASTING GAMES

Our bounded strong law of large numbers, Equation (3.11), can be decomposed into
two parts:

lim sup
n→∞

1
n

n∑

i=1

(xi −mi) ≤ 0, (3.12)

and

lim inf
n→∞

1
n

n∑

i=1

(xi −mi) ≥ 0. (3.13)

Moreover, the proof of Lemma 3.3 makes it clear that these two parts depend on
different assumptions. If Skeptic can buy tickets at the pricesmn, then either (3.12)
will hold or else he can become infinitely rich. If Skeptic can sell tickets at the prices
mn, then either (3.13) will hold or else he can become infinitely rich.

We can express this point more formally by adapting the game of the preceding
section as follows:

Bounded Upper Forecasting Game
Parameter: C > 0
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FORn = 1, 2, . . .:

Forecaster announcesmn ∈ [−C,C].
Skeptic announcesMn ≥ 0.
Reality announcesxn ∈ [−C,C].
Kn := Kn−1 + Mn(xn −mn).
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Winner: Skeptic wins if and only ifKn is never negative and either (3.12) or (3.3)
holds. Otherwise Reality wins.

This is an asymmetric protocol, in the sense explained on p. 11. Using only the first
half of Lemma 3.3, we obtain our usual result:

Proposition 3.4 Skeptic has a winning strategy in the bounded upper forecasting
game.

The hypothesis of the impossibility of a gambling system, as applied to this game,
says that the pricesmn are high enough that Skeptic cannot get infinitely rich by
buying tickets. If we adopt this hypothesis, then we may conclude that (3.12) will
hold for these prices and, a fortiori, for any higher prices.

We can similarly define a bounded lower forecasting game, in which (1) Skeptic
selects a nonpositive rather than a nonnegative real number, and (2) Skeptic wins if
his capital remains nonnegative and either (3.13) or (3.3) holds. Again Skeptic will
have a winning strategy.

3.5 APPENDIX: THE COMPUTATION OF STRATEGIES

The scope of this book is limited to showing how the game-theoretic framework can
handle traditional questions in probability theory (Part I) and finance theory (Part II).
But our results raise many new questions, especially questions involving computation.
All our theoretical results are based on the explicit construction of strategies, and it
should be both interesting and useful to study the computational properties of these
constructions.

All the strategies we construct are in fact computable. For example, the construc-
tion in §3.2 is obviously computable, and hence we can strengthen Proposition 3.3 to
the following:

Proposition 3.5 Skeptic has a computable winning strategy in the bounded forecast-
ing game.

This strengthening is relevant to points we have already made. For example, our
argument on p. 71 concerning the Iowa Electronic Markets obviously requires that
Skeptic’s strategy be computable.

Proposition 3.5 is mathematically trivial, but it suggests many nontrivial questions.
For example, fixing a computational model (such as the one-head and one-tape Turing
machine), we can ask questions such as this:

Does there exist a winning strategy for Skeptic in the fair-coin game
such that the move at stepn can be computed in timeO(nc), for some
c? If yes, what is the infimum of suchc?

Similar questions, which may be of practical interest when one undertakes to imple-
ment the game-theoretic approach, can be asked about other computational resources,
such as the required memory.
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In a different direction, we can ask about the rate at which Skeptic can increase his
capital if the sequence of outcomes produced by Reality in the bounded forecasting
game does not satisfy (3.11). For example, the construction in§3.2 shows that the
following is true.

Proposition 3.6 Skeptic has a computable winning strategy in the bounded forecast-
ing game with the condition (3.3) that his capital tends to infinity replaced by the
condition

lim sup
n→∞

logKn

n
> 0

that his capital increases exponentially fast.

It might be interesting to study the trade-off (if any) between the computational
efficiency of a strategy and the rate at which its capital tends to infinity.

Questions similar to that answered in Proposition 3.6 have been asked in algo-
rithmic probability theory: see Schnorr ([267], [269]) in connection with the strong
law of large numbers and Vovk (1987) in connection with the law of the iterated
logarithm and the recurrence property.
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